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Preface

This text started out as a revised version of Buildings by the second-named
author [53], but it has grown into a much more voluminous book. The earlier
book was intended to give a short, friendly, elementary introduction to the the-
ory, accessible to readers with a minimal background. Moreover, it approached
buildings from only one point of view, sometimes called the “old-fashioned”
approach: A building is a simplicial complex with certain properties.

The current book includes all the material of the earlier one, but we have
added a lot. In particular, we have included the “modern” (or “W-metric”)
approach to buildings, which looks quite different from the old-fashioned ap-
proach but is equivalent to it. This has become increasingly important in the
theory and applications of buildings. We have also added a thorough treat-
ment of the Moufang property, which occupies two chapters. And we have
added many new exercises and illustrations. Some of the exercises have hints
or solutions in the back of the book. A more extensive set of solutions is avail-
able in a separate solutions manual, which may be obtained from Springer’s
Mathematics Editorial Department.

We have tried to add the new material in such a way that readers who are
content with the old-fashioned approach can still get an elementary treatment
of it by reading selected chapters or sections. In particular, many readers will
want to omit the optional sections (marked with a star). The introduction
below provides more detailed guidance to the reader.

In spite of the fact that the book has almost quadrupled in size, we were
still not able to cover all important aspects of the theory of buildings. For
example, we give very little detail concerning the connections with incidence
geometry. And we do not prove Tits’s fundamental classification theorems
for spherical and Euclidean buildings. Fortunately, the recent books of Weiss
[281,283] treat these classification theorems thoroughly.

Applications of buildings to various aspects of group theory occur in several
chapters of the book, starting in Chapter 6. In addition, Chapter 13 is devoted
to applications to the cohomology theory of groups, while Chapter 14 sketches
a variety of other applications.



viii Preface

Most of the material in this book is due to Jacques Tits, who originated
the theory of buildings. It has been a pleasure studying Tits’s work. We were
especially pleased to learn, while this book was in the final stages of produc-
tion, that Tits was named as a corecipient of the 2008 Abel prize. The citation
states:

Tits created a new and highly influential vision of groups as geomet-
ric objects. He introduced what is now known as a Tits building,
which encodes in geometric terms the algebraic structure of linear
groups. The theory of buildings is a central unifying principle with
an amazing range of applications. . . .

We hope that our exposition helps make Tits’s beautiful ideas accessible to a
broad mathematical audience.

We are very grateful to Pierre-Emmanuel Caprace, Ralf Gramlich, Bill
Kantor, Bernhard Mühlherr, Johannes Rauh, Hendrik Van Maldeghem, and
Richard Weiss for many helpful comments on a preliminary draft of this book.
We would also like to thank all the people who helped us with the applications
of buildings that we discuss in Chapter 14; their names are mentioned in the
introduction to that chapter.

Charlottesville, VA, and Ithaca, NY Peter Abramenko
June 2008 Kenneth S. Brown
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Introduction

Buildings were introduced by Jacques Tits in order to provide a unified geo-
metric framework for understanding semisimple complex Lie groups and,
later, semisimple algebraic groups over an arbitrary field. The definition
evolved gradually during the 1950s and 1960s and reached a mature form in
about 1965. Tits outlined the theory in a 1965 Bourbaki Seminar exposé [243]
and gave a full account in [247]. At that time, Tits thought of a building as a
simplicial complex with a family of subcomplexes called apartments, subject
to a few axioms that will be stated in Chapter 4. Each apartment is made
up of chambers, which are the top-dimensional simplices. This viewpoint is
sometimes called the “old-fashioned approach” to buildings, but we will use
the more neutral phrase simplicial approach.

In the more “modern” approach, introduced by Tits in a 1981 paper [255],
one forgets about all simplices except the chambers, and one forgets about
apartments. The definition is recast entirely in terms of objects called chamber
systems. For lack of a better term, we will refer to this as the combinatorial
approach to buildings. The definition from this point of view also evolved over
a period of years, and it reached a mature form in the late 1980s. An impor-
tant catalyst was the theory of twin buildings, which was being developed
by Ronan and Tits. The final version of the combinatorial definition can be
found in [261], where a building is viewed as a set C (the chambers), together
with a Weyl-group-valued distance function subject to a few axioms.

A third way of thinking about buildings, which we call the metric approach,
is gotten by taking geometric realizations of the structures described in the
previous two paragraphs. It turns out that this can always be done so as to
obtain a metric space with nice geometric properties. The possibility of doing
this has been known for a long time in special cases where the apartments are
spheres or Euclidean spaces. But M. Davis [88] discovered much more recently
that it can be done in general. In this approach to buildings, apartments again
play a prominent role but are viewed as metric spaces rather than simplicial
complexes.



2 Introduction

The three approaches to buildings are distinguished by how one thinks of
a chamber. In the simplicial approach, chambers are maximal simplices. In
the combinatorial approach, chambers are just elements of an abstract set, or
vertices of a graph. And in the metric approach, chambers are metric spaces.

Our goal in this book is to treat buildings from all three of these points
of view. The various approaches complement one another and are all useful.
On the other hand, we recognize that some readers may prefer one particu-
lar viewpoint. We have therefore tried to create more than one path through
the book so that, for example, the reader interested only in the combinato-
rial approach can learn the basics without having to spend too much time
studying buildings as simplicial complexes. More detailed guidance is given in
Section 0.9.

The remainder of this introduction is intended to provide an overview of
the various ways of thinking about buildings, as well as a guide to the rest of
the book. The reader need not be concerned about unexplained terminology
or notation; we will start from scratch in Chapter 1.

All three approaches to buildings start with Coxeter groups.

0.1 Coxeter Groups and Coxeter Complexes

A Coxeter group of rank n is a group generated by n elements of order 2,
subject to relations that give the orders of the pairwise products of the gen-
erators. Thus the group of order 2 is a Coxeter group of rank 1, and the
dihedral group D2m of order 2m (m ≥ 2) is a Coxeter group of rank 2, with
presentation

D2m =
〈
s, t ; s2 = t2 = (st)m = 1

〉
.

[Warning : Some mathematicians, following the standard notation of crystal-
lography, write Dm instead of D2m.] The infinite dihedral group

D∞ =
〈
s, t ; s2 = t2 = 1

〉

is also a rank-2 Coxeter group; there is no relation for the product st, because it
has infinite order. Readers who have studied Lie theory have seen Weyl groups,
which are the classical examples of (finite) Coxeter groups. For example, the
symmetric group S3 on 3 letters, which is the same as the dihedral group of
order 6, is the Weyl group of type A2. And the symmetric group S4 on 4
letters is the Weyl group of type A3, with presentation

S4 =
〈
s, t, u ; s2 = t2 = u2 = (st)3 = (tu)3 = (su)2 = 1

〉
.

Certain infinite Coxeter groups also arise in Lie theory, as affine Weyl groups.
For example, D∞ is the affine Weyl group of type Ã1, and the Coxeter group W
with presentation

W =
〈
s, t, u ; s2 = t2 = u2 = (st)3 = (tu)3 = (su)3 = 1

〉
(0.1)
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is the affine Weyl group of type Ã2.
The given set S of generators of order 2 should be viewed as part of the

structure, but one often suppresses it for simplicity. When we need to be
precise, we will talk about the Coxeter system (W,S) rather than the Coxeter
group W . The system (W,S) is said to be reducible if S admits a partition
S = S′ � S′′ such that all elements of S′ commute with all elements of S′′.
In this case W splits as a direct product W ′ ×W ′′ of two Coxeter groups of
lower rank.

Every finite Coxeter group can be realized in a canonical way as a group
of orthogonal transformations of Euclidean space, with the generators of or-
der 2 acting as reflections with respect to hyperplanes. Thus D2m acts on the
plane, with s and t acting as reflections through lines that meet at an angle
of π/m. And S4 admits a reflection representation on 3-dimensional space. To
construct this representation, let S4 act on R

4 by permuting the coordinates,
and then restrict to the 3-dimensional subspace x1 + x2 + x3 + x4 = 0. More
geometrically, we get this action by viewing S4 as the group of symmetries of
a regular tetrahedron.

Given a finite Coxeter group W and its reflection representation on Euclid-
ean space, consider the set of hyperplanes whose reflections belong to W . If we
cut the unit sphere by these hyperplanes, we get a cell decomposition of the
sphere. The cells turn out to be spherical simplices, and we obtain a simplicial
complex Σ = Σ(W ) (or Σ(W,S)) triangulating the sphere. This is called the
Coxeter complex associated with W .

For D2m acting on the plane, Σ is a circle decomposed into 2m arcs.
For the action of S4 on R

3 mentioned above, Σ is the triangulated 2-sphere
shown in Figure 0.1.∗ There are 6 reflecting hyperplanes, which cut the sphere
into 24 triangular regions. Combinatorially, Σ is the barycentric subdivision
of the boundary of a tetrahedron, as indicated in the picture. (One face of
an inscribed tetrahedron is visible.) The vertex labels in the picture will be
explained in the next section.

A similar but more complicated construction yields a Coxeter complex
associated with an arbitrary Coxeter group W . For example, Σ(D∞) is a
triangulated line, with the generators s and t acting as affine reflections with
respect to the endpoints of an edge. And the Coxeter complex for the group W
defined in equation (0.1) is the Euclidean plane, tiled by equilateral triangles.
[The generators s, t, u act as reflections with respect to the sides of one such
triangle.]

We will give a detailed treatment of Coxeter groups in Chapters 1 and 2.
The Coxeter complex associated with a finite Coxeter group will arise natu-
rally from our discussion, and this will motivate the general theory of Coxeter
complexes to be given in Chapter 3.

∗ Figure 0.1 was drawn by Bill Casselman for the article [54]. We are grateful to
him for permission to reproduce it here.
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Fig. 0.1. The Coxeter complex of type A3 (drawn by Bill Casselman).

0.2 Buildings as Simplicial Complexes

We begin with the canonical example of a building: Let k be a field and let
∆ = ∆(kn) be the abstract simplicial complex whose vertices are the nonzero
proper subspaces of the vector space kn and whose simplices are the chains

V1 < V2 < · · · < Vr

of such subspaces. Every simplex σ is contained in a subcomplex, called an
apartment, which is isomorphic to the Coxeter complex associated with the
symmetric group on n letters. To find such an apartment, choose a basis
e1, e2, . . . , en of kn such that every subspace Vi that occurs in σ is spanned by
some subset of the basis vectors. We then get an apartment containing σ by
taking all simplices whose vertices are spanned by subsets of the basis vectors.

Figure 0.1 shows an apartment for the case n = 4. The labels on the
vertices indicate which basis vectors span the corresponding subspace. Thus
the vertex labeled 2 is the line spanned by e2, the vertex labeled by both 1
and 2 is the plane spanned by e1 and e2, and the vertex labeled by 1, 2, and 3
is the 3-dimensional space spanned by e1, e2, e3. These three subspaces form
a chain, so they span a 2-simplex in ∆.

For a second example of a building, take any simplicial tree with no end-
points (i.e., every vertex is incident to at least two edges). Any copy of the real
line in the tree is an apartment, isomorphic to the Coxeter complex associated
with the infinite dihedral group.

As these examples suggest, a building is a simplicial complex that is the
union of “apartments,” each of which is a Coxeter complex. There are axioms
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that specify how the apartments are glued together. They are easy to write
down; the reader anxious to see them can look ahead to Section 4.1. But they
are not easy to grasp intuitively until one works with them for a while.

The simplices of top dimension are called chambers, while those of codi-
mension 1 are called panels. Note that a Coxeter complex is itself a building,
with a single apartment. In fact, Coxeter complexes are precisely the thin
buildings. (This means that every panel is a face of exactly two chambers.)
The more interesting buildings are the thick buildings, i.e., those in which
every panel is a face of at least three chambers. The building ∆(kn) described
above is thick, and a tree is a thick building if and only if every vertex is
incident to at least three edges.

There is a well-defined Coxeter system (W,S) associated with a building ∆,
such that the apartments are all isomorphic to Σ(W,S). One says that ∆ is
a building of type (W,S), and one calls W the Weyl group of ∆. Much of
the terminology (rank, reducibility, . . . ) from the theory of Coxeter groups
is carried over to buildings. In addition, one says that a building is spherical
if W is finite (in which case the apartments are triangulated spheres). Thus
∆(kn) is an irreducible spherical building of rank n− 1, while a tree with no
endpoints is an irreducible building of rank 2 that is not spherical. (As we will
see later, it is an example of a Euclidean building.)

0.3 Buildings as W-Metric Spaces

Let ∆ be a building of type (W,S) as above, and let C = C(∆) be its set
of chambers. It turns out that there is a natural way to define a W -valued
distance function

δ : C × C →W

that describes the relative position of any two chambers. Intuitively, δ(C,D)
for C,D ∈ C is something like a vector pointing from C to D. The definition
of δ will be given in Section 4.8; all we will say at the moment is that δ(C,D)
contains information about the totality of minimal galleries from C to D. Here
a gallery is a finite sequence of chambers such that any two consecutive ones
have a common panel, and it is minimal if there is no shorter gallery with the
same first and last chambers. Minimal galleries are combinatorial analogues
of geodesics.

It turns out that one can completely reconstruct the building ∆ from the
data consisting of the Coxeter system (W,S), the set C of chambers, and the
function δ. Moreover, one can write down simple axioms that these data must
satisfy in order that they come from a building. The axioms can be found in
Section 5.1.1. Some of them resemble the axioms for an ordinary metric space,
so we will sometimes refer to (C, δ) as a W-metric space.

From the combinatorial point of view, then, a building of type (W,S) is
simply a W-metric space. The most striking thing about this approach is that
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the axioms contain nothing resembling the existence of apartments. Indeed, in
proving that the combinatorial definition is equivalent to the simplicial one,
the key step is to use the axioms to prove the existence of apartments. All of
this will be carried out in Chapter 5.

The combinatorial approach is both more abstract and more elementary
than the simplicial approach. It is more abstract because the geometric in-
tuition is gone. Thus one no longer visualizes chambers as regions cut out
by hyperplanes, and one no longer visualizes apartments as simplicial com-
plexes associated with reflection groups. But it is more elementary because
the underlying mathematical object can be boiled down to nothing more than
a graph with colored edges. [The vertices of the graph are the elements of C,
and two such vertices C,D are connected by an edge with “color” s ∈ S if
and only if δ(C,D) = s.]

0.4 Buildings and Groups

We mentioned above that Tits introduced buildings because of his interest
in Lie groups and algebraic groups. The connection between buildings and
groups is provided by Tits’s theory of BN-pairs, which we treat in Chapter 6.
Given a group G with a pair of subgroups B,N satisfying certain axioms,
one constructs a building on which G operates as a group of automorphisms.
Conversely, a sufficiently nice action of a group on a building yields a BN-pair.

This theory provides a very good illustration of the usefulness of thinking
of buildings as W-metric spaces, so we have chosen to take this point of view
in Chapter 6. An alternative treatment of BN-pairs based on the simplicial
approach can be found in the earlier book by the second author [53], and an
outline is given in Exercise 6.54 in the present book.

0.5 The Moufang Property and the Classification
Theorem

One of Tits’s greatest achievements is the classification of thick, irreducible,
spherical buildings of rank at least 3, proved in [247]. Roughly speaking, the
result is that such buildings correspond to classical groups and simple alge-
braic groups (of relative rank at least 3) defined over an arbitrary field. The
rank restriction cannot be avoided. The buildings of rank 2, for example, in-
clude those of type A2, which are essentially the same as projective planes.
And there is no hope of classifying projective planes, even the finite ones.

If, however, one imposes a certain symmetry condition on the buildings
(the so-called Moufang property), then the classification extends to rank 2.
This result is due to Tits and Weiss [262]. In rank ≥ 3 the Moufang property
does not need to be added as a hypothesis because Tits proved that all thick,
irreducible, spherical buildings of rank ≥ 3 have the Moufang property. We
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will study the Moufang property in Chapter 7 for spherical buildings and in
Chapter 8 for more general buildings.

The proof of the classification theorem is long and involved. In this book
(Chapter 9) we only give a rough statement of the theorem, with some pointers
to the literature for readers who want more details.

0.6 Euclidean Buildings

We have seen that spherical buildings arise in connection with algebraic groups
over an arbitrary field. If the field comes equipped with a discrete valuation,
then (under suitable hypotheses on the group) there is a second building, in
which the apartments are Euclidean spaces instead of spheres. Such buildings
are called Euclidean buildings, or buildings of affine type. We study them
in Chapter 11 after laying the foundations by treating Euclidean reflection
groups and Euclidean Coxeter complexes in Chapter 10. Along the way we
develop the theory of affine Weyl groups alluded to in Section 0.1 above.
Chapter 10 also includes a brief outline of the theory of hyperbolic reflection
groups.

Euclidean buildings, as we will see, admit a canonical metric, which re-
stricts to a Euclidean metric on each apartment. This was introduced and
exploited by Bruhat and Tits [59], who showed further that every Euclidean
building is a CAT(0) space (although they did not use that terminology).
This means that it has metric properties analogous to those of complete sim-
ply connected Riemannian manifolds of nonpositive curvature.

0.7 Buildings as Metric Spaces

M. Davis [88] made the surprising discovery that for every building there
is a geometric realization that admits a CAT(0) metric. This is primarily
of interest in the nonspherical case, so assume that ∆ is a building of type
(W,S) with W infinite. We then have a Coxeter complex Σ = Σ(W,S), as we
mentioned above. In the Euclidean case, Σ triangulates a Euclidean space, as
in Section 0.6. In general, however, it has no natural geometric structure.

But Davis found a way to truncate Σ so as to obtain a different “geomet-
ric realization” of (W,S), which we denote by Σd, and which has a natural
CAT(0) metric. It is a subspace of the geometric realization of the simplicial
complex Σ. Returning to our building ∆, we then get a CAT(0) geometric
realization by replacing each apartment by a copy of Σd. This is the metric-
space approach to buildings mentioned at the beginning of this introduction.
Davis’s theory will be treated in Chapter 12, where we also give a general
procedure for constructing metric realizations of buildings. For example, if
the Weyl group is a hyperbolic reflection group, then there is a realization in
which every apartment is a hyperbolic space.



8 Introduction

0.8 Applications of Buildings

Buildings have many uses beyond those originally envisaged by Tits. For ex-
ample, the authors of this book first got interested in buildings because of
applications to the cohomology theory of groups. We survey the applications
to group cohomology in Chapter 13, and we mention a variety of other appli-
cations in Chapter 14.

0.9 A Guide for the Reader

Chapters 1–4, 6, 10, 11, and 13 constitute a revised and enlarged version of
the original book [53]. Readers who want an elementary introduction in the
spirit of that book, with buildings always viewed as simplicial complexes, can
concentrate on those chapters (with perhaps an occasional glance at Chapter 5
for terminology). Such readers may also want to omit Sections 2.5 and 3.6
on first reading, returning to them later as necessary. In addition, there are
several optional sections (marked with a star) that may be omitted.

At the other extreme, readers who are primarily interested in the combina-
torial approach to buildings can read Chapters 1, 2, and 5, with an occasional
glance at Chapters 3 and 4 for motivation or terminology.

Chapters 7 and 8 treat the Moufang property. Chapter 7 covers the spher-
ical case and requires only the simplicial approach. Chapter 8, on the other
hand, is more advanced. It requries both the simplicial and the combinatorial
approaches, and it relies on some of the earlier starred sections that are not
needed elsewhere in the book. That whole chapter can be viewed as optional
and may safely be omitted. We have tried, nevertheless, to write that chapter
at the same level as the rest of the book in order to make this material acces-
sible. Chapter 9 (on the classification theorem) should make sense to readers
who know either the simplicial approach or the combinatorial approach to
buildings. Chapter 11 (Euclidean buildings), on the other hand, requires fa-
miliarity with the simplicial approach.

Chapter 12, on metric realizations of buildings, can technically be ap-
proached either from the simplicial or the combinatorial viewpoint. As a
practical matter, however, this chapter makes use of Euclidean buildings for
motivation, so it may be difficult reading for someone who knows only the com-
binatorial approach. Finally, Chapters 13 and 14 (on applications of buildings)
definitely require the simplicial approach.
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Finite Reflection Groups

This book is about connections between groups and geometry. We begin by
considering groups of isometries of Euclidean space generated by hyperplane
reflections. In order to avoid technicalities in this introductory chapter, we
confine our attention to finite groups and we require our reflections to be with
respect to linear hyperplanes (i.e., hyperplanes passing through the origin).
We will generalize this in Chapter 10, replacing “finite” by “discrete” and
“linear” by “affine.”

1.1 Definitions

Let V be a Euclidean vector space, i.e., a finite-dimensional real vector space
with an inner product.

Definition 1.1. A hyperplane in V is a subspace H of codimension 1. The
reflection with respect to H is the linear transformation sH : V → V that is the
identity on H and is multiplication by −1 on the (1-dimensional) orthogonal
complement H⊥ of H. If α is a nonzero vector in H⊥, so that H = α⊥, we
will sometimes write sα instead of sH .

Example 1.2. Let s : R
n → R

n interchange the first two coordinates, i.e.,

s(x1, x2, x3, . . . , xn) = (x2, x1, x3, . . . , xn) .

Equivalently, s transposes the first two standard basis vectors e1, e2 and fixes
the others. Then s is the identity on the hyperplane x1 − x2 = 0, which is
the orthogonal complement of α := e1 − e2, and s(α) = −α. So s is the
reflection sα.

For future reference, we derive a formula for sα. Given x ∈ V , write x =
h+λα with h ∈ H and λ ∈ R. Taking the inner product of both sides with α,
we obtain λ = 〈α, x〉/〈α, α〉, where the angle brackets denote the inner product
in V . Then sα(x) = h− λα = x− 2λα, and hence
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sα(x) = x− 2
〈α, x〉
〈α, α〉α . (1.1)

In words, this says that the mirror image of x with respect to α⊥ is obtained by
subtracting twice the component of x in the direction of α, thereby changing
the sign of that component. Suppose, for instance, that α = e1 − e2 as in
Example 1.2; then 〈α, α〉 = 2, so equation (1.1) becomes

sα(x) = x− 〈α, x〉α .

Definition 1.3. A finite reflection group is a finite group W of invertible
linear transformations of V generated by reflections sH , where H ranges over
a set of hyperplanes.

The group law is of course composition. We will sometimes refer to the pair
(W,V ) as a finite reflection group when it is necessary to emphasize the vector
space V on which W acts.

The requirement that W be finite is a very strong one. Suppose, for in-
stance, that dim V = 2 and that W is generated by two reflections s := sH

and s′ := sH′ . Then the rotation ss′ ∈ W has infinite order (and hence W
is infinite) unless the angle between the lines H and H ′ is a rational mul-
tiple of π. The following criterion is often used to verify that a given group
generated by reflections is finite:

Lemma 1.4. Let Φ be a finite set of nonzero vectors in V , and let W be the
group generated by the reflections sα (α ∈ Φ). If Φ is invariant under the
action of W , then W is finite.

Proof. We will show that W is isomorphic to a group of permutations of the
finite set Φ. Let V1 be the subspace of V spanned by Φ, and let V0 be its
orthogonal complement. Then V0 =

⋂
α∈Φ α⊥, which is the fixed-point set

V W := {v ∈ V | wv = v for all w ∈W}. In view of the orthogonal decompo-
sition V = V0 ⊕ V1, it follows that an element of W is completely determined
by its action on V1 and hence by its action on Φ. 	


The group W defined in the lemma will be denoted by WΦ. Such groups
arise classically in the theory of Lie algebras, where Φ is the root system
associated with a complex semisimple Lie algebra and WΦ is the corresponding
Weyl group. (This explains the use of the letter W for a finite reflection group.)

We will not need the precise definition of “root system,” but the interested
reader can find it in Appendix B. For now, we need to know only that a root
system satisfies the hypotheses of Lemma 1.4 as well as an integrality condition
that forces WΦ to leave a lattice invariant. It will be convenient to have a name
for sets Φ as in the lemma that are not necessarily root systems in the classical
sense.
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Definition 1.5. A set Φ satisfying the hypotheses of Lemma 1.4 will be called
a generalized root system. The elements of Φ will be called roots. We will
always assume (without loss of generality) that our generalized root systems
are reduced, in the sense that ±α (for α ∈ Φ) are the only scalar multiples of α
that are again roots. Thus there is exactly one pair ±α for each generating
reflection in the statement of Lemma 1.4.

To emphasize the distinction between generalized root systems and the classi-
cal ones that leave a lattice invariant, we will sometimes refer to the classical
ones as crystallographic root systems.

It is also convenient to have some terminology for the sort of decomposition
of V that arose in the proof of Lemma 1.4. Let W be a group generated by
reflections sH (H ∈ H), where H is a set of hyperplanes. Let V0 be the fixed-
point set

V W =
⋂

H∈H
H .

Definition 1.6. We call V0 the inessential part of V , and we call its orthogo-
nal complement V1 the essential part of V . The pair (W,V ) is called essential
if V1 = V , or, equivalently, if V0 = 0. The dimension of V1 is called the rank
of the finite reflection group W .

The study of a general (W,V ) is easily reduced to the essential case. Indeed,
V1 is W -invariant since V0 is, and clearly (V1)W = 0; so we have an orthogonal
decomposition V = V0 ⊕ V1, where the action of W is trivial on the first
summand and essential on the second. We may therefore identify W with
a group acting on V1, and as such, W is essential (and still generated by
reflections). If W is the group WΦ associated with a generalized root system,
then W is essential if and only if Φ spans V .

Exercise 1.7. Show that every finite reflection group W has the form WΦ for
some generalized root system Φ.

1.2 Examples

There are two classical families of examples of finite reflection groups. The
first, as we have already indicated, consists of Weyl groups of (crystallo-
graphic) root systems. The second consists of symmetry groups of regular
solids. We will not assume that the reader knows anything about either of
these two subjects. But it will be convenient to use the language of root sys-
tems or regular solids informally as we discuss examples. It is a fact that
all finite reflection groups can be explained in terms of one or both of these
theories; we will return to this in the next section.
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Example 1.8. The group W of order 2 generated by a single reflection sα is
a finite reflection group of rank 1. After passing to the essential part of V , we
may identify W with the group {±1} acting on R by multiplication. It is the
group of symmetries of the regular solid [−1, 1] in R. It is also the Weyl group
of the root system Φ := {±α}, which is called the root system of type A1.

Example 1.9. Let V be 2-dimensional, and choose two hyperplanes (lines)
that intersect at an angle of π/m for some integer m ≥ 2. Let s and t be the
corresponding reflections and let W be the group 〈s, t〉 they generate. [Here
and throughout this book we use angle brackets to denote the group generated
by a given set.] Then the product ρ := st is a rotation through an angle of
2π/m and hence is of order m. Moreover, s conjugates ρ to s(st)s = ts = ρ−1

and similarly for t, so the cyclic subgroup C := 〈ρ〉 of order m is normal in W .
Finally, the quotient W/C is easily seen to be of order 2; hence W is indeed
a finite reflection group, of order 2m.

This group W is called the dihedral group of order 2m, and we will denote
it by D2m. If m ≥ 3, W is the group of symmetries of a regular m-gon. If
m = 3, 4, or 6, then W can also be described as the Weyl group of a root
system Φ, said to be of type A2, B2, or G2, respectively. The root system of
type A2 (m = 3) consists of 6 equally spaced vectors of the same length, as
shown in Figure 1.1, which also shows the three reflecting hyperplanes (lines).
There are two oppositely oriented root vectors for each hyperplane. To get

Fig. 1.1. The root system of type A2 and the reflecting hyperplanes.

B2 and G2 (m = 4 and m = 6), we can take m equally spaced unit vectors
together with the sum of any two cyclically consecutive ones, as shown in
Figure 1.2

Of course, we can always get D2m from the generalized root system con-
sisting of 2m equally spaced unit vectors; but this is not crystallographic for
m > 3.

Example 1.10. Let W be the group of linear transformations of R
n (n ≥ 2)

that permute the standard basis vectors e1, e2, . . . , en. Thus W is isomorphic
to the symmetric group Sn on n letters and can be identified with the group
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Fig. 1.2. The root systems of type B2 and G2.

of n × n permutation matrices. It is generated by the
(
n
2

)
transpositions sij

(i < j), where sij interchanges the ith and jth coordinates, so it is a finite
reflection group (see Example 1.2). Note that (W, Rn) is not essential. In fact
V W is the line x1 = x2 = · · · = xn spanned by the vector e := (1, 1, . . . , 1).
So the subspace V1 of R

n on which W is essential is the (n− 1)-dimensional
subspace e⊥ defined by

∑n
i=1 xi = 0, whence W has rank n− 1.

The interested reader can verify that W is the group of symmetries of
a regular (n − 1)-simplex in V1. [Hint: The convex hull σ of e1, . . . , en is a
regular (n − 1)-simplex in the affine hyperplane

∑
xi = 1, which is parallel

to V1. The desired regular simplex in V1 is now obtained from σ via the
translation x �→ x − b, where b is the barycenter of σ.] W is also the Weyl
group of a root system in V1, called the root system of type An−1. It consists
of the n(n− 1) vectors ei − ej (i �= j).

When n = 2, this example reduces to Example 1.8; when n = 3, it reduces
to Example 1.9 with m = 3 (after we pass to the essential part), i.e., W
is dihedral of order 6. For n = 4, Figure 1.3 shows the unit sphere in the

Fig. 1.3. The hyperplanes for the reflection group of type A3.
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3-dimensional space V1 on which W is essential; the 6 =
(
4
2

)
planes xi = xj

(corresponding to the reflections sij) cut the sphere in the solid great circles.
The dotted great circle represents an equator and does not correspond to a
reflecting hyperplane. [Note: Figure 1.3 is a schematic picture; it accurately
shows the combinatorics, but it distorts the geometry. See Figure 0.1 for a
more accurate picture.]

Note that the hyperplanes induce a triangulation of the sphere as the
barycentric subdivision of the boundary of a tetrahedron. The black vertices
are the vertices of the original tetrahedron (only 3 of which are visible in the
hemisphere shown in the picture); the gray vertices (of which 3 are visible)
are the barycenters of the edges of the tetrahedron; and the white vertices
(of which one is visible) are the barycenters of the 2-dimensional faces of the
tetrahedron. We will see later that this generalizes to arbitrary n: the reflecting
hyperplanes triangulate the sphere in V1 as the barycentric subdivision of the
boundary of an (n− 1)-simplex. See Exercise 1.112.

Example 1.11. Let W be the group of linear transformations of R
n (n ≥ 1)

leaving invariant the set {±ei} of standard basis vectors and their negatives.
In terms of matrices, W can be viewed as the group of n × n monomial
matrices whose nonzero entries are ±1. [Recall that a monomial matrix is one
with exactly one nonzero element in every row and every column.] Elements
of W are sometimes called “signed permutations.” The group W is generated
by transpositions sij as above, together with reflections t1, . . . , tn, where ti
changes the sign of the ith coordinate (i.e., ti is the reflection in the hyperplane
xi = 0). Hence W is a finite reflection group of order 2nn!, and this time it is
essential.

Once again, the interested reader is invited to verify that W is the group
of symmetries of a regular solid in R

n, which one can take to be the n-cube
[−1, 1]n. Alternatively, take the solid to be the convex hull of the 2n vectors
{±ei}; this is a “hyperoctahedron.” [The hyperoctahedron is the dual of the
cube, which means that it is the convex hull of the barycenters of the faces of
the cube. Since a solid and its dual have the same symmetry group, it makes
no difference which one we choose. We had no reason to mention this in our
previous examples because the dual of a regular m-gon is again a regular
m-gon, and the dual of a regular simplex is again a regular simplex.]

And once again, W is the Weyl group of a root system, called the root
system of type Bn, consisting of the vectors ±ei ± ej (i �= j) together with
the vectors ±ei. Alternatively, W can be described as the Weyl group of the
root system of type Cn, consisting of the vectors ±ei ± ej (i �= j) together
with the vectors ±2ei; this is dual to type Bn. [Every root system Φ has a
“dual,” as we explain in Appendix B. A root system and its dual have the
same Weyl group. The root systems mentioned in Examples 1.8–1.10, like the
regular solids, are self-dual, so this issue did not arise.]

When n = 1 this example reduces to Example 1.8; when n = 2 it reduces
to Example 1.9 with m = 4, i.e., W is dihedral of order 8.



1.3 Classification 15

Exercise 1.12. Implicit in the last example is the fact that W contains the
reflection sα, where α := ei + ej (i �= j). Verify this by giving an explicit
description of sα in terms of coordinates and/or in terms of its effect on the
standard basis vectors.

Example 1.13. Let Φ be the set of vectors ±ei ± ej (i �= j) in R
n (n ≥ 2).

This is the root system of type Dn. The corresponding Weyl group WΦ is
a subgroup of index 2 in the group W of Example 1.11. If we think of the
elements of W as monomial matrices whose nonzero elements are ±1, then
WΦ consists of those elements with an even number of minus signs.

When n = 2, this example reduces to Example 1.9 with m = 2, i.e., WΦ

is dihedral of order 4. When n = 3, WΦ is isomorphic to the Weyl group of
type A3; see Exercise 1.99.

We close this section by mentioning an uninteresting way of constructing
new examples of finite reflection groups from given ones:

Exercise 1.14. Given finite reflection groups (W ′, V ′) and (W ′′, V ′′), show
that the direct product W := W ′ ×W ′′ can be realized as a finite reflection
group acting on the orthogonal direct sum V := V ′ ⊕ V ′′.

Definition 1.15. A finite reflection group (W,V ) is called reducible if it de-
composes as in the exercise, with V ′ and V ′′ nontrivial, and it is called irre-
ducible otherwise.

We will see later that an essential finite reflection group always admits a
canonical decomposition into “irreducible components” (Exercise 1.100). For
example, the Weyl group of type D2 decomposes as a product of two copies
of the Weyl group of type A1.

1.3 Classification

Finite reflection groups (W,V ) have been completely classified up to iso-
morphism. In this section we list them briefly; see Bourbaki [44], Grove–
Benson [124], or Humphreys [133] for more details. We will confine ourselves
to the reflection groups that are essential, irreducible, and nontrivial ; all oth-
ers are obtained from these by taking direct sums and, possibly, adding an
extra summand on which the group acts trivially.

First, we list three infinite families of reflection groups:

• Type An (n ≥ 1): Here W is the symmetric group on n + 1 letters, acting
as in Example 1.10 on a certain n-dimensional subspace of R

n+1. This
group is the group of symmetries of a regular n-simplex, and it can also
be described as the Weyl group of the root system of type An.
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• Type Cn, also called type Bn (n ≥ 2): This is the group W of signed per-
mutations acting on R

n as in Example 1.11. (We require n ≥ 2 because
Example 1.11 with n = 1 gives the group of type A1 again.) The group
W is the group of symmetries of the n-cube (or n-dimensional hyperocta-
hedron); it is also the Weyl group of the root system of type Bn and the
root system of type Cn. Following a common convention in the theory of
buildings, we will usually call W the reflection group of type Cn, but we
may occasionally call it the reflection group of type Bn.

• Type Dn (n ≥ 4): This is the Weyl group of the root system of type Dn

that we saw in Example 1.13. It does not correspond to any regular solid.

Next, there are seven exceptional groups:

• Type En (n = 6, 7, 8): This is the Weyl group of a root system of the same
name. It does not correspond to any regular solid.

• Type F4: This is the Weyl group of a root system of the same name; it is
also the group of symmetries of a certain self-dual 24-sided regular solid
in R

4 whose (3-dimensional) faces are solid octahedra.

• Type G2: This is the Weyl group of the root system of the same name that
we saw in Example 1.9. It is dihedral of order 12, so we can also describe
it as the group of symmetries of a hexagon.

• Type Hn (n = 3, 4): This does not correspond to any root system, but
it is the symmetry group of a regular solid X. When n = 3, X is the
dodecahedron (which has 12 pentagonal faces) or, dually, the icosahedron
(which has 20 triangular faces). When n = 4, X is a 120-sided solid in R

4

(with dodecahedral faces) or, dually, a 600-sided solid (with tetrahedral
faces).

Finally, we have the dihedral groups D2m (not to be confused with the
groups of type Dn listed above). If m = 2, the group is reducible (it is
{±1} × {±1} acting on R ⊕ R). The cases m = 3 and 4 correspond, respec-
tively, to the groups of type A2 and C2. And the case m = 6 corresponds to
the group of type G2. This leaves:

• Type I2(m) (m = 5 or m ≥ 7): The group W is the dihedral group of
order 2m. It is the symmetry group of a regular m-gon, but it does not
correspond to any root system.

Remarks 1.16. (a) The subscript in the notation for each type is the rank
of the reflection group.

(b) There is also a classification of the irreducible root systems. They are the
root systems mentioned in the discussion above, except that Cn should be
included only for n ≥ 3 in order to avoid repetition; see Exercise 1.17.
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(c) To learn more about the regular solids mentioned above, see Coxeter [86]
or Lyndon [156] or further references cited therein.

Exercise 1.17. Show that the root system of type C2 is the same as that of
type B2, up to a rotation and a rescaling of the metric.

1.4 Cell Decomposition

Let (W,V ) be an essential finite reflection group. The hyperplanes H with
sH ∈ W cut V into polyhedral pieces, which turn out to be cones over sim-
plices. Intersecting these cones with the unit sphere, one obtains a simplicial
decomposition of the sphere. These assertions will be proved in Section 1.5.
(We have already seen an example of it in Figure 1.3.) The purpose of the
present section is to lay the groundwork by studying the polyhedral decom-
position of Euclidean space induced by an arbitrary finite set H of hyper-
planes. Following standard terminology, we will also say that H is a hyper-
plane arrangement. In this chapter hyperplane arrangements will always be
assumed to be finite and to consist of linear hyperplanes. We will have occa-
sion to consider infinite arrangements of affine hyperplanes in Chapter 10.

This section is long because it develops from scratch some basic facts
about polyhedral geometry. Readers who are already familiar with these facts
or are willing to accept them as “intuitively obvious” can read the first few
subsections quickly for notation and terminology. Section 1.4.6, however, is
likely to be new for many readers.

Throughout this section V will denote a finite-dimensional real vector
space, and H = {Hi}i∈I will denote a hyperplane arrangement in V indexed
by a finite set I. We assume the hyperplanes are listed without repetition, i.e.,
Hi �= Hj for i �= j.

1.4.1 Cells

For each i ∈ I, let fi : V → R be a nonzero linear function such that Hi

is defined by fi = 0. The function fi is uniquely determined by Hi, up to
multiplication by a nonzero scalar.

Definition 1.18. A cell in V with respect to H is a nonempty set A obtained
by choosing for each i ∈ I a sign σi ∈ {+,−, 0} and specifying fi = σi. [Here
“fi = +” means fi > 0, and similarly for “fi = −.”] Thus A is defined by
homogeneous linear equalities or strict inequalities, one for each hyperplane.
In more geometric language, we have

A =
⋂

i∈I

Ui, (1.2)

where Ui is either Hi or one of the open half-spaces of V determined by Hi.
The sequence σ := (σi)i∈I that encodes the definition of A is called the sign
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sequence of A and is denoted by σ(A). The cells such that σi �= 0 for all i are
called chambers.

Note that the chambers are nonempty convex open sets that partition
the complement V �

⋃
i∈I Hi, so they are the connected components of the

complement. In general, a cell A is open relative to its support, which is defined
to be the subspace

suppA :=
⋂

σi(A)=0

Hi

of V . Equivalently, suppA is the subspace defined by the equalities fi = 0
that occur in the description of A. Since A is open in suppA, we can also
describe suppA as the linear span of A. The dimension of A is, by definition,
the dimension of its support.

Definition 1.19. We denote by Σ(H) the set of all cells and by C(H) the
subset consisting of all chambers.

The cells A form a partition of V into disjoint convex cones, where a cone
is a subset closed under multiplication by positive scalars. Figure 1.4 shows
a simple example, where H consists of three lines in the plane, numbered 1,
2, and 3. There are 13 cells: 6 chambers (open sectors), 6 open rays, and the
cell consisting of the origin. Sign sequences for the chambers are indicated,
based on the assumption that the fi are chosen to be positive on the cham-
ber labeled +++. The reader is advised to fill in the sign sequences for the
lower-dimensional cells; for example, the ray separating the chambers +++
and +−+ has sign sequence +0+.

1

21

2

3

+++

+−−

−−−

−++

3

−+−

+−+

Fig. 1.4. Three lines in the plane.

For another example, let H consist of the 3 coordinate planes in R
3. There

are 27 cells, one for each possible sign sequence: 8 open orthants, which are the
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chambers, 12 open sectors (4 orthants in each coordinate plane), 6 open rays
(two in each coordinate line), and the origin. A second rank-3 example was
drawn in Figure 1.3; there are 6 planes, and the picture shows the intersections
of the cells with the unit sphere. There are 24 chambers, corresponding to
triangular regions on the sphere; 36 two-dimensional faces, corresponding to
edges on the sphere; 14 rays, corresponding to the vertices on the sphere; and
the origin, corresponding to the empty subset of the sphere.

1.4.2 Closed Cells and the Face Relation

We begin by defining a partial order of the set Σ := Σ(H) of cells, so that Σ
becomes a poset (partially ordered set).

Definition 1.20. Given cells A,B ∈ Σ, we say that B is a face of A, and
we write B ≤ A, if for each i ∈ I either σi(B) = 0 or σi(B) = σi(A).
More concisely, the ordering on cells is given by the coordinatewise ordering
on sign sequences, where we make the convention that + and − are bigger
than 0. In terms of linear equalities and inequalities, B ≤ A if and only if
the description of B is obtained from that of A by changing zero or more
inequalities to equalities.

For example, the chamber +++ in Figure 1.4 has four faces: the chamber
itself, the rays +0+ and 0++, and the origin (with sign sequence 000).

Definition 1.21. Given a cell A, let A be the set obtained by replacing the
open half-spaces that occur in equation (1.2) by the corresponding closed
half-spaces. Equivalently, replace the strict inequalities fi > 0 or fi < 0 in
the description of A by the corresponding weak inequalities fi ≥ 0 or fi ≤ 0.
We call A the closed cell associated to A. The cell A itself, by contrast, will
often be called an open cell, even though it is not in general an open subset
of V . [The more common term is relatively open cell, since, as we have already
noted, A is open in its support and hence in A.]

For example, the closed cell corresponding to each of the chambers in
Figure 1.4 above is a closed sector.

Remark 1.22. Readers familiar with cell complexes may find the term “cell”
confusing, since our closed cells are not topological balls. Whenever confusion
might arise, we will call the cells defined here conical cells. If we assume that
H is essential, by which we mean that

⋂
H∈H = {0}, then every closed conical

cell is in fact the cone over a topological ball, gotten by intersecting the cell
with a sphere. The proof is left to the interested reader. (See also Section A.2.3
below, where a more precise result will be proved.)

It is immediate from the definitions that

A =
⋃

B≤A

B . (1.3)
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Since the open cells are disjoint, it follows that the face relation can be char-
acterized in terms of the closed cells:

B ≤ A ⇐⇒ B ⊆ A .

This shows, in particular, that B = A if and only if B = A. Hence:

Proposition 1.23. The function A �→ A is a bijection from the open cells to
the closed cells. 	


We will find it helpful to have a geometric description of the correspon-
dence between open cells and closed cells that does not refer to H:

Proposition 1.24. Let A be an open cell.

(1) A is the closure of A in V (in the sense of point-set topology).
(2) Let L be the linear span of A. Then A is the interior of A in L, i.e., the

largest open subset of L contained in A.

Proof. (1) Clearly A is closed in V , so it contains the closure of A. Conversely,
given y ∈ A, choose x ∈ A and consider the closed line segment from x to y,
denoted by [x, y]. Each equality in the description of A holds on the whole
line segment; and each strict inequality holds on the half-open segment [x, y).
So [x, y) ⊆ A and hence y is in the closure of A.

(2) Note first that L = suppA; for suppA contains A and is spanned by A,
so it is also spanned by A. We therefore have A ⊆ intL(A) (the latter being
the interior of A in L) since A is open in its support. Conversely, suppose
y ∈ A � A and consider the segment [x, y] again. Since y /∈ A, there must be
an inequality in the description of A, say fi > 0, such that fi(y) = 0. So if the
line segment is continued past y, we immediately have fi < 0, which means
we have left A (but stayed in L). Hence y /∈ intL(A). 	


Our next observation is that we can give a direct definition of what it
means to be a closed cell, independent of the notion of open cell. Recall that
a closed cell is defined by equalities or weak inequalities, one for each i ∈ I.
Conversely, suppose X is an arbitrary set defined by specifying for each i the
equality fi = 0 or one of the weak inequalities fi ≥ 0 or fi ≤ 0; we will show
that X is a closed cell:

Proposition 1.25. Let X be a set defined by equalities or weak inequalities
as above. Then X is a closed cell with respect to H.

Proof. Let σi be 0 if fi = 0 on X. Otherwise, either fi ≥ 0 on X or fi ≤ 0
on X, and we take σi to be + or −, accordingly. [Caution: It is possible that
our original description of X involved an inequality, say fi ≥ 0, but that
nevertheless fi = 0 on X; so σi is 0 in this case.] Let A be the set defined by
the signs σi. If A is nonempty, then it is a cell and X = A. To prove A �= ∅,
choose for each i with σi ∈ {+,−} a vector xi ∈ X with fi(xi) �= 0. Let x be
the sum of these vectors (or 0 if there are none). Then x ∈ A. 	
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Corollary 1.26. An intersection of closed cells is a closed cell. 	


We turn, finally, to the geometric meaning of the face relation. If one
visualizes a cell A in dimension 2 or 3, one sees easily what its faces are,
without knowing the particular system of equalities and inequalities by which
A was defined. Roughly speaking, the faces are the flat pieces into which the
boundary of A decomposes. The following proposition states this precisely:

Proposition 1.27. Let A be a cell. Then two distinct points y, z ∈ A lie in
the same face of A if and only if there is an open line segment containing both
y and z and lying entirely in A. Consequently, the partition of A into faces
depends only on A as a subset of V , and not on the arrangement H.

Proof. Suppose y and z are in the same face B ≤ A. For each condition
fi = σi in the description of B, we can extend the segment [y, z] slightly in
both directions without violating the condition. Since there are only finitely
many such conditions, it follows that B contains an open segment containing
y and z; hence so does A.

Suppose now that y and z are in different faces of A. Then there is some i
such that y and z behave differently with respect to fi, say fi(y) > 0 and
fi(z) = 0. If we now continue the segment [y, z] past z, we immediately have
fi < 0, so we leave A; hence there is no open segment in A containing both y
and z. 	


The significance of this for us is that if we want to understand the poly-
hedral structure of a particular cell A, then we can replace H by any other
hyperplane arrangement for which A is still a cell. We record this for future
reference:

Corollary 1.28. Let A be a cell with respect to H. If A is also a cell with
respect to an arrangement H′, then the faces of A defined using H′ are the
same as those defined using H. 	


In practice, we will want to take a minimal set of hyperplanes for a given A.
In the next subsection we spell out exactly how to do this in case A is a
chamber.

Exercise 1.29. Given A ∈ Σ, show that
⋃

B≥A B is a convex open subset
of V . [Suggestion: First draw a picture to see why this is plausible.]

1.4.3 Panels and Walls

Definition 1.30. A cell A with exactly one 0 in its sign sequence is called a
panel. This is equivalent to saying that suppA is a hyperplane, which is then
necessarily in H. If the panel A is a face of a chamber C, then we will also
say that A is a panel of C and that its support hyperplane H is a wall of C.
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In low-dimensional examples like the one in Figure 1.4, one sees easily
that every chamber is defined by the inequalities corresponding to its walls;
the other inequalities are redundant. We will show that this is always the case.
Fix a chamber C. We say that C is defined by a subset H′ ⊆ H if C is defined
by the conditions fi = σi, where i ranges over the indices such that Hi ∈ H′.

Lemma 1.31. If H ∈ H is not a wall of C, then C is defined by H′ :=
H� {H}.

Proof. Assume, to simplify the notation, that C is defined by the inequalities
fi > 0 for all i, and let j be the index such that H = Hj . Suppose C is not
defined by H′. Then removing the inequality fj > 0 results in a set C ′ strictly
bigger than C. Choose y ∈ C ′

� C and x ∈ C. Since fj(x) > 0 and fj(y) ≤ 0,
there is a point z ∈ (x, y] such that fj(z) = 0. This point z is then in a panel
A of C supported by H, so H is a wall of C. 	


Proposition 1.32. Let C be a chamber and let HC be its set of walls. Then
C is defined by HC , and HC is the smallest subset of H with this property.

Proof. If C is defined by H′ ⊆ H, then we can use H′ to determine the walls
of C by Corollary 1.28; hence H′ ⊇ HC . It remains to show that C is defined
by HC . If H contains any H that is not a wall of C, then we can remove it by
Lemma 1.31 to get a smaller defining set H′. Now C is still a chamber with
respect to H′, and replacing H by H′ does not change the walls. So we may
repeat the process to remove another nonwall, and so on. Since H is finite, we
arrive at HC after finitely many steps. 	


The proof we just gave made crucial use of the fact that the notion of
“wall” does not depend on the particular defining set of hyperplanes. Here is
a simple intrinsic characterization of the walls:

Proposition 1.33. Let C be a chamber and let H be a linear hyperplane in V .
Then H is a wall of C if and only if C lies on one side of H and C ∩H has
nonempty interior in H.

Proof. If H is the support of a panel A of C, then certainly C lies on one
side of H and C ∩ H contains A, which is a nonempty open subset of H.
Conversely, suppose H is a hyperplane such that C lies on one side of H
and C ∩ H has nonempty interior in H. Then C is still a chamber with
respect to H+ := H ∪ {H}, so we can use H+ to determine the faces of C.
By Proposition 1.25, C ∩ H is a closed cell A with respect to H+, and the
corresponding open cell A is a face of C because A ⊆ C. Since A is contained
in H and has nonempty interior in H, the support of A must be H. Thus A
is a panel of C and its support H is therefore a wall of C. 	
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Exercises

1.34. This exercise outlines a more direct proof that any chamber is defined
by its walls; fill in the missing details.

Let C and HC be as in Proposition 1.32, and let C ′ be the HC-chamber
containing C. Suppose C ′ �= C. Choose y ∈ C ′

� C and x ∈ C, and consider
the line segment [x, y]. By moving y slightly if necessary, we may assume
y /∈ C, so that the segment [x, y] crosses at least one H ∈ H. And by moving
x slightly if necessary, we may assume that the segment never crosses more
than one H at a time. The first H that is crossed as we traverse the segment
starting at x is then a wall of C, contradicting the definition of C.

1.35. Assume that H is essential, as defined in Remark 1.22. Show that every
closed cell A is the closed convex cone generated by the 1-dimensional faces
of A, i.e., every x ∈ A can be expressed as x =

∑m
k=1 yj , where each yk

is in a 1-dimensional face of A. [Note: These 1-dimensional faces are rays.
They therefore correspond to vertices if we think of cells in terms of their
intersections with a sphere as in Remark 1.22.]

1.4.4 Simplicial Cones

Let C be a fixed but arbitrary chamber and let H′ be its set of walls. It will
be convenient to take the index set I for H to be {1, 2, . . . ,m} for some m.
For simplicity of notation we will assume that the elements of H′ are the
hyperplanes fi = 0 for 1 ≤ i ≤ r and that fi > 0 on C for 1 ≤ i ≤ m.

Let V0 :=
⋂m

i=1 Hi. We call H essential if V0 = 0. There is no loss of gen-
erality in restricting attention to the essential case. For if we set V1 := V/V0,
then the linear functions fi pass to the quotient V1 and define an essential set
of hyperplanes there. And the cells determined by these hyperplanes in V1 are
in 1–1 correspondence with the cells in V . More precisely, the cells in V are
the inverse images in V of the cells in V1. [Geometrically, then, the cells in V
are simply the cells in V1 “fattened up” by a factor R

d, where d := dim V0.]
Note that V0 is itself a cell, with sign sequence (0, 0, . . . , 0). It is the smallest

cell, in the sense that it is a face of every cell, so H is essential if and only if
the smallest cell is a point. Note that V0 is also the smallest face of C. Since
the faces of C can be determined by using H′ instead of H (Section 1.4.2), it
follows that V0 =

⋂r
i=1 Hi.

Assume now that H is essential. Then our last observation says that⋂r
i=1 Hi = 0. It follows that r ≥ n := dim V . It is easy to visualize ex-

amples in which inequality holds (e.g., C could be the cone over an open
square, in which case r = 4 > 3 = dimV ). We will now prove that equality
holds if and only if the cone C is simplicial, by which we mean that for some
basis e1, . . . , en of V , C consists of the linear combinations

∑n
i=1 λiei with all

λi > 0. [In other words, C is the interior of the cone over the simplex with
vertices e1, . . . , en.]
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Proposition 1.36. Assume that H is essential. Then the following conditions
on the chamber C are equivalent:

(i) C is a simplicial cone.
(ii) C has exactly n panels, i.e., r = n.
(iii) f1, . . . , fr are linearly independent.
(iv) f1, . . . , fr form a basis for the dual space V ∗ of V .

Proof. As we noted above, the assumption that H is essential implies that⋂r
i=1 Hi = 0, i.e., that the equations f1 = 0, . . . , fr = 0 have only the trivial

solution. The equivalence of (ii), (iii), and (iv) follows easily from this by
elementary linear algebra.

Suppose now that (ii)–(iv) hold, and let (ei)1≤i≤n be the basis of V dual
to (fi). Then the description “fi > 0 for 1 ≤ i ≤ n” of C implies that C
consists of the positive linear combinations of the ei, which proves (i).

Conversely, (i) implies that C is defined by xi > 0 for 1 ≤ i ≤ n, where xi

is the ith coordinate function with respect to some basis for V . We can use
this description of C to determine its walls, which are easily seen to be the
coordinate hyperplanes xi = 0; this proves (ii)–(iv). 	


1.4.5 A Condition for a Chamber to Be Simplicial

The result of this subsection will be used later to show that the chambers
associated to an essential finite reflection group are always simplicial cones.

We continue with the notation of the previous subsection. Assume further
that V has an inner product 〈−,−〉. Then the linear function fi is given by
〈ei,−〉 for a unique vector ei ∈ V . Replacing fi by a scalar multiple, we
may assume ‖ei‖ = 1; thus ei is one of the two unit vectors perpendicular
to Hi. Whenever there is a fixed chamber C under discussion, as there is at
the moment, then we can remove this ambiguity by requiring that ei point
toward the side of Hi containing C. This is equivalent to requiring, as above,
that fi > 0 on C.

In summary, then, we are now assuming that the chamber C is defined
by 〈ei,−〉 > 0 for 1 ≤ i ≤ m, where the ei are unit vectors, and that the
first r of these inequalities in fact suffice to define C. Moreover, no smaller set
of linear inequalities defines C. We repeat, for emphasis, that the collection
of vectors (ei)1≤i≤r is completely determined by C, up to reindexing. The
following proposition gives a sufficient condition for C to be simplicial in
terms of the matrix of inner products 〈ei, ej〉 (1 ≤ i, j ≤ r), often called the
Gram matrix of C.

Proposition 1.37. Assume that H is essential. If 〈ei, ej〉 ≤ 0 for each i �= j
(i, j ≤ r), i.e., if the angle between ei and ej is not acute, then C is a simplicial
cone.
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Proof. According to Proposition 1.36, we must show that e1, . . . , er are lin-
early independent. If not, we claim that there is a nontrivial linear relation
among them with nonnegative coefficients. For let

∑r
i=1 λiei = 0 be an arbi-

trary nontrivial linear relation. If the nonzero λi all have the same sign, the
claim follows at once. Otherwise, we can rewrite the relation in the form

∑

j∈J

µjej =
∑

k∈K

µkek ,

with J and K disjoint nonempty subsets of {1, . . . , r} and all coefficients
positive. Then the inner product of the left-hand side of this equation with
the right-hand side is ≤ 0. But this is the inner product of a vector with itself,
so that vector must be 0. Thus both sides of the equation are 0, and the claim
is proved.

Note that what we have done so far applies to any set of vectors with pair-
wise nonpositive inner products. But now let’s add the additional information
that the inequalities 〈ei,−〉 > 0 (i ≤ r) define the (nonempty) chamber C.
This is clearly inconsistent with the existence of a nontrivial nonnegative lin-
ear relation among the ei, so we have reached a contradiction. Thus e1, . . . , er

are indeed linearly independent. 	


1.4.6 Semigroup Structure

We return now to the general setup. Thus H = {Hi}i∈I is not necessarily
essential, and V is not assumed to be equipped with an inner product. We
saw in Section 1.4.2 that the set Σ := Σ(H) of cells is a poset under the face
relation. What is less obvious, and perhaps surprising, is that there is a natural
way to multiply cells, so that Σ becomes a semigroup. This product was
introduced by Bland in the early 1970s in connection with linear programming,
and it eventually led to one approach to the theory of oriented matroids;
see [37]. Tits [247] discovered the product independently (in the setting of
Coxeter complexes and buildings), although he phrased his version of the
theory in terms of “projection operators” rather than products.

We proceed now to the definition of the product. Given two cells A,B ∈ Σ,
choose x ∈ A and y ∈ B, and consider a typical point pt := (1 − t)x + ty on
the line segment [x, y] (0 ≤ t ≤ 1). For each i ∈ I and all sufficiently small
t > 0, the sign of fi(pt) is the same as the sign of fi(x) unless fi(x) = 0, in
which case the sign of fi(pt) is the same as the sign of fi(y). Hence there is a
cell C that contains pt for all sufficiently small t > 0, and its sign sequence is
given by σi(C) = σi(A) unless σi(A) = 0, in which case σi(C) = σi(B). Note
that the sign sequence of C, and hence C itself, depends only on A and B,
not on the choice of x ∈ A and y ∈ B. We will call C the product of A and B:

Definition 1.38. Given two cells A,B ∈ Σ, their product is the cell AB with
sign sequence
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σi(AB) =

{
σi(A) if σi(A) �= 0,

σi(B) if σi(A) = 0.
(1.4)

The cell AB is characterized by the property that if we choose x ∈ A and
y ∈ B, then (1− t)x + ty is in AB for all sufficiently small t > 0.

See Figure 1.5 for a simple example, where A and B are half-lines and
AB turns out to be a chamber. For a second example, let A′ be the half-line
opposite A in the same figure; then AA′ = A. One can easily check from (1.4)

AB

B

A

Fig. 1.5. The product of two half-lines.

that the associative law holds:

A(BC) = (AB)C (1.5)

for all A,B,C ∈ Σ. In fact, the triple product, with either way of associating,
can be characterized by the property that σi(ABC) is σi(A) unless σi(A) = 0,
in which case it is σi(B) unless σi(B) = 0, in which case it is σi(C). So Σ
is indeed a semigroup. It has an identity, consisting of the cell

⋂
i∈I Hi with

sign sequence (0, 0, . . . , 0).
Following Tits [247], we will often call AB the projection of B on A and

write
AB = projA B .

This may serve as a reminder of the geometric meaning of the product. We
will see, however, that the product notation is quite useful, especially to facil-
itate application of the associative law. Note that the associative law, in the
language of projections, takes the complicated form

projA(projB C) = projprojA B C . (1.6)

Equation (1.6) appears (in a slightly different context from ours) in Tits’s
appendix [249] to Solomon’s paper [221] on the descent algebra, and the ob-
servation that (1.6) is actually an associative law can be used to give a much
simpler treatment; see [55].
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The geometry of projections is especially clear when the second factor is
a chamber. In order to state the result, we introduce a metric on the set
C := C(H) of chambers. We will temporarily denote this metric by dH(−,−);
later, after showing that dH coincides with another naturally defined metric,
we will drop the subscript H.

Definition 1.39. The distance dH(C,D) between two chambers C,D is the
number of hyperplanes in H separating C and D. Equivalently, dH(C,D) is
the number of positions at which the sign sequences of C and D differ.

The following result justifies the term “projection.”

Proposition 1.40. Given a cell A and a chamber C, the product AC (or the
projection of C on A) is a chamber having A as a face; among the chambers
having A as a face, it is the unique one at minimal distance from C.

Proof. To minimize the distance to C of a chamber D ≥ A, we must maximize
the number of indices i such that σi(D) = σi(C). We have no choice about
σi(D) whenever σi(A) �= 0, so the best we can do is make σi(D) = σi(C)
whenever σi(A) = 0. This is precisely what the definition of AC in (1.4)
achieves. 	


Finally, since Σ is now both a poset and a semigroup, it is natural to ask
how these structures interact. We record a few simple results in the following
proposition, whose proof is routine and is left to the reader.

Proposition 1.41. Let A and B be arbitrary cells.

(1) A ≤ AB, with equality if and only if suppB ≤ suppA.
(2) A ≤ B if and only if AB = B.
(3) suppA = suppB if and only if AB = A and BA = B.
(4) AB and BA have the same support, which is the intersection of the hy-

perplanes in H containing both A and B. 	


Exercises

1.42. Prove the following more precise version of Proposition 1.40: For any
chamber D ≥ A,

dH(C,D) = dH(C,AC) + dH(AC,D) . (1.7)

In the language of Dress–Scharlau [97], this says that the set C≥A of chambers
D ≥ A is a gated subset of the metric space of chambers. Here AC is the
“gate” through which one enters C≥A to get from C to an arbitrary chamber
D ≥ A. See Figure 1.6 for a schematic illustration.

1.43. We say that cells A,B, . . . are joinable if they have an upper bound
in the poset Σ. Show that this holds if and only if they commute with one
another in the semigroup Σ, in which case their product is their least upper
bound.
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C

D

AC

C≥A

Fig. 1.6. The gate property.

1.44. If A and B have the same support, show that left multiplication by A
gives a bijection Σ≥B → Σ≥A, with inverse given by multiplication by B.
This holds, for example, if A and B are opposite, i.e., A = −B.

1.45. Given A ∈ Σ, show that the poset Σ≥A is isomorphic to the set of cells
of a hyperplane arrangement.

1.4.7 Example: The Braid Arrangement

Let H be the arrangement in R
n consisting of the

(
n
2

)
hyperplanes xi = xj

(i �= j). This has already occurred implicitly in the discussion of Example 1.10.
This arrangement, or its essential version in the (n− 1)-dimensional subspace
x1 + · · · + xn = 0, is called the braid arrangement for reasons that are ex-
plained in [182]. It is also called, for more transparent reasons, the reflection
arrangement of type An−1. A chamber with respect to H is a nonempty set
defined by inequalities xi−xj > 0 or xi−xj < 0 (i < j), i.e., it is a set defined
by specifying an ordering of the coordinates. Thus there are n! chambers, one
for each possible ordering. A typical chamber is given by

xπ(1) > xπ(2) > · · · > xπ(n) ,

where π is a permutation of {1, 2, . . . , n}. Figure 1.7 shows the correspondence
between chambers and permutations when n = 4. Here a permutation π is
represented by its list of values π(1)π(2) · · ·π(n). (Recall that this is a rank-3
example, and that cells can be represented by their intersections with the unit
sphere; see Figure 1.3.)

Faces are gotten by changing zero or more inequalities to equalities. They
correspond to compositions B = (B1, B2, . . . , Bk) of the set {1, 2, . . . , n}, also
called ordered partitions. Here the blocks Bi form a set partition in the usual
sense, and their order matters. The set composition B encodes the ordering of
the coordinates and which coordinates are equal to one another. For example,
the common face between the chambers 1234 and 1324 in Figure 1.7 is given
by

x1 > x2 = x3 > x4 ,

and it corresponds to the set composition ({1} , {2, 3} , {4}). Notice that the
chambers can be identified with the set compositions in which all blocks are
singletons.
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Fig. 1.7. Chambers correspond to permutations.

One can verify from equation (1.4) the following interpretation of the
product in terms of set compositions: Take (nonempty) intersections of
the blocks in lexicographic order; more precisely, if B = (B1, . . . , Bl) and
C = (C1, . . . , Cm), then

BC = (B1 ∩ C1, . . . , B1 ∩ Cm, . . . , Bl ∩ C1, . . . , Bl ∩ Cm)̂ ,

where the hat means “delete empty intersections.” More briefly, BC is ob-
tained by using C to refine B.

This product, at least when the second factor is a chamber, has an inter-
esting interpretation in terms of card shuffling. See [55] and further references
cited there.

Remark 1.46. Although chambers correspond to permutations, their prod-
uct in the semigroup Σ of cells has nothing to do with the usual product of
permutations. In fact, the product of two chambers is always equal to the first
factor.

1.4.8 Formal Properties of the Poset of Cells

Recall from Section 1.4.2 that the poset Σ := Σ(H) of (open) cells is iso-
morphic to the poset of closed cells, where the latter is ordered by inclusion.
(See Proposition 1.23 and the paragraph preceding it.) Recall, also, that any
intersection of closed cells is a closed cell (Corollary 1.26); consequently:

Proposition 1.47. Any two elements of Σ have a greatest lower bound. 	


We will denote by A ∩ B the greatest lower bound of two open cells A
and B. It is, of course, not the set-theoretic intersection of A and B, this
intersection being empty unless A = B; it is, rather, the open cell whose
closure is the intersection of A and B.
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Proposition 1.48. Any cell A ∈ Σ is a face of a chamber. If A is a panel,
then it is a face of exactly two chambers.

Proof. Choose an arbitrary chamber C. [Such a C certainly exists: V is not
the union of finitely many hyperplanes.] Then the projection AC defined in
Section 1.4.6 is a chamber having A as a face. If A is a panel with support Hi,
then the sign sequence of a chamber D ≥ A is determined except for σi(D),
which is either + or −. The two possibilities are realized by AC and AC ′,
where C and C ′ are arbitrary chambers on opposite sides of Hi. 	


Corollary 1.49. Every H ∈ H is a wall of a chamber.

Proof. H cannot be the union of its intersections with the other hyperplanes,
so there is at least one panel A with support H. Hence H is a wall of each of
the chambers C > A. 	


1.4.9 The Chamber Graph

Definition 1.50. Two chambers C and C ′ are adjacent if they are distinct
and have a common panel A.

Note that C and C ′ are then the two chambers having A as a face, and their
sign sequences differ in exactly one position. Thus the hyperplane H := suppA
is the unique element of H separating C from C ′; in particular, dH(C,C ′) = 1,
where dH is our metric on the set C := C(H) of chambers (Definition 1.39).
Moreover, A = C ∩ C ′. [One can prove this last assertion by a dimension
argument, or by looking at sign sequences, or simply by checking the definition
of C ∩ C ′ above.] We will often say, in this situation, that “C and C ′ are
adjacent along the wall H.”

Example 1.51. If H is the braid arrangement (Section 1.4.7), then chambers
are labeled by permutations, viewed as lists of numbers. Two chambers are
adjacent if and only if the lists differ by the interchange of two consecutive
elements. See Figure 1.7.

Definition 1.52. The chamber graph associated with H is the graph whose
vertex set is the set C of chambers, with an edge joining two chambers C,C ′

if and only if they are adjacent.

We can visualize the chamber graph by putting a dot in each chamber and
an edge cutting across each panel, as in Figure 1.8. We will sometimes draw
the schematic diagram

C C ′

H

(1.8)
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Fig. 1.8. The chamber graph is a hexagon.

to indicate that C and C ′ are adjacent along H. The horizontal line is in-
tended to suggest an edge in the chamber graph, and the dashed vertical line
represents the wall that is crossed in going from C to C ′.

There is a canonical metric on the vertices of any graph, where the dis-
tance between two vertices is the minimal length of a path joining them. The
usual convention is that the distance is ∞ if the two vertices are in different
connected components. But we will see below that the chamber graph is in
fact connected and that moreover, the graph metric on the set of chambers
coincides with the metric dH of Definition 1.39. Before proceeding to this, we
introduce some terminology that we will be using throughout the book.

Definition 1.53. A path in the chamber graph is called a gallery. Thus a
gallery is a sequence of chambers Γ = (C0, C1, . . . , Cl) such that consecutive
chambers Ci−1 and Ci (i = 1, . . . , l) are adjacent. The integer l is called the
length of Γ . We will write

Γ : C0, . . . , Cl

and say that Γ is a gallery from C0 to Cl, or that Γ connects C0 and Cl.
The minimal length l of a gallery connecting two chambers C,D is called the
gallery distance between C and D and is denoted d(C,D). Finally, a gallery
C = C0, . . . , Cl = D of minimal length l = d(C,D) is called a minimal gallery
from C to D. This is the same as what is commonly called a geodesic in the
chamber graph.

Once we have proven that d = dH, we will no longer need the notation dH,
nor will we need to refer to the distance as “gallery distance,” though we may
still do so occasionally for emphasis.

We sometimes represent a gallery schematically by means of a diagram

Γ : C0 C1 C2 · · · Cl ,

which may be further decorated with hyperplanes as in the diagram (1.8).
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Warning. In some of the literature, including the precursor [53] of the present
book, galleries are defined more generally to be sequences as above in which
consecutive chambers are either equal or adjacent. Such sequences do come
up naturally, as we will see, and we will call them pregalleries. A pregallery
can be converted to a gallery by deleting repeated chambers.

We noted above that the metric dH of Definition 1.39 has the property
that dH(C,C ′) = 1 if C and C ′ are adjacent, i.e., if they are connected by an
edge in the chamber graph. This motivates the following:

Proposition 1.54. The chamber graph is connected, and the gallery dis-
tance d(C,D) is equal to dH(C,D) for any two chambers C,D.

The crux of the proof is the following result:

Lemma 1.55. For any two chambers C �= D, there is a chamber C ′ adjacent
to C such that dH(C ′,D) = dH(C,D)− 1.

Proof. Since C is defined by its set of walls (Proposition 1.32), there must
be a wall of C that separates C from D. [Otherwise, we would have D ⊆ C,
contradicting the fact that distinct chambers are disjoint.] Let A be the cor-
responding panel of C, and let C ′ be the projection AD (Section 1.4.6). Then
C ′ is adjacent to C, and dH(C ′,D) = dH(C,D)− 1. 	


Proof of the proposition. Given two chambers C,D, we may apply the lemma
finitely many times to obtain a gallery of length dH(C,D) from C to D. In
particular, the chamber graph is connected and d ≤ dH. To prove the opposite
inequality, consider a gallery

C = C0, C1, . . . , Cl = D

of minimal length l = d(C,D). Then dH(Ci−1, Ci) = 1 for i = 1, . . . , l, whence
dH(C,D) ≤ l. 	


Given a minimal gallery C = C0, . . . , Cl = D, let H1, . . . , Hl ∈ H be the
hyperplanes such that Ci−1 and Ci are adjacent along Hi. [Warning : This
notation has nothing to do with our original indexing of the elements of H as
{Hi}i∈I ; we will have no further need for that indexing.] We will refer to the
Hi as the “walls crossed” by the gallery. Since exactly one component of the
sign sequence changes as we move from one chamber to the next, and since
exactly l = d(C,D) signs must change altogether, it is clear that H1, . . . , Hl

are distinct and are precisely the elements of H that separate C from D.
Conversely, suppose we have a gallery from C to D that does not cross any
wall more than once. If k is the length of the gallery, then exactly k signs
change, so k = l and the gallery is minimal. This proves the following:

Proposition 1.56. A gallery from C to D is minimal if and only if it does
not cross any wall more than once. In this case the walls that it crosses are
precisely those that separate C from D. 	
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Since the set C = C(H) of chambers is a metric space, it has a well-defined
diameter, which we will also refer to as the diameter of Σ; by definition, it
is the maximum distance d(C,D) between two chambers C,D. The following
result is immediate from the interpretation of the metric on C as dH:

Proposition 1.57. The diameter of C is m := |H|. For any chamber C,
there is a unique chamber D with d(C,D) = m, namely, the opposite chamber
D = −C. 	


Observe that for any chambers C and D,

d(C,D) + d(D,−C) = m . (1.9)

Indeed, every hyperplane in H separates D from either C or −C, but not
both. Thus if we concatenate a minimal gallery from C to D with a minimal
gallery from D to −C, we get a minimal gallery from C to −C. Consequently:

Corollary 1.58. For any chambers C,D, there is a minimal gallery from C
to −C passing through D. 	


We have confined ourselves so far to distances and galleries between cham-
bers. But it is also possible to consider distances and galleries involving cells
other than chambers. The basic facts about these are easily deduced from the
chamber case via the theory of projections (Section 1.4.6); see Exercises 1.61
and 1.62 below.

Exercises

1.59. Let C be a chamber.

(a) If A is a cell that is not a chamber, show that AC is not opposite to C.
(b) Conversely, if D is any chamber not opposite C, then D = AC for some

panel A of D.

1.60. Arguing as in the proof of Proposition 1.54, prove the following criterion
for recognizing the distance function on a graph. Let G be a graph with vertex
set V, and let δ : V×V → Z+ be a function, where Z+ is the set of nonnegative
integers. Call two vertices incident if they are connected by an edge. Assume:

(1) δ(v, v) = 0 for all vertices v.
(2) If v and v′ are incident, then |δ(v, w)− δ(v′, w)| ≤ 1 for all vertices w.
(3) Given vertices v �= w, there is a vertex v′ incident to v such that δ(v′, w) <

δ(v, w).

Then G is connected, and δ is the graph metric.
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1.61. Given A,C ∈ Σ with C a chamber, consider galleries

C0, . . . , Cl = C

with A ≤ C0. Such a gallery will be said to connect A to C. Show that a
gallery from A to C of minimal length must start with C0 = AC. Deduce that
the minimal length d(A,C) of such a gallery is |S(A,C)|, where S(A,C) is
the set of hyperplanes in H that strictly separate A from C. [A hyperplane
is said to strictly separate two subsets if they are contained in opposite open
half-spaces.]

1.62. More generally, given any two cells A,B ∈ Σ, consider galleries Γ of
the form

C0, . . . , Cl

with A ≤ C0 and B ≤ Cl. In other words, Γ is a path in the chamber graph
starting in C≥A and ending in C≥B. Show that the minimal length d(A,B)
of such a gallery is |S(A,B)|, where S(A,B) has the same meaning as in the
previous exercise. More concisely,

d(C≥A, C≥B) = |S(A,B)| ,

where the left side denotes the usual distance between subsets of a metric
space. Moreover, the chambers C0 that can start a minimal gallery are pre-
cisely those having AB as a face.

A glance at Dress–Scharlau [97] is illuminating in connection with the
previous exercise.

1.63. Generalize Corollary 1.58 as follows: For any cell A and chamber D,
there is a minimal gallery from A to −A passing through D.

1.64. Proposition 1.57 can be viewed as giving a characterization of the cham-
ber−C opposite a given chamber C in terms of the metric on C. In this exercise
we extend that characterization to arbitrary cells.

(a) Fix a cell A ∈ Σ, and consider the maximum value of d(A,B), as B varies
over all cells. Show that d(A,B) achieves this maximum value if and only
if B ≥ −A.

(b) Deduce that for any B ∈ Σ, we have B = −A if and only if dimB ≤ dim A
and d(A,B) = max {d(A,B′) | B′ ∈ Σ}.

1.65. Let D be a nonempty set of chambers. Show that the following condi-
tions are equivalent:

(i) For any D,D′ ∈ D, every minimal gallery from D to D′ is contained in D.
(ii) D is the set of chambers in an intersection of half-spaces bounded by

hyperplanes in H.
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We say that D is convex if the equivalent conditions (i) and (ii) are satisfied.

1.66. Given two chambers C,D, show that their convex hull (the smallest
convex set of chambers containing both of them) consists of the chambers E
such that d(C,D) = d(C,E) + d(E,D). In other words, it consists of the
chambers that can occur in a minimal gallery from C to D. In particular,
the convex hull of any two opposite chambers C,−C is the entire set C of
chambers.

1.67. For any A ∈ Σ, show that the set C≥A of chambers having A as a face
is convex.

1.68. Let Σ′ ⊆ Σ be a nonempty set of cells closed under passage to faces.
Let |Σ′| be the corresponding subset of V , i.e., |Σ′| :=

⋃
A∈Σ′ A. Prove that

the following three conditions are equivalent:

(i) Σ′ is a subsemigroup of Σ.
(ii) Σ′ is the set of cells in an intersection of closed half-spaces bounded by

hyperplanes in H.
(iii) |Σ′| is a convex subset of V .

If Σ′ contains at least one chamber, show that (i)–(iii) are equivalent to:

(iv) The maximal elements of Σ′ are chambers, and the set of chambers in Σ′

is convex.
(v) Given A,C ∈ Σ′ with C a chamber, Σ′ contains every minimal gallery

from A to C.

1.5 The Simplicial Complex of a Reflection Group

We return, finally, to the setup at the beginning of the chapter, where V
is assumed to have an inner product, W is a finite reflection group acting
on V , and H is a set of hyperplanes such that the reflections sH (H ∈ H)
generate W . We assume further that H is W -invariant. Such an H certainly
exists. For example, we can take H to consist of all hyperplanes H with
sH ∈W ; the W -invariance of this set follows from the easily verified identity
swH = wsHw−1. Or if W is defined via a generalized root system Φ, then we
can take H =

{
α⊥}

α∈Φ
. We will see (Corollary 1.72 below) that there is a

unique H, so the two choices just described actually coincide; but this is not
obvious a priori.

Throughout this section we denote by Σ, or Σ(W,V ), the set Σ(H) of
cells in V with respect to H that we studied in Section 1.4.
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1.5.1 The Action of W on Σ(W, V )

Since Σ is defined in terms of H and the linear structure on V , it is clear
that W permutes the cells and preserves all of the structure that we intro-
duced in Section 1.4: the face relation, products, adjacency,. . . . In particular,
W acts on Σ as a group of poset automorphisms and a group of semigroup
automorphisms, and W acts on the chamber graph as a group of graph auto-
morphisms.

Let C be a fixed but arbitrary chamber, called the fundamental chamber,
and let S be the set of reflections with respect to the walls of C. The elements
of S are called the fundamental reflections or simple reflections. For s ∈ S let
Hs be the hyperplane fixed by s, and let As be the panel of C with support Hs.
Then we have As = sAs < sC, so C and sC are the two chambers having
As as a face (Proposition 1.48). Thus the chambers adjacent to C are the
chambers sC for s ∈ S. Using the W -action, we deduce that for any w ∈ W ,
the chambers adjacent to wC are the chambers wsC for s ∈ S. Note that wC
and wsC are adjacent along the wall wHs, which is the fixed hyperplane of
the reflection wsw−1. Schematically:

C sC

Hs

w wC wsC

wHs

(1.10)

It follows that galleries starting at C are in 1–1 correspondence with words in
the alphabet S; the gallery

C s1C s1s2C · · · s1s2 · · · slC (1.11)

corresponds to the word s1s2 · · · sl.
The reader may find it helpful to trace out some galleries for the reflection

group of type A2 pictured in Figure 1.9. Here W is the dihedral group of
order 6, generated by two reflections s, t whose product is a rotation of order 3.
In the figure, w0 is the element sts = tst of W .

We can now prove the main result of this section, after which we will say
more about galleries.

Theorem 1.69.

(1) The set S of fundamental reflections generates W .
(2) The action of W is simply transitive on the set C of chambers. Thus

there is a 1–1 correspondence between W and C given by w ↔ wC, where
C is the fundamental chamber. In particular, the number of chambers
is |W | := the order of W .

Proof. The proof will proceed in several steps.
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Hs

tCtsC

Cw0C

stC sC

Ht

Fig. 1.9. The chambers for W =
〈
s, t ; s2 = t2 = (st)3 = 1

〉
.

(a) We first show that the subgroup W ′ := 〈S〉 generated by S acts transitively
on C. Given D ∈ C we can choose a gallery from C to D since the chamber
graph is connected (Proposition 1.54). This gallery has the form (1.11), so
D = wC with w := s1s2 · · · sl ∈ W ′.

(b) Next we prove assertion (1) of the theorem, which says that W = W ′. It
suffices to show that W ′ contains the generators sH of W (H ∈ H). Given
H ∈ H, take a chamber D having H as a wall (Corollary 1.49). Then D =
wC for some w ∈ W ′ by (a), so H = wHs for some wall Hs of C, and
sH = wsw−1 ∈W ′.

(c) To complete the proof, we must show that wC �= C for w �= 1 in W . We
will prove that in fact,

d(C,wC) = l(w) , (1.12)

where the right-hand side is the minimal length of an S-word representing w,
i.e., the smallest l ≥ 0 such that

w = s1s2 · · · sl (1.13)

with si ∈ S. Thus we must show that the gallery from C to wC corresponding
to (1.13) as in (1.11) is minimal if l = l(w). Write the gallery as

w0C w1C w2C · · · wlC

w0H1 w1H2 w2H3 · · · wl−1Hl

where wi := s1 · · · si and Hi := Hsi
(see (1.10), and note that wi = wi−1si

for i ≥ 1). Here w0 := 1. If the gallery is not minimal, then two of the walls
indicated above must coincide (Proposition 1.56). Thus wi−1Hi = wj−1Hj for
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some i, j with 1 ≤ i < j ≤ l. Passing to the associated reflections, we obtain
wi−1siw

−1
i−1 = wj−1sjw

−1
j−1, or

wiw
−1
i−1 = wjw

−1
j−1 .

This can be rewritten as w−1
i−1wj−1 = w−1

i wj . Expanding both sides in terms
of s1, . . . , sl, we obtain, finally,

si · · · sj−1 = si+1 · · · sj .

Hence

w = s1 · · · si−1(si · · · sj−1)sj · · · sl

= s1 · · · si−1(si+1 · · · sj)sj · · · sl

= s1 · · · ŝi · · · ŝj · · · sl ,

where the hats indicate deleted letters. This contradicts the minimality of l
and completes the proof. 	


The miracle that occurred at the end of the proof leads to the following
surprising result:

Corollary 1.70. Let w = s1s2 · · · sm with si ∈ S. If there exists a shorter
expression for w as a product of elements of S, then there are indices i < j
such that

w = s1 · · · ŝi · · · ŝj · · · sm .

Proof. The hypothesis implies that d(C,wC) < m, so the gallery correspond-
ing to the given expression for w is not minimal. The conclusion now follows
from the proof of (c) above. 	


Remark 1.71. We will explore the algebraic consequences of this remarkable
property of (W,S), which we call the deletion condition, in a more general
setting in Chapter 2. And in Chapter 3, again in a more general setting, we
will give an alternative proof of it that seems less magical. See Lemma 3.70
and the paragraph following the proof of Lemma 3.71.

Next, here is the promised uniqueness of H.

Corollary 1.72. H necessarily consists of all hyperplanes H in V such that
sH ∈W .

Proof. Suppose sH ∈ W but H /∈ H. Then H �⊆
⋃

H′∈H H ′, so H must meet
a chamber D. Since the element w := sH of W fixes H, it follows that wD
meets D and hence that wD = D, contradicting the theorem. 	
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We close this subsection by summarizing what we now know about the
connection between S-words and galleries. This is most easily stated in the
language of Cayley graphs. We recall the definition of the latter in the form
that is most convenient for our purposes; there are slight variants of the defi-
nition in the literature.

Definition 1.73. Let G be a group and let S be a symmetric set of generators
of G that does not contain the identity. Here “symmetric” means that S =
S−1. Then the Cayley graph of (G,S) is the (undirected) graph whose vertex
set is G and whose edges are the unordered pairs {g, h} such that h = gs for
some s ∈ S.

Note that the left-translation action of G on itself induces a left action of
G on the Cayley graph, since the edges are defined using right translation.
Note further that paths from 1 to g in the Cayley graph correspond to de-
compositions of g as a word in the elements of S. In particular, the distance
from 1 to g is the minimal length l of an expression

g = s1s2 · · · sl (1.14)

of g as a product of generators.

Definition 1.74. We call the minimal length l of a decomposition as in (1.14)
the length of g with respect to S, and we write

l = lS(g) .

We omit the subscript S if it is clear from the context. A minimal-length
decomposition (1.14) is called a reduced decomposition of g.

The following result is little more than a restatement of our earlier analysis
of galleries, combined with assertion (2) of Theorem 1.69.

Corollary 1.75. The chamber graph of Σ(W,V ) is isomorphic, as a graph
with W -action, to the Cayley graph of (W,S). For any w ∈ W , there is a
1–1 correspondence between galleries from C to wC and decompositions of w
as an S-word. It associates to the decomposition w = s1s2 · · · sl the gallery
pictured in (1.11). Consequently, minimal galleries from C to wC correspond
to reduced decompositions of w, and

d(C,wC) = l(w) . (1.15)

Proof. The bijection wC ↔ w sets up the isomorphism on the level of vertices.
The remaining details should be clear at this point and are left to the reader.

	


In working with Cayley graphs, one often labels the edge from g to gs by
the generator s. (Cayley [78] thought of the label as representing a color, and
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he called the graph a “colourgroup.”) Following this convention, we will often
write

wC
s

wsC (1.16)

and say that wC is s-adjacent to wsC.

Warning. If C1 and C2 are adjacent chambers, then the generator s that labels
the edge in the chamber graph joining them is not in general the reflection
that takes C1 to C2. Indeed, the reflection taking wC to wsC is wsw−1, which
is generally different from s.

Exercise 1.76. Deduce from equation (1.15) that l(ws) = l(w) ± 1 for all
w ∈W and s ∈ S. Deduce further that l(sw) = l(w)± 1 for all w, s.

Note. The essential content of this is that one cannot have l(ws) = l(w).
One can prove this purely algebraically by a determinant argument. It is
not, however, a general property of length functions on groups. Consider, for
example, the direct product of two groups of order 2, with the three nontrivial
elements as generators.

1.5.2 The Longest Element of W

Recall from the general theory of hyperplane arrangements that −C is the
unique chamber at maximal distance from the fundamental chamber C
(Proposition 1.57). This leads to the following results about W and its gen-
erating set S.

Proposition 1.77. Let (W,V ) be a finite reflection group.

(1) W has a unique element w0 of maximal length. Its length is given by
l(w0) = |H|.

(2) The element w0 is characterized by the property that w0C = −C, where
C is the fundamental chamber.

(3) l(ww0) = l(w0)− l(w) for all w ∈W .
(4) w2

0 = 1, and w0 normalizes the set S of fundamental reflections.

Proof. By Theorem 1.69, there is a unique w0 ∈ W such that w0C = −C.
Parts (1) and (2) now follow at once from Proposition 1.57 and equation (1.15).

(3) We have

l(ww0) = d(C,ww0C)
= d(C,w(−C))
= d(−C,wC)
= |H| − d(C,wC)
= l(w0)− l(w) ,

where the second-to-last equality follows from equation (1.9).
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(4) w2
0C = w0(−C) = −w0(C) = C, so Theorem 1.69 implies that w2

0 = 1.
Note next that −C has the same walls as C, so S is the set of reflections with
respect to the walls of −C. On the other hand, w0Sw−1

0 [= w0Sw0] is the set
of reflections with respect to the walls of −C = w0C. So w0Sw−1

0 = S. 	


It follows from (4) that conjugation by w0 induces an involution of S (pos-
sibly trivial), which we denote by σ0. We will give a geometric interpretation
of this involution in Proposition 1.130.

Exercise 1.78. Give an algebraic proof that w0 normalizes S by using (3) to
calculate l(w0sw0) for s ∈ S.

1.5.3 Examples

Example 1.79. Suppose that (W,V ) is essential and of rank 2. One could
simply give a direct analysis of this situation, but it will be instructive to see
what Theorem 1.69 says about it. Let m := |H|. Then m ≥ 2, and the m
lines in H divide the plane V into 2m chambers, each of which is a sector
determined by two rays. The transitivity of W on the set of sectors implies
that they are all congruent, so each sector must have angle 2π/2m = π/m.
In view of assertion (1) of Theorem 1.69, W is generated by two reflections
in lines L1 and L2 that intersect at an angle of π/m. In other words, W is
dihedral of order 2m and (W,V ) looks exactly like Example 1.9.

Let us also record, for future reference, the following fact about this ex-
ample: Let L1 and L2 be the walls of one of the chambers C, and let ei

(i = 1, 2) be the unit normal to Li pointing to the side of Li containing C;
see Figure 1.10. Then the inner product of e1 and e2 is given by

〈e1, e2〉 = − cos
π

m
.

[To understand the sign, note that the angle between e1 and −e2 is π/m.]

Example 1.80. This is a trivial generalization of the previous example, but
it will be useful to have it on record. Assume that (W,V ) has rank 2 but
is not necessarily essential. In other words, if we write V = V0 ⊕ V1 as in
Section 1.1, then dimV1 = 2. By the previous example applied to (W,V1), we
have W ∼= D2m for some m ≥ 2. Moreover, if C1 is a chamber in V1 with
walls Li and normals ei as above, then V0 × C1 is a chamber in V with walls
V0⊕Li and the same normals ei. In particular, it is still true that a chamber C
has two walls and that the corresponding unit normals (pointing toward the
side containing C) satisfy

〈e1, e2〉 = − cos
π

m
. (1.17)
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L1

L2

e1

e2

C

Fig. 1.10. The canonical unit normals associated with a chamber.

Example 1.81. (Type An−1) Let W be the symmetric group on n letters
acting on R

n as in Example 1.10. Thus a permutation π acts by π(vi) = vπ(i)

for 1 ≤ i ≤ n, where v1, . . . , vn is the standard basis for R
n. [These basis

vectors were called ei in Example 1.10, but we now call them vi in order to
avoid confusion with the canonical unit vectors associated to a chamber.] In
terms of coordinates, the action is given by π(x1, . . . , xn) = (y1, . . . , yn) with

xi = yπ(i) for 1 ≤ i ≤ n . (1.18)

Indeed, we have π
(∑n

i=1 xivi

)
=
∑n

i=1 xiπ(vi) =
∑n

i=1 xivπ(i), whence (1.18).
To analyze this example we can take H to be the braid arrangement dis-

cussed in Section 1.4.7; this set is clearly W -invariant, and the corresponding
reflections generate W . We already saw in Section 1.4.7 that the chambers are
in 1–1 correspondence with elements of W . The correspondence given there is
identical with the one predicted by Theorem 1.69, if we take the fundamental
chamber C to be given by

x1 > x2 > · · · > xn . (1.19)

To see this, just observe that by (1.18), πC is defined by

xπ(1) > xπ(2) > · · · > xπ(n) . (1.20)

The set of inequalities (1.19) is a minimal set of defining inequalities for C,
so the latter has n−1 walls, the ith of which is the hyperplane Hi,i+1 given by
xi = xi+1 (i = 1, . . . , n− 1). [Note: n− 1 is the “right” number of walls, since
this example has rank n − 1.] The reflection with respect to the ith wall is
the transposition si := si,i+1 that interchanges i and i + 1, so assertion (1) of
Theorem 1.69 reduces to the well-known fact that the n− 1 pairwise adjacent
transpositions generate the symmetric group.

We remark in passing that equation (1.15) also reduces to a well-known fact
about the symmetric group. Recall first that an inversion of a permutation
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π ∈ W is a pair (i, j) with 1 ≤ i < j ≤ n and π(i) > π(j). Then the well-
known fact is that the length lS(π) is equal to the number of inversions of π.
To derive this from (1.15), observe that by (1.20), a wall xi = xj with i < j
separates C from πC if and only if i occurs later than j in the list of numbers
π(1), . . . , π(n), i.e., if and only if π−1(i) > π−1(j). Thus (1.15) says that l(π)
is equal to the number of inversions of π−1; since l(π) = l(π−1), this proves
our assertion.

Let’s compute, now, the canonical unit vectors e1, . . . , en−1 associated
to C. If we let v1, . . . , vn be the standard basis vectors for V := R

n as above,
then the ith inequality defining C can be written 〈vi − vi+1, x〉 > 0, so the
unit vector ei perpendicular to the ith wall and pointing toward the side
containing C is given by

ei =
vi − vi+1√

2
.

In particular, we can calculate the inner product

〈ei, ej〉 =

⎧
⎪⎨

⎪⎩

1 for j = i,

−1/2 for j = i + 1,

0 for j > i + 1.

Note that 1 = − cos(π/1), −1/2 = − cos(π/3), and 0 = − cos(π/2). Hence
the inner product calculation can be written in the more concise form

〈ei, ej〉 = − cos
π

mij
,

where mij is the order of sisj (or, equivalently, 2mij is the order of the dihedral
subgroup generated by si and sj). This formula should not be surprising, in
view of (1.17).

Example 1.82. (Type Cn) Let W be the signed permutation group acting
on R

n as in Example 1.11. Then H consists of the hyperplanes xi − xj = 0
(i �= j), xi +xj = 0 (i �= j), and xi = 0. To describe a chamber, one has to say
which coordinates are positive and which are negative, and one has to specify
an ordering of the absolute values of the coordinates. It follows that there are
2nn! chambers, each defined by n inequalities of the form

ε1xπ(1) > ε2xπ(2) > · · · > εnxπ(n) > 0

with εi ∈ {±1} and π ∈ Sn. As fundamental chamber we can take

x1 > x2 > · · · > xn > 0 .

The interested reader can work out the fundamental reflections, the canonical
unit vectors, and so on, as in Example 1.81. The reader might further want to
work out the poset/semigroup of cells, as we did for type An−1 in Section 1.4.7.
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Example 1.83. (Type Dn) Let W be the subgroup of the signed permutation
group consisting of elements that change an even number of signs (Example
1.13). Then H consists of the hyperplanes xi−xj = 0 and xi +xj = 0 (i �= j).
To figure out what the chambers look like, consider two coordinates, say x1

and x2. From the fact that x1 is comparable to both x2 and −x2 on any given
chamber C, one can deduce that one of the coordinates is bigger than the
other in absolute value and that this coordinate has a constant sign. In other
words, we have an inequality of the form εx1 > |x2| or εx2 > |x1| on C, where
ε = ±1. It follows that there are 2n−1n! chambers, each defined by inequalities
of the form

ε1xπ(1) > ε2xπ(2) > · · · > εn−1xπ(n−1) > |xπ(n)| (1.21)

with εi ∈ {±1} and π ∈ Sn. Note that the last inequality is equivalent to
two linear inequalities, εn−1xπ(n−1) > xπ(n) and εn−1xπ(n−1) > −xπ(n), so we
have n linear inequalities in all.

As fundamental chamber we take

x1 > x2 > · · · > xn−1 > |xn| ,

with walls x1 = x2, x2 = x3, . . . , xn−1 = xn, and xn−1 = −xn. Further
analysis is left to the interested reader.

Example 1.84. This final example is intended to provide some geometric
intuition. Several statements will be made without proof, and the reader is
advised not to worry too much about this.

Let W be the reflection group of type H3, i.e., the group of symmetries
of a regular dodecahedron in V := R

3. It is convenient to restrict the action
of W to the unit sphere S2 and to think of W as a group of isometries of
this sphere. As such, it is the group of symmetries of the regular tessellation
of the sphere obtained by radially projecting the faces of the dodecahedron
onto the sphere. Let P be one of the 12 spherical pentagons that occur in this
tessellation. It has interior angles 2π/3, since there are 3 pentagons at each
vertex.

The circles of symmetry of this tessellation (corresponding to the planes of
symmetry of the dodecahedron) barycentrically subdivide P , thereby cutting
it into 10 spherical triangles. A typical such triangle T has angles π/2, π/3,
and π/5. The angle π/5 = 2π/10 occurs at the center of P ; the angle π/3,
which is half of the interior angle 2π/3 of P , occurs at a vertex of P ; and
the angle π/2 occurs at the midpoint of an edge of P , where the line from
the center of P perpendicularly bisects that edge. See Figure 1.11.∗ Finally, a
typical chamber C in V is simply the cone over such a triangle T . There are
12 ·10 = 120 such chambers, so |W | = 120. Thus the dodecahedral group W is
∗ Figure 1.11 first appeared in Klein–Fricke [145, p. 106] and is reprinted from a

digital image provided by the Cornell University Library’s Historic Monograph
Collection.
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Fig. 1.11. The dodecahedral tessellation, barycentrically subdivided.

a group of order 120 generated by 3 reflections. The calculation of the angles
of T above makes it easy to compute the orders of the pairwise products of
the generating reflections. One has, for a suitable numbering s1, s2, s3 of these
reflections,

(s1s2)3 = (s2s3)5 = (s1s3)2 = 1 .

Exercises

1.85. Recall from the discussion near the end of Section 1.5.1 that we can
distinguish various types of adjacency. Spell out what that means in Examples
1.81, 1.82, and 1.83. (For the An−1 case, see Example 1.51.)

1.86. Find w0 and the induced involution of S in Examples 1.81, 1.82,
and 1.83, where w0 is the element of maximal length (Section 1.5.2).

1.87. In Example 1.84, W is a familiar group of order 120. Which one is it?

1.5.4 The Chambers Are Simplicial

Let (W,V ) be a finite reflection group, and let the notation be as in Sec-
tion 1.5.1. Thus we have a fundamental chamber C with walls Hs (s ∈ S).
Let es be the unit normal to Hs pointing to the side of Hs containing C. The
Gram matrix of C is the matrix of inner products 〈es, et〉, whose rows and
columns are indexed by S (see Section 1.4.5).

The reader who has worked through the examples in Section 1.5.3 will not
be surprised by the following computation of the Gram matrix:

Theorem 1.88. With the notation above, we have

〈es, et〉 = − cos
π

m(s, t)
(1.22)
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for s, t ∈ S, where m(s, t) is the order of st. In particular, 〈es, et〉 ≤ 0 for
s �= t. Consequently, C is a simplicial cone if (W,V ) is essential.

The proof will make use of the following lemma:

Lemma 1.89. Given s �= t in S, let W ′ be the group generated by s and t.
Then W ′ is a rank-2 reflection group, and C is contained in a W ′-chamber C ′

having Hs and Ht as its walls.

Proof. We have V W ′
= Hs ∩Ht = (Res ⊕ Ret)⊥, so (W ′, V ) has rank 2. Let

H′ ⊆ H be the set of hyperplanes of the form w′Hs or w′Ht with w′ ∈ W ′.
Then H′ is W ′-invariant, and the reflections with respect to the elements
of H′ are in W ′ and generate it. Hence H′ is the set of W ′-walls, i.e., the
set of hyperplanes that define the W ′-cells. Since C is convex and is disjoint
from all the elements of H′, it is contained in a W ′-chamber C ′. The rank
calculation shows that C ′ has two walls. To see that these are Hs and Ht,
note that C ′∩Hs ⊇ C∩Hs, which has nonempty interior in Hs, and similarly
for Ht. So Hs and Ht are walls of C ′ by Proposition 1.33. 	


Proof of the theorem. The last assertion follows from Proposition 1.37, so we
need only prove the first assertion. We may assume s �= t. Let W ′ and C ′

be as in the lemma. Then 〈es,−〉 and 〈et,−〉 are positive on C ⊆ C ′, so es

and et are the canonical unit normals to the walls of C ′. The inner product
formula (1.22) now follows from Example 1.80. 	


One immediate consequence of the theorem is the following criterion for
reducibility:

Corollary 1.90. Assume that (W,V ) is essential. Then (W,V ) is reducible if
and only if there is a partition of S into (nonempty) subsets S′, S′′ such that
m(s, t) = 2 for all s ∈ S′ and t ∈ S′′.

Proof. Suppose there is such a partition. Let W ′ and W ′′ be the subgroups
〈S′〉 and 〈S′′〉, and let V ′ (respectively V ′′) be the subspace of V spanned
by the es with s ∈ S′ (respectively s ∈ S′′). Then we have an orthogonal
decomposition V = V ′ ⊕ V ′′, and W can be identified with W ′ ×W ′′ acting
on this direct sum. Thus (W,V ) is reducible. The converse is equally easy and
is left to the reader. 	


The next corollary is more interesting. Recall from Section 1.5.2 that W
has a unique longest element w0 and that w0 normalizes S.

Corollary 1.91. Assume that (W,V ) is essential and irreducible.

(1) w0 is the only nontrivial element of W that normalizes S.
(2) The center of W is trivial unless W contains −1, where −1 denotes −idV .

In this case w0 = −1 and the center is {±1} = {1, w0}.
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Proof. (1) We will give two proofs, one algebraic and one geometric. Both are
instructive.

Algebraic proof. Suppose w ∈ W normalizes S, and set s′ := wsw−1 for any
s ∈ S. Since wes is a unit vector orthgonal to wHs = Hs′ , we have wes = εses′

with εs = ±1. Let S+ := {s ∈ S | εs = 1} and S− := {s ∈ S | εs = −1}. We
claim that m(s, t) = 2 for s ∈ S+ and t ∈ S−. By irreducibility (and the
previous corollary), this will imply that either S+ or S− is all of S, i.e., that
εs is independent of s.

To prove the claim, note that

〈es′ , et′〉 = −〈wes, wet〉 because s ∈ S+ and t ∈ S−

= −〈es, et〉 because w is orthogonal
= cos(π/m) by (1.22),

where m = m(s, t). On the other hand, (1.22) also implies

〈es′ , et′〉 = − cos(π/m′) ,

where m′ = m(s′, t′). But m = m′ because the function s �→ s′ is the restric-
tion of a group automorphism, so we must have cos(π/m) = 0, i.e., m(s, t) = 2.
This proves the claim.

We now know that εs is independent of s. So either wC = C or wC =
−C = w0C. Since W is simply transitive on the chambers, we conclude that
w = 1 or w = w0.

Geometric proof. Assume that w �= 1 and that wSw−1 = S, and consider the
chamber D := wC. The reflections with respect to its walls are the reflections
in wSw−1 = S, so D has the same walls Hs as C. The crux of the proof is now
the following claim: Given s, t ∈ S with m(s, t) > 2, either Hs and Ht both
separate D from C or else neither of them separates D from C. The claim
implies, by irreducibility and the fact that D �= C, that every Hs separates D
from C. Hence D is defined by 〈es,−〉 < 0 for all s ∈ S, i.e., D = −C = w0C
and w = w0.

To prove the claim, we set W ′ := 〈s, t〉 and apply Lemma 1.89 to get a
W ′-chamber C ′ ⊇ C such that Hs and Ht are the walls of C ′. We can also
apply the lemma with C replaced by D to get a W ′-chamber D′ ⊇ D such that
Hs and Ht are the walls of D′. Now we know exactly what rank-2 reflection
groups look like, and since m(s, t) > 2, there are only two W ′-chambers with
Hs and Ht as walls, namely, C ′ and −C ′. Hence D′ = ±C ′, and the claim
follows at once.

(2) The center of W normalizes S, so if there is a nontrivial center then
w0 is central and is the unique nontrivial element of the center. But if w0 is
central, then w0es = −es for all s; hence w0 = −1. 	
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Exercises

1.92. Calculate the integers m(s, t) for the reflection groups of type Cn and Dn

(Examples 1.82 and 1.83) and verify (1.22) by direct calculation.

1.93. Suppose (W,V ) is essential but reducible. Show that the normalizer of S
is bigger than {1, w0}.

1.5.5 The Coxeter Matrix

We continue to assume that (W,V ) is a finite reflection group with a funda-
mental chamber C and corresponding set S of fundamental reflections. We as-
sume further that (W,V ) is essential. Then |S| = n := dim V by Theorem 1.88
[since the simplicial cone C has exactly n walls], and the vectors es (s ∈ S)
form a basis for V . This fact, when combined with the calculation (1.22) of
the Gram matrix, has the following important consequence:

Corollary 1.94. Assume that (W,V ) is essential. Then (W,V ) is completely
determined, up to isomorphism, by the matrix M :=

(
m(s, t)

)
s,t∈S

.

Proof. Given M , we can recover (W,V ) as follows: V can be identified
with R

S , the vector space of “S-tuples” (xs)s∈S , with standard basis (es)s∈S .
We give R

S the inner product defined by (1.22), and we can then identify W
with the group of linear automorphisms of R

S generated by the orthogonal
reflections with respect to the hyperplanes es

⊥. 	

Definition 1.95. The matrix M = (m(s, t))s,t∈S is called the Coxeter matrix
associated to W . More precisely, M is associated to W together with a choice
of fundamental chamber. It is an n × n matrix whose rows and columns are
indexed by the set S of fundamental reflections.

The short explanation of Corollary 1.94 is that the Coxeter matrix deter-
mines the Gram matrix and the Gram matrix determines (W,V ). Note that
we have the following explicit formula for s in terms of the inner product, and
hence in terms of the Coxeter matrix:

s(x) = x− 2〈es, x〉es . (1.23)

This is simply formula (1.1) specialized to the case that α is a unit vector.

Remark 1.96. The Coxeter matrix has the following formal properties: It
is a symmetric matrix of integers m(s, t), with m(s, s) = 1 and m(s, t) ≥ 2
for s �= t. But not every such matrix can be the Coxeter matrix of a finite
reflection group. A further necessary (and, as we will see in Section 2.5.4,
sufficient) condition is that the matrix A :=

(
− cos(π/m(s, t))

)
s,t∈S

must be
positive definite. This fact, together with Corollary 1.94, is the basis for the
classification result stated in Section 1.3. Indeed, the proof of that result in
Bourbaki [44], Grove–Benson [124], and Humphreys [133] consists in analyzing
the possibilities for M , given that A is positive definite.

Exercise 1.97. What happens to M if we change the choice of C?



1.5 The Simplicial Complex of a Reflection Group 49

1.5.6 The Coxeter Diagram

Instead of working directly with the Coxeter matrix M , one usually works
with a diagram called the Coxeter diagram, which encodes all the information
in M . The diagram has n vertices, one for each s ∈ S, and the vertices
corresponding to distinct elements s, t are connected by an edge if and only
if m(s, t) ≥ 3. If m(s, t) ≥ 4, then there is more than one convention in the
literature as to how to indicate this in the diagram; the one we will follow is
simply to label the edge with the number m(s, t). In summary, a labeled edge
(with label necessarily at least 4) indicates the value of the corresponding
m(s, t); an unlabeled edge indicates that m(s, t) = 3; and the lack of an edge
joining s and t indicates that m(s, t) = 2.

The Coxeter diagrams for all of the irreducible finite reflection groups are
shown in Table 1.1. Based on the examples we have given (and Exercise 1.92),
the reader should be able to check that the diagrams are correct for the cases
An, Cn, Dn, G2, H3, and I2(m).

Remarks 1.98. (a) Note that the diagrams that occur in this table are very
special. For example, the graphs are all trees; there is very little branching in
these trees; and the edge labels are rarely necessary (i.e., the numbers m(s, t)
are rarely bigger than 3). One does not need the full force of the classification
theorem in order to know these properties; in fact, these properties are among
the first few observations that occur in the proof of the classification theorem
given in the cited references.

(b) Readers who have studied Lie theory will be familiar with the Dynkin
diagram of a root system. The Dynkin diagram is similar to the Coxeter
diagram, but it contains slightly more information; in particular, it contains
enough information to distinguish the root system of type Bn from that of
type Cn for n ≥ 3, even though these root systems have the same Weyl group.

(c) In the diagrams corresponding to root systems (all but the last three dia-
grams in Table 1.1), the only edge labels that occur are 4 and 6. According to
a common convention different from the one we have adopted, one omits these
labels and instead draws a double bond (two parallel edges) when m(s, t) = 4
and a triple bond (three parallel edges) when m(s, t) = 6.

Exercises

1.99. Compute the Coxeter diagrams for the reflection groups of type D2

and D3. Why aren’t these listed in the table?

1.100. Show that an essential finite reflection group (W,V ) is irreducible if
and only if the graph underlying its Coxeter diagram is connected. Deduce,
in the reducible case, a canonical decomposition

(W,V ) ∼= (W1 × · · · ×Wk, V1 ⊕ · · · ⊕ Vk)



50 1 Finite Reflection Groups

An . . . (n ≥ 1 vertices)

Cn . . . 4 (n ≥ 2 vertices)

Dn . . . (n ≥ 4 vertices)

E6

E7

E8

F4
4

G2
6

H3
5

H4
5

I2(m) m (m = 5 or m ≥ 7)

Table 1.1. Coxeter diagrams of the irreducible finite reflection groups.

into “irreducible components,” one for each connected component of the Cox-
eter diagram.

1.101. Let (W,V ) be an essential irreducible finite reflection group. The pur-
pose of this exercise is to show that (W,V ) is also irreducible in the sense
of representation theory, i.e., the only W -invariant subspaces of V are {0}
and V . Let V ′ be a W -invariant subspace.

(a) For each s ∈ S, show that either V ′ contains es or V ′ is contained in the
hyperplane Hs := es

⊥.
(b) If V ′ contains es for some s ∈ S, show that V ′ contains es for all s ∈ S.
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(c) Deduce from (a) and (b) that V ′ = {0} or V . Thus the action of W on V
is irreducible in the sense of representation theory.

(d) Show that the only linear endomorphisms of V that commute with all
elements of W are the scalar-multiplication operators. [This implies that
the action of W on V is absolutely irreducible.]

1.102. Use Exercise 1.101 to give a new proof of Corollary 1.91(2): The cen-
ter of an essential, irreducible finite reflection group W is trivial unless W
contains −1, in which case the center is {±1}.

1.5.7 Fundamental Domain and Stabilizers

When studying the action of a group on a set, one wants to know how many
orbits there are and what the stabilizers are at typical points of these orbits.
Both of these questions have extremely simple answers in the case of W acting
on V . We need one bit of terminology.

Definition 1.103. If a group G acts on a space X, then we call a subset
Y ⊆ X a strict fundamental domain if Y is closed and is a set of representa-
tives for the G-orbits in X.

Theorem 1.104. Let (W,V ) be a finite reflection group, C a chamber, and
S the set of reflections with respect to the walls of C. Then C is a strict
fundamental domain for the action of W on V . Moreover, the stabilizer Wx

of a point x ∈ C is the subgroup 〈Sx〉 generated by Sx := {s ∈ S | sx = x}. In
particular, Wx fixes every point of A, where A is the cell containing x.

Proof. Since W is transitive on the chambers, it is clear that every point of V
is W -equivalent to a point of C. Everything else in the theorem will follow
if we prove the following claim: For x, y ∈ C and w ∈ W , if wx = y then
x = y and w ∈ 〈Sx〉. We argue by induction on the length l := l(w) of w with
respect to S.

If l = 0 there is nothing to prove, so assume l > 0 and choose a reduced
decomposition w = s1 · · · sl. Since the corresponding gallery from C to wC
is minimal (Corollary 1.75), we know that C and wC are separated by the
wall H1 fixed by s1. We therefore have

wx = y ∈ C ∩ wC ⊆ H1 .

So if we apply s1 to both sides of the equation wx = y, we obtain

w′x = s1y = y ,

where w′ := s1w = s2 · · · sl. By the induction hypothesis, it follows that x = y
[whence s1 ∈ Sx] and that w′ ∈ 〈Sx〉. So w = s1w

′ is also in 〈Sx〉, and the
proof is complete. 	
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Corollary 1.105. For any cell A, the stabilizer WA of A (as a set) fixes A
pointwise.

Proof. We may assume that A is a face of the fundamental chamber and hence
that A ⊆ C. Then no two distinct points of A are W -equivalent, and the result
follows at once. 	


Exercise 1.106. Let A and B be cells, and let AB be their product (Sec-
tion 1.4.6). Show that WAB = WA ∩WB .

1.5.8 The Poset Σ as a Simplicial Complex

The fact that every chamber is a simplicial cone in the essential case suggests
that the hyperplanes in H cut the unit sphere in V into (spherical) simplices.
Thus it seems intuitively clear that the poset Σ := Σ(W,V ) of cells can be
identified with the poset of simplices of a simplicial complex that triangulates
a sphere of dimension rank(W,V )− 1. In this subsection we prove this state-
ment rigorously. Before proceeding, the reader might find it helpful to look
at the first few paragraphs of Appendix A, where we explain our conventions
regarding simplicial complexes. In particular, the statement of the following
proposition has to be understood in terms of Definition A.1.

Proposition 1.107. The poset Σ is a simplicial complex.

Proof. We may assume that (W,V ) is essential, since Σ remains unchanged,
up to canonical isomorphism, if we pass to the essential part. According to
Definition A.1, we must check two conditions. Condition (a) is that any two
elements of Σ have a greatest lower bound; this has already been proved in
Proposition 1.47. As to Condition (b), concerning the poset Σ≤A of faces of
a cell A ∈ Σ, we know that A is a face of a chamber, so it suffices to consider
the case that A is a chamber. But it is a trivial matter to compute the poset
of faces of a simplicial cone, and this poset is indeed isomorphic to the set of
subsets of {1, . . . , n}. 	


We gave this somewhat abstract proof of the proposition in order to intro-
duce the unorthodox terminology that we use regarding simplicial complexes;
this will be useful later. But it is easy to chase through the discussion in Sec-
tion A.1.1 in order to describe in more conventional terms how, in the essential
case, Σ can be identified with an abstract simplicial complex (in which the
simplices are certain finite subsets of a set of “vertices”):

Every 1-dimensional cell A ∈ Σ is a ray R
∗
+v, where R

∗
+ is the set of

positive reals and v is a unit vector; the unit vectors v that arise in this way
are the vertices of our simplicial complex. For each (q + 1)-dimensional cell
A ∈ Σ (q ≥ −1), there is a q-simplex {v0, . . . , vq} in our complex, where
the vi are the unit vectors in the 1-dimensional faces of A. It should be clear
that we do indeed obtain a simplicial complex in this way and that Σ can
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be identified with the poset of simplices of this complex. Notice that we have
allowed q = −1 above. The cell A is {0} in this case, and it corresponds to
the empty set of vertices. [Our convention, as explained in Section A.1.1, is
that the empty set is always included as a simplex of an abstract simplicial
complex.]

Proposition 1.108. The geometric realization |Σ| is canonically homeomor-
phic to a sphere of dimension rank(W,V )− 1.

Proof. Again we may assume that (W,V ) is essential, in which case we will
exhibit a homeomorphism from |Σ| to the unit sphere in V . Recall from Sec-
tion A.1.1 that |Σ| consists of certain convex combinations

∑
v λvv, where v

ranges over the vertices of Σ, viewed as basis vectors of an abstract vector
space. Now the vertices v0, . . . , vq of any A ∈ Σ can also be viewed as unit
vectors in V , and as such, they are linearly independent. Hence we have a map
|Σ| → V � {0}, given by

∑
λvv �→

∑
λvv. Composing this with radial pro-

jection, we obtain a continuous map φ : |Σ| → Sn−1. Since φ takes |A| ⊂ |Σ|
bijectively to A ∩ Sn−1 ⊂ V , it is bijective and therefore a homeomorphism
(by compactness of |Σ|). 	


In view of the results of this section, an essential finite reflection group of
rank n is also called a spherical reflection group of dimension n− 1.

Exercise 1.109. Suppose W is the group of symmetries of a regular solid X.
Make an intelligent guess as to how to describe Σ directly in terms of X.

1.5.9 A Group-Theoretic Description of Σ

We started the chapter with a “concrete” group W , given to us as a group of
linear transformations (or, in more geometric language, as a group of isome-
tries of Euclidean space, or, even better, as a group of isometries of a sphere).
The geometry gave us, after we chose a fundamental chamber C, a set S of gen-
erators of W . The geometry also gave us a simplicial complex Σ := Σ(W,V ),
constructed by means of hyperplanes and half-spaces. We will prove below,
however, that if we forget the geometry and just view W as an abstract group
with a given set S of generators, then we can reconstruct Σ by pure group
theory. This observation will have far-reaching consequences. For simplicity,
we assume in this subsection that (W,V ) is essential.

Consider first the subcomplex Σ≤C consisting of the faces of the funda-
mental chamber C. To every face A ≤ C, we associate its stabilizer WA. In
view of Theorem 1.104 and Corollary 1.105, WA is also the stabilizer of any
point x ∈ A, and it fixes A pointwise. The theorem also says that WA is
generated by a subset of our given generating set S. Subgroups of this form
have a name:

Definition 1.110. A subgroup of W is called a standard parabolic subgroup,
or simply a standard subgroup, if it is generated by a subset of S. Any conjugate
of such a subgroup will be called parabolic, without the adjective “standard.”
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Thus we have a function φ from Σ≤C to the set of standard subgroups
of W , and we will show that φ is a bijection. In fact, we can construct the
inverse ψ of φ by taking fixed-point sets: Let W ′ be a standard subgroup of W ,
generated by a set S′ ⊆ S; then the fixed-point set of W ′ in C is obtained by
intersecting C with the walls of C corresponding to the reflections in S′. So
this fixed-point set is equal to A for some A ≤ C, and we can set ψ(W ′) := A.
Using the stabilizer calculation in Section 1.5.7, one can easily check that ψ
is inverse to φ.

Note next that φ and its inverse ψ are order-reversing. For ψ, this is
immediate from the definition. In the case of φ, the assertion follows from
the fact that WA fixes A pointwise and hence stabilizes every face of A. We
therefore have a poset isomorphism

Σ≤C
∼= (standard subgroups)op , (1.24)

where “op” indicates that we are using the opposite of the usual inclusion
order. We will also describe the poset on the right in (1.24) as the poset of
standard subgroups, ordered by reverse inclusion. Figure 1.12 illustrates this
isomorphism when n = 3 and S = {s, t, u}. Here C is the cone over a triangle,
and we have drawn a slice T of C (or, equivalently, the intersection of C with
the unit sphere). The figure shows the stabilizer of almost every face of T ,
the one exception being the empty face, which is not visible in the picture.
The empty face corresponds to the cell A := {0}, which would appear in the
picture if we drew the whole chamber C instead of just T . It is the smallest
face of T , and its stabilizer is the largest standard subgroup of W , namely,
W itself. Similarly, the largest face is T itself, whose stabilizer is the smallest
standard subgroup {1} (generated by ∅ ⊂ S).

〈s, t〉

{1}
〈s〉 〈t〉

〈s, u〉 〈u〉 〈t, u〉

Fig. 1.12. The standard parabolic subgroups as stabilizers.

Returning now to the general case, we can use the W -action to extend
our isomorphism to one from the whole poset Σ to the set of standard cosets
in W , i.e., the cosets wW ′ of standard subgroups. Indeed, we can send a
typical element wA ∈ Σ (w ∈ W , A ≤ C) to the coset wWA. It is a routine
matter to deduce the following result from what we did above for Σ≤C :

Theorem 1.111. There is a poset isomorphism
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Σ ∼= (standard cosets)op

that is compatible with the W -action, where W acts on the cosets by left trans-
lation. 	


We can express the theorem more briefly by saying that Σ is W -isomorphic
to the poset of standard cosets in W , ordered by reverse inclusion.

Exercise 1.112. Let W be the reflection group of type An−1 (symmetric
group on n letters), with the standard choice of fundamental chamber. Thus
S is the set {s1, . . . , sn−1} of basic transpositions, where si interchanges i and
i + 1. We stated without proof in the discussion of Example 1.10 that the
complex Σ associated to W is the barycentric subdivision of the boundary of
an (n− 1)-simplex. (See also Exercise 1.109.) Prove this rigorously.

1.5.10 Roots and Half-Spaces

Finally, having reconstructed the complex Σ := Σ(W,V ) from the algebraic
data (W,S), we wish to do the same for some other geometric concepts: walls,
reflections, roots, and half-spaces. The set H of walls and the corresponding
set T of reflections are easy to describe algebraically:

Proposition 1.113. Let T be the set of reflections in W . Then T is the set of
conjugates of elements of S, and there is a bijection H → T given by H �→ sH .
This bijection is W -equivariant, where W acts on T by conjugation.

Proof. The fact that T is the set of conjugates of elements of S was proved
in step (b) of the proof of Theorem 1.69, and the bijection with H follows
from Corollary 1.72. Finally, W -equivariance is simply the familiar formula
swH = wsHw−1, which we have already used several times. 	


Turning next to roots, suppose that W is the reflection group WΦ associ-
ated with a generalized root system Φ. Note, then, that the open half-spaces
determined by H are in 1–1 correspondence with roots: To a half-space U
bounded by H we associate the root α that is orthogonal to H and points
toward U . [Recall from Section 1.1 that our root systems are assumed to be
reduced, so there is only one such α.] Thus U is defined by 〈α,−〉 > 0.

Definition 1.114. We call the open half-space U and the corresponding root
α positive if U contains the fundamental chamber C, and we call them negative
otherwise. A positive root α is called simple if α⊥ is a wall of C.

(Thus the simple roots give, after normalization, the unit vectors es that we
discussed earlier.)

We wish to recover Φ, as a set with W -action, from (W,S). Now we have
already described H algebraically, and there is an obvious bijection Φ ↔
H× {±1} where H × {+1} corresponds to the positive roots and H × {−1}
corresponds to the negative roots. To work out the W -action, we need to know
when an element w ∈ W transforms a positive root to a negative root.
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Lemma 1.115. Let α be a positive root with corresponding hyperplane H :=
α⊥. For any w ∈ W , wα is a negative root if and only if H separates C
from w−1C.

Proof. Let U be the half-space corresponding to α. Then

wα is negative ⇐⇒ wU is negative
⇐⇒ wU does not contain C

⇐⇒ U does not contain w−1C

⇐⇒ H separates C from w−1C. 	


Let’s specialize to the case that w is a fundamental reflection s ∈ S. Then
the wall Hs fixed by s is the only wall that separates C from sC. So the lemma
in this case says that sα is negative if and only if α⊥ = Hs. This gives the
following interpretation of Φ as a set with W -action:

Proposition 1.116. There is a W -equivariant bijection Φ↔ H×{±1}, where
the action of a generator s on H× {±1} is given by

(H, ε) �→
{

(sH, ε) if H �= Hs,

(H,−ε) if H = Hs.

	


Propositions 1.113 and 1.116 have a purely group-theoretic consequence,
whose significance will become clear in the next chapter:

Corollary 1.117. Let T be the set of conjugates of elements of S. Then there
is an action of W on T × {±1} such that a generator s ∈ S acts by

(t, ε) �→
{

(sts, ε) if t �= s,

(s,−ε) if t = s.

	


Finally, we will describe algebraically the half-spaces corresponding to the
fundamental reflections. Here we identify a half-space with the set of chambers
it contains, and we use the bijection wC ↔ w of Theorem 1.69 to relate this
to a subset of W . Our task, then, is to describe the set of w ∈ W such that
wC ⊆ U+(s), where U+(s) is the positive half-space bounded by Hs.

Proposition 1.118. For all s ∈ S and w ∈ W , wC ⊆ U+(s) if and only if
l(sw) > l(w).
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Proof. We have

wC ⊆ U+(s) ⇐⇒ Hs does not separate C from wC

⇐⇒ d(sC,wC) > d(C,wC)
⇐⇒ d(C, swC) > d(C,wC)
⇐⇒ l(sw) > l(w),

where we have used the W -invariance of d(−,−) to write d(sC,wC) =
d(C, swC). 	


Example 1.119. We illustrate the concepts in this section by applying them
to the case that W is the symmetric group on n letters acting on R

n as in
Examples 1.10 and 1.81. Recall that a permutation π acts on R

n by πei = eπ(i),
where e1, . . . , en is the standard basis for R

n.

(a) Walls and reflections. There is one wall Hij for each unordered pair i, j of
integers with 1 ≤ i, j ≤ n and i �= j; it is the hyperplane given by xi = xj .
The corresponding reflection is the transposition sij ∈W that interchanges i
and j.

(b) Roots and half-spaces. We can take our root system Φ to be the set of
vectors αij := ei−ej . Thus there is one root for each ordered pair of integers i, j
with 1 ≤ i, j ≤ n and i �= j; the corresponding half-space is given by xi > xj .
Recalling that the fundamental chamber C is defined by x1 > · · · > xn, we see
that αij is a positive root if and only if i < j. So the bijection Φ↔ H×{±1}
is given by αij ↔ (Hij , ε), where ε = +1 ⇐⇒ i < j.

Let’s take the analysis one step further and identify the roots with subsets
of W . Here if α is a root and U is the associated half-space 〈α,−〉 > 0, the
corresponding subset of W is {w ∈ W | wC ⊆ U}. Thinking of elements of W
as permutations π, we claim that

αij ↔
{
π ∈ W | π−1(i) < π−1(j)

}
. (1.25)

The condition π−1(i) < π−1(j) has a concrete interpretation if we represent
a permutation π by its list of values π(1)π(2) · · ·π(n) as in Section 1.4.7.
Namely, it says that i occurs before j in the list. To prove the claim, we need
only recall that πC is the chamber given by xπ(1) > · · · > xπ(n). Clearly this
chamber is contained in the half-space xi > xj if and only if i precedes j in
the list representing π.

The reader might find it instructive to verify that the sets of permutations
corresponding to α14 and α41 in Figure 1.7 do indeed form a pair of opposite
hemispheres.

(c) The action of W on roots. It is immediate from the definitions that wαij =
αw(i)w(j) for any i, j and any permutation w ∈ W . One can easily verify by
direct calculation that this is consistent with the correspondence in (1.25),
i.e., that left multiplication by w maps the set on the right side of (1.25) to{
π ∈W | π−1(w(i)) < π−1(w(j))

}
.
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(d) The simple roots. Finally, we illustrate Proposition 1.118 in this example.
The fundamental reflections are the transpositions si := si,i+1, where 1 ≤
i ≤ n− 1. The corresponding root is ei − ei+1, and the corresponding subset
of W , according to (b), is the set of permutations π such that π−1(i) <
π−1(i + 1). Recall now that the length of an element w ∈ W is the number of
inversions (see Example 1.81). The interpretation of Proposition 1.118, then,
is the following assertion, which one can easily check directly: i precedes i+1
in the list π(1) · · ·π(n) if and only if interchanging i and i + 1 increases the
number of inversions.

Exercises

1.120. Show that every positive root is a nonnegative linear combination of
simple roots.

1.121. Show that every root is W -equivalent to a simple root.

1.122. Write down the simple roots for the root systems of type An, Bn, Cn,
and Dn, based on the fundamental chambers given in Section 1.5.3.

1.123. Given s ∈ S, let αs be the corresponding simple root. For any w ∈W ,
show that wαs is a positive root if and only if l(ws) > l(w).

1.124. A restatement of Proposition 1.118, in view of Exercise 1.76, is that
wC � U+(s) if and only if l(sw) < l(w), i.e., if and only w admits a re-
duced decomposition starting with s. Interpret this geometrically in terms of
galleries.

1.125. For any w ∈ W , show that l(w) is the number of positive roots α
such that wα is negative. [Note that this proves, again, that the length of a
permutation is the number of inversions.] Deduce that the longest element
w0 ∈ W (Section 1.5.2) is characterized by the property that it takes every
positive root to a negative root.

1.126. With w0 as in the previous exercise, show that the action of w0 on the
simple roots αs (s ∈ S) is given by

w0αs = −ασ0(s) ,

where σ0 is the involution of S introduced at the end of Section 1.5.2.

1.6 Special Properties of Σ

We close this chapter by mentioning three properties of the simplicial complex
Σ := Σ(W,V ) associated to a finite reflection group:
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• Σ is a flag complex (Section 1.6.1).
• Σ is a colorable chamber complex (Section 1.6.2).
• Σ is determined by its associated chamber system (Section 1.6.3).

The terminology is explained in Appendix A; see Sections A.1.2, A.1.3, and
A.1.4.

The importance of these properties will not become clear until later in
the book. The reader may wish to skip ahead to Chapter 2 and return to the
present section as needed.

1.6.1 Σ Is a Flag Complex

In many of our examples of finite reflection groups, we have remarked that Σ
is a barycentric subdivision. And we note in Section A.1.2 that barycentric
subdivisions are always flag complexes. The following result is therefore not
surprising:

Proposition 1.127. The simplicial complex Σ associated to a finite reflection
group is a flag complex.

Proof. In view of the characterization of flag complexes given in Proposi-
tion A.7, it suffices to note that every set of pairwise joinable simplices is
joinable. This is in fact true in greater generality. Indeed, if Σ is the poset
of cells associated to an arbitrary hyperplane arrangement, then every set of
pairwise joinable elements of Σ is joinable. This follows from the criterion for
joinability given in Exercise 1.43. 	


1.6.2 Σ Is a Colorable Chamber Complex

It is immediate that the simplicial complex Σ associated to a finite reflection
group is a chamber complex as defined in Section A.1.3. And, using barycentric
subdivisions as motivation again, we already know that Σ is often colorable.
In fact, it is always colorable.

Proposition 1.128. The chamber complex Σ associated with a finite reflec-
tion group W is colorable.

Proof. We will use the criterion in terms of retractions stated at the end of
Section A.1.3. Choose a chamber C. Then we can define φ : Σ → Σ≤C by
letting φ(A) be the unique face of C that is W -equivalent to A (see Theo-
rem 1.104). It is easy to check that φ is a well-defined chamber map and a
retraction. 	


It is clear from the proof that two simplices have the same type (or color)
if and only if they are in the same W -orbit. In particular:

Corollary 1.129. The action of W on Σ is type-preserving. 	
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Recall from Section A.1.3 that the (essentially unique) type function on Σ
is completely determined once one assigns types to the vertices of a “funda-
mental” chamber C. There is a canonical choice in which the set of colors is
the set S of fundamental reflections. Namely, for each vertex v of C, the panel
of C not containing v is fixed by a unique reflection s, and we declare v to
have type s. More succinctly, the panel of C fixed by s has cotype s, i.e., it is
an s-panel. See Figure 1.13.

s sAC sC

Fig. 1.13. A is the s-panel of C.

We can also describe the type function by means of the correspondence
between simplices and standard cosets (Theorem 1.111): The simplex corre-
sponding to a coset w〈S′〉 has cotype S′.

Figure 1.14 shows the canonical type function when W is the reflection
group of type A2 (see also Figure 1.9). Here Σ is combinatorially a hexagon.
Our definition implies that the white vertex of the fundamental chamber has
type s; hence all of the white vertices have type s. Similarly, all the black
vertices have type t.

Hs

C

Ht

tC

sC

Fig. 1.14. The canonical type function; ◦ = s, • = t.
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The reader might find it instructive to work out the types of the three
vertices of the fundamental chamber in Figure 1.12. For example, the vertex
with stabilizer 〈s, t〉 has type u.

The fact that the set S plays a dual role, being both a subset of W and a
set of types of vertices of Σ, is potentially confusing. In practice, however, it
turns out to be quite useful. As an illustration of the dual role, consider the
opposition involution of Σ = Σ(W,V ), which is by definition the simplicial
automorphism A �→ −A for A ∈ Σ. We denote it by opΣ . Thinking of S as
the set of types of vertices, we get an induced type-change involution (opΣ)∗
(possibly trivial) by Proposition A.14. On the other hand, thinking of S as
a subset of W , we have an involution σ0 of S, given by conjugation by the
longest element w0 (Section 1.5.2). These two involutions turn out to coincide:

Proposition 1.130. The type-change map (opΣ)∗ is σ0.

Proof. Fix s ∈ S and let A be the panel of C of cotype s, i.e., the panel
of C fixed by s. We have to show that the cotype of the panel −A of −C
is σ0(s). In view of Corollary 1.129, the cotype of −A is the same as that of
w0(−A) = −w0(A). The latter is the panel of C fixed by w0sw0 = σ0(s), so
it does indeed have cotype σ0(s). 	


Corollary 1.131. If (W,V ) is essential, then the following conditions are
equivalent:

(i) The involution σ0 is trivial.
(ii) w0 is central in W .
(iii) The opposition involution of Σ = Σ(W,V ) is given by the action of w0.
(iv) w0 = −1.
(v) W contains −1.
(vi) w0D = −D for every chamber D.

If (W,S) is irreducible, these conditions are also equivalent to:

(vi) W has a nontrivial center.

Proof. From the original definition of σ0, we see that it is trivial if and only
if w0 commutes with each s ∈ S. Hence (i) and (ii) are equivalent. On the
other hand, Proposition 1.130 shows that (i) holds if and only if opΣ is type-
preserving. But this holds if and only if w0 acts on Σ as opΣ . [If −1 is type-
preserving, then it agrees with w0 on the vertices of the fundamental chamber;
moving out along galleries, one deduces that it agrees with w0 on the entire
chamber complex Σ.] Thus (i) and (iii) are equivalent.

Next, the fact that (W,V ) is essential implies that if w0 and opΣ agree as
simplicial maps, then w0 = −1 as a linear map on V . This follows, for example,
from the fact that the vertices of Σ can be identified with a set of unit vectors
that span V (see Section 1.5.8). Hence (iii) and (iv) are equivalent. And (iv) is
equivalent to (v) because w0 is the unique element of W that takes C to −C.
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Turning now to (vi), we can argue that it is equivalent to (iii) because two
simplicial automorphisms that agree on all chambers must agree on all panels
and hence on all vertices. Alternatively, (vi) is equivalent to (ii) because (vi)
says that w0 is independent of the choice of fundamental chamber and hence
is invariant under conjugation.

Finally, if (W,S) is irreducible, then we have already shown in Corol-
lary 1.91 (see also Exercise 1.102) that the center of W is nontrivial if and
only if (v) holds. 	


Exercises

1.132. Give an example to show that we cannot drop the assumption that
(W,V ) is essential in the corollary.

1.133. Using the classification of finite reflection groups (Section 1.3), find
the involution σ0 for as many of them as you can. [See Section 5.7 for the
complete list.]

1.6.3 Σ Is Determined by Its Chamber System

We continue to let Σ be the chamber complex Σ(W,V ) associated with a
finite reflection group. Choose a fundamental chamber C and let S be the set
of fundamental reflections. Then, as we just saw in the previous subsection,
we have a canonical type function on Σ with values in S. According to Sec-
tion A.1.4, this yields a “chamber system,” consisting of the set of chambers
together with “s-adjacency” relations, one for each s ∈ S. For example, sC
and C are s-adjacent for any s ∈ S, since they have the same s-panel by
definition of the canonical type function. The action of W on Σ being type-
preserving (Corollary 1.129), it follows that wsC is s-adjacent to wC for all
w ∈ W and s ∈ S. Thus the present s-adjacency relations are the same as
those defined at the end of Section 1.5.1.

Proposition 1.134. Σ satisfies the hypotheses of Proposition A.20. In par-
ticular, Σ is completely determined by its chamber system.

This is a special case of the following:

Proposition 1.135. Let Σ be the poset of cells associated to a hyperplane
arrangement. For any A ∈ Σ and any chambers C,D ∈ Σ≥A, every minimal
gallery joining C to D lies entirely in Σ≥A. In particular, if Σ is simplicial
(and hence a chamber complex), then lkΣ A is a chamber complex.

(Here lkΣ A is the link of A in Σ; see Definition A.19.)

Proof. This has already been proved in Exercise 1.67, but here is an indepen-
dent proof. Given chambers C,D, let Γ : C = C0, . . . , Cl = D be a minimal
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gallery. Then the walls H1, . . . , Hl crossed by Γ separate C from D (Propo-
sition 1.56). For each i = 1, . . . , l, it follows that A is contained in both
closed half-spaces bounded by Hi; hence A ⊆ Hi. Assuming inductively that
A ≤ Ci−1, we conclude that A ⊆ Ci−1 ∩Hi = Ci−1 ∩ Ci; hence A ≤ Ci. 	


We close with a trivial exercise, designed to force the reader to read the
definition of “residue” in Section A.1.4.

Exercise 1.136. Let Σ again be the simplicial complex associated with a fi-
nite reflection group. Choose a fundamental chamber so that the set of cham-
bers can be identified with W . Show that the residues in the chamber system
of Σ are precisely the standard cosets in W . Thus we recover from Proposi-
tion A.20(4) our order-reversing bijection between Σ and the set of standard
cosets.



2

Coxeter Groups

Let W be a group generated by a set S of elements of order 2. In case W is a
finite reflection group and S is the set of reflections with respect to the walls of
some fixed chambers, there is a rich geometric theory that can be constructed
from (W,S) by pure group theory. For example, the standard cosets, ordered
by reverse inclusion, form a simplicial complex that triangulates a sphere
(see Section 1.5.9). In this chapter and the next, we try to develop a similar
geometric theory for more general pairs (W,S).

Two things will result from this study. First, we will discover some inter-
esting facts about the combinatorial group theory of finite reflection groups.
Second, we will discover a much larger class of groups W that deserve to be
called “reflection groups” (or, more precisely, discrete reflection groups). The
study of these groups W and their associated simplicial complexes was initi-
ated by Tits [240], who called the groups Coxeter groups and the complexes
Coxeter complexes.

2.1 The Action on Roots

We continue to denote by W be an arbitrary group generated by a set S of ele-
ments of order 2. If W is to be a “reflection group,” then certain elements have
to be singled out as “reflections,” and they should be in 1–1 correspondence
with “walls.” Each wall should determine two “half-spaces” (or “roots”), and
there should be an action of W on these. We discussed this action in detail for
finite reflection groups in Section 1.5.10; see, in particular, Corollary 1.117.
This leads to the following condition that (W,S) ought to satisfy if it is to
behave like a reflection group. We will call it condition (A) for “action”:

(A) Let T be the set of conjugates of elements of S. There is an action of W
on T × {±1} such that a generator s ∈ S acts as the involution ρs given by

ρs(t, ε) =

{
(sts, ε) if t �= s,

(s,−ε) if t = s.
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Definition 2.1. We will call the elements of T reflections.

In the next chapter we will see that condition (A) is sufficient to let us
construct a simplicial complex Σ = Σ(W,S) on which W acts, with the
elements of T being reflections in a sense that will be made precise. For now,
however, we will simply use the word “reflection” as an aid to the intuition,
and we will explore the algebraic consequences of (A) using Chapter 1 as a
guide.

We begin by studying decompositions of elements of W as words in the
generating set S. Given w ∈W and a decomposition w = s1 · · · sl with si ∈ S,
consider the sequence of reflections given by

ti := wi−1siw
−1
i−1 (2.1)

for i = 1, . . . , l, where wi := s1 · · · si. We saw this sequence in Section 1.5.1;
in that setting, the decomposition of w corresponds to a gallery Γ from C
to wC (where C is the fundamental chamber) and the ti are the reflections
with respect to the walls crossed by Γ . This motivates the following result:

Lemma 2.2. Suppose (W,S) satisfies (A). Then one can associate to each
w ∈W a finite subset T (w) ⊆ T with the following properties:

(1) |T (w)| = l(w), where l := lS is the length function on W with respect
to S.

(2) For any reduced decomposition w = s1 · · · sl, the reflections ti defined
in (2.1) are distinct and are precisely the elements of T (w).

(3) Consider an arbitrary decomposition w = s1 · · · sl. For any t ∈ T , one has
t ∈ T (w) if and only if t occurs an odd number of times in the sequence ti
defined in (2.1).

Proof. It should be clear that heuristically, T (w) is supposed to be the set of
reflections with respect to the “walls that separate C from wC.” For finite
reflection groups, Lemma 1.115 says that a wall H separates C from wC if
and only if the action of w−1 on the roots takes the positive root determined
by H to a negative root. With this as motivation, we define T (w) by

T (w) :=
{
t ∈ T | w−1 · (t, 1) = (w−1tw,−1)

}
.

Consider now an arbitrary decomposition w = s1 · · · sl with si ∈ S. Since
w−1 = sl · · · s1, we can compute w−1 · (t, 1) (for t ∈ T ) by first applying s1,
then applying s2, and so on. After applying s1, . . . , si−1, we will have an
element of the form (w−1

i−1twi−1, ε), where wi−1 = s1 · · · si−1 as above, and we
must apply si to this element.

In view of the definition of ρsi
, the application of si will change ε to −ε

if and only if w−1
i−1twi−1 = si, i.e., if and only if t = ti. Hence w−1 · (t, 1) =

(w−1tw, (−1)p), where p is the number of i such that t = ti. By the definition
of T (w), we therefore have t ∈ T (w) if and only if p is odd. This proves (3).
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Parts (1) and (2) follow from (3) together with the following claim: Given a
reduced decomposition w = s1 · · · sl, the associated reflections ti are distinct.
To prove the claim, suppose ti = tj with 1 ≤ i < j ≤ l. Then a simple
computation gives, exactly as in the proof of Theorem 1.69,

w = s1 · · · ŝi · · · ŝj · · · sl

for some indices i < j. This contradicts the assumption that we started with
a reduced decomposition, so the lemma is proved. 	


This proof has the same amazing consequence that we observed for finite
reflection groups in Corollary 1.70. In order to state it, we introduce a second
condition, which we call the deletion condition, that a general pair (W,S) may
or may not satisfy:

(D) If w = s1 · · · sm with m > l(w), then there are indices i < j such that
w = s1 · · · ŝi · · · ŝj · · · sm.

Corollary 2.3. If (W,S) satisfies (A), then it satisfies (D).

Proof. Suppose w = s1 · · · sm with m > l(w), and consider the corresponding
sequence of reflections ti (i = 1, . . . ,m). These cannot all be distinct, since this
would imply, by assertion (3) of Lemma 2.2, |T (w)| = m, contradicting (1).
Hence ti = tj for some i < j, and we can delete two letters as above. 	


2.2 Examples

2.2.1 Finite Reflection Groups

It is obvious that a finite reflection group as in Chapter 1 satisfies (A) (where
S is the set of reflections with respect to the walls of a fixed fundamental
chamber). Indeed, we arrived at the formulation of (A) by writing down a
condition that was already known for finite reflection groups (Corollary 1.117).

Conversely, it is true (but not obvious) that every finite group satisfy-
ing (A) is a finite reflection group. We will prove this in Section 2.5.4 below.
In view of this fact, our remaining examples will necessarily be infinite groups.

2.2.2 The Infinite Dihedral Group

Let W be the infinite dihedral group D∞. By definition, this is the group
defined by the presentation

W :=
〈
s, t ; s2 = t2 = 1

〉
.

For readers not familiar with this notation for group presentations, it simply
means that we start with the free group F := F (s, t) on two generators s, t and
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then divide out by the smallest normal subgroup containing s2 and t2. Note
that the finite dihedral groups D2m are quotients of W . It follows that the
generators s, t of F map to distinct nontrivial elements of W , so no confusion
will result if we use the same letters s, t to denote those elements of W . It also
follows that st has infinite order in W and hence that W is infinite.

Let S := {s, t} ⊆ W . We will explain from three different points of view
why (W,S) satisfies (A).

(i) Combinatorial group theory

The definition of W via the presentation above makes it easy to define homo-
morphisms from W to another group. One need only specify two elements of
the target group whose squares are trivial, and there is then a homomorphism
taking s and t to these elements. In particular, if we want W to act on some
set, it suffices to specify involutions ρs and ρt of that set, and then we can
make s and t act as ρs and ρt, respectively. Condition (A) is now evident.

(ii) Euclidean geometry

We make W act as a group of isometries of the real line L by letting s act as
the reflection about 0 (x �→ −x) and t act as the reflection about 1 (x �→ 2−x).
Note, then, that W acts as a group of affine transformations x �→ ax+b. This
action has an associated “chamber geometry,” entirely analogous to what
we saw in Chapter 1 for finite (linear) reflection groups. It is illustrated in
Figure 2.1, where C denotes the open unit interval. The vertices in the picture
are the integers. The two colors, black and white, indicate the two W -orbits
of vertices.

C tsCstC · · ·sC tC· · ·

Fig. 2.1. The chambers for D∞; affine version.

One can now check that the set T in the statement of (A) is the set of
elements of W that act as reflections about integers, and one can identify
T × {±1} with the set of half-lines whose endpoint is an integer. The action
of W on L induces an action of W on this set of half-lines, and condition (A)
follows.

(iii) Linear algebra

There is a standard method for “linearizing” affine objects by embedding the
affine space in question as an affine hyperplane (i.e., a translate of a linear
hyperplane) in a vector space of one higher dimension. In the present case, we
do this by identifying the line L above with the affine line y = 1 in the plane
V = R

2. The affine action of W on L extends to a linear action of W on V .
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Explicitly, since we want s(x, 1) = (−x, 1), we can set s(x, y) = (−x, y); in
other words, we can make s act via the matrix

(
−1 0

0 1

)
.

Similarly, to make t(x, 1) = (2− x, 1), we can set t(x, y) := (2y − x, y); thus t
acts via the matrix (

−1 2
0 1

)
.

The picture of W acting on V is shown in Figure 2.2. It is simply the
cone over the picture of W acting on L. (C now denotes the cone over the
unit interval in the line y = 1.) The set T is now the set of reflections with
respect to the walls of the chambers shown in the picture, and we may identify
T ×{±1} with the set of half-planes determined by these walls. Condition (A)
now follows easily from the action of W on these half-planes.

C· · · · · ·stC tC tsCsC

Fig. 2.2. The chambers for D∞; linear version.

Let’s compare this situation with that of Chapter 1. As in that context, s
and t act as linear reflections on V , provided we interpret this term suitably:

Definition 2.4. If V is a real vector space, not necessarily endowed with an
inner product, then a linear reflection on V is a linear map that is the identity
on a (linear) hyperplane H and is multiplication by −1 on some complement
of H, i.e., a 1-dimensional subspace H ′ such that V = H⊕H ′. The reflections
considered in Chapter 1, where V has an inner product and H ′ = H⊥, will
be called orthogonal reflections from now on to distinguish them from the
more general linear reflections that we have just defined. Note that a linear
reflection is not uniquely determined by its hyperplane H of fixed points.

In the present example it is still true, as in Chapter 1, that W is gener-
ated by linear reflections whose associated hyperplanes are the two walls of a
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“fundamental chamber” C. And it is still true that C is a strict fundamental
domain for the action of W on

⋃
w∈W wC. But this union is not the whole

vector space V . It is, rather, the convex cone consisting of the open upper
half-plane together with the origin. This is a very general phenomenon, as we
will see in Section 2.6.

Note that the chamber geometry for W acting on V is very similar to
the chamber geometry for finite reflection groups. For example, the chamber
graph can be identified with the Cayley graph of (W,S), and the analogue
of Proposition 1.118 remains valid (with the same proof). We record this
explicitly for future reference. Let Hs and Ht be the fixed hyperplanes of
s and t, respectively, and let U±(s) and U±(t) be the corresponding open
half-spaces, where the positive half-space is the one containing C.

Lemma 2.5. For all w ∈ W , wC ⊆ U+(s) if and only if l(sw) > l(w), and
wC ⊆ U+(t) if and only if l(tw) > l(w). 	


Finally, we will show that our representation of W as a “linear reflection
group” admits a description resembling the description of a finite reflection
group in terms of its Coxeter matrix (Section 1.5.5). Since we have no natural
inner product on V , we introduce the dual space V ∗ and use inner-product
notation for the canonical pairing V ∗ × V → R, i.e.,

〈f, v〉 := f(v)

for f ∈ V ∗ and v ∈ V . Define es, et ∈ V ∗ by

〈es, (x, y)〉 := x ,

〈et, (x, y)〉 := y − x .

With these definitions, the fixed hyperplane for s is given by 〈es,−〉 = 0, the
fixed hyperplane for t is given by 〈et,−〉 = 0, and the fundamental chamber C
is given by 〈es,−〉 > 0 and 〈et,−〉 > 0.

We still have a Coxeter matrix M specifying the orders of the pairwise
products of the generators. It is given by

M =
(

1 ∞
∞ 1

)
.

The corresponding Coxeter diagram is ∞ . Imitating equation (1.22), we
now put a symmetric bilinear form on V ∗ by setting

B(es, es) = B(et, et) = − cos
π

1
= 1

and
B(es, et) = B(et, es) = − cos

π

∞ = −1 .

Next, define linear reflections s′, t′ on V ∗ by using this bilinear form as in
equation (1.23):
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s′(f) = f − 2B(es, f)es ,

t′(f) = f − 2B(et, f)et .

Note that s′(es) = −es and s′ fixes the hyperplane B(es,−) = 0, which is
spanned by es +et; so s′ is indeed a reflection. Similarly, t′ is a reflection, with
the same fixed hyperplane.

It turns out that s′ and t′ are the reflections s∗ and t∗ on V ∗ induced by
s and t. To check this, one can simply compute s∗ and t∗ on es and et. For
example,

〈s∗(es), (x, y)〉 = 〈es, s(x, y)〉 = 〈es, (−x, y)〉 = −x = 〈−es, (x, y)〉 ,

so s∗(es) = −es = s′(es). The remaining computations are equally easy and
are left to the reader.

In summary, our reflection representation of D∞ on V could have been
obtained as follows: Start with an abstract vector space Res ⊕ Ret [which
is our V ∗] and define a linear action of D∞ on it by copying the formulas
from the finite case, using the Coxeter matrix. Now pass to the dual space
(Res⊕Ret)∗ [which is our V ] to obtain an action in which we have the familiar
sort of chamber geometry.

Remark 2.6. It is natural to ask whether we had to pass to the dual space in
order to obtain the chamber geometry. The answer is yes—our two fundamen-
tal reflections acting on Res ⊕ Ret have the same fixed hyperplane, so they
do not determine a chamber in that space. See Exercise 2.7 below for further
insight into the difference between the D∞-action on V and its action on V ∗.
In the finite case, on the other hand, the duality was hidden because, in the
presence of a W -invariant inner product, there is a canonical identification of
V with its dual. We will return to this circle of ideas in Section 2.5 below.

Exercise 2.7.

(a) If s is a linear reflection on a 2-dimensional vector space V , show that
the only s-invariant affine lines not passing through the origin are those
parallel to the (−1)-eigenspace.

(b) Deduce that two linear reflections s, t of V have a common invariant
line not passing through the origin if and only if they have the same
(−1)-eigenspace.

(c) Suppose s and t have the same (+1)-eigenspace. Show that the induced
reflections s∗ and t∗ of V ∗ have the same (−1)-eigenspace.

2.2.3 The Group PGL2(Z)

Let GL2(Z) be the group of 2×2 invertible matrices over the ring Z of integers.
Let PGL2(Z) be the quotient of GL2(Z) by the central subgroup of order two
generated by −1 (= the negative of the identity matrix). Thus PGL2(Z) is
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obtained from GL2(Z) by identifying a matrix with its negative. We denote a
typical element of GL2(Z) by (

a b
c d

)

and its image in PGL2(Z) by [
a b
c d

]
.

It is easy to check that W := PGL2(Z) is generated by the set S =
{s1, s2, s3} of elements of order 2 defined by

s1 =
[
0 1
1 0

]
, s2 =

[
−1 1

0 1

]
, s3 =

[
−1 0

0 1

]
.

(One can see this by thinking about elementary row operations.) We now show
that condition (A) is satisfied. We will use three different methods, analogous
to those used for D∞. In each of the three cases, however, we will have to
use one or more nontrivial facts that will be stated without proof. Readers
who are not familiar with these facts are advised to just read the discussion
casually for the main ideas.

(i) Combinatorial group theory

A simple computation shows that the products s1s2, s1s3, and s2s3 have
orders 3, 2, and ∞, respectively. It is also true (but not obvious) that W
admits a presentation in which the defining relations simply specify the orders
of these pairwise products:

W =
〈
s1, s2, s3 ; s2

1 = s2
2 = s2

3 = (s1s2)3 = (s1s3)2 = 1
〉

.

[Some readers will be familiar with the fact that W has a subgroup PSL2(Z)
of index 2 that admits a presentation

〈
u, v ; u3 = v2 = 1

〉
; see Serre [217, Sec-

tion I.4.2] or Lehner [152, Sections IV.5H and VII.2F]. It is not too hard to de-
duce the presentation for W stated above from this presentation for PSL2(Z).]

To verify (A), now, we need only check that the involutions ρi := ρsi
that

occur in the statement of (A) satisfy the defining relations for W . Consider,
for instance, the relation (ρ1ρ2)3 = 1. Let S′ := {s1, s2} and let W ′ be the
dihedral group of order 6 generated by S′. The set T ′ of reflections in W ′ (i.e.,
the W ′-conjugates of s1 and s2), form a subset of the set T of reflections in W
(the W -conjugates of the elements of S).

Suppose, now, that we apply (ρ1ρ2)3 to (t, ε) ∈ T×{±1}. Since (s1s2)3 = 1
in W , we will get (t,±ε). Clearly the only thing we have to worry about is
the possibility of sign changes in the second factor as we successively apply
the ρi. But no sign changes will ever occur unless there is an element w′ ∈W ′

with w′tw′−1 ∈ S′, in which case we have t ∈ T ′. Thus we are reduced to
showing that (ρ1ρ2)3 is the identity on T ′×{±1}, which follows from the fact
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that W ′ is a finite reflection group and hence is already known to satisfy (A).
[Alternatively, we could complete the proof by doing an easy computation in
the dihedral group D6.]

Remark 2.8. Note, for future reference, that this proof works whenever W
admits a presentation of the form

W =
〈

S ; (st)m(s,t) = 1
〉

,

where m(s, t) is the order of st and there is one relation for each pair s, t such
that m(s, t) < ∞. We will return to this in Section 2.4.

(ii) Hyperbolic geometry

There is a famous tessellation of the hyperbolic plane by ideal hyperbolic tri-
angles (i.e., triangles having their vertices on the circle at infinity). Figure 2.3
shows this tessellation in the unit disk model of the hyperbolic plane.∗

Fig. 2.3. A tessellation of the hyperbolic plane.

The (hyperbolic) lines of symmetry of this tessellation barycentrically sub-
divide it; see Figure 2.4. The group of symmetries of the original tessellation
is the group of hyperbolic isometries generated by the reflections with respect
∗ Figures 2.3 and 2.4 first appeared in Klein–Fricke [145, pp. 111 and 112]. Fig-

ure 2.5 is based on a picture in [145, p. 106]. We are grateful to Cornell Univer-
sity Library’s Historic Monograph Collection for providing digital images of these
pictures.
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Fig. 2.4. The same tessellation, subdivided by the lines of symmetry.

to the lines of symmetry, and it is, in fact, precisely the group W . In order to
explain this in slightly more detail, we switch to the upper-half-plane model
of the hyperbolic plane. Figure 2.5 shows the barycentric subdivision in this
model. To relate the two models of the hyperbolic plane, one should think of
the vertices of the big triangle in Figure 2.3 as corresponding to the points
0, 1, and ∞ in Figure 2.5. The barycenter of this big triangle is shown as a
heavy dot in Figure 2.5. The action of W on the upper half-plane is given by

[
a b
c d

]
· z =

⎧
⎪⎪⎨

⎪⎪⎩

az + b

cz + d
if ad− bc = 1,

az̄ + b

cz̄ + d
if ad− bc = −1,

where z̄ is the complex conjugate of z. Many readers will be familiar with this
action restricted to PSL2(Z), where, of course, complex conjugation does not
arise. Complex conjugation is necessary for the full group W , however, because
elements of negative determinant acting by linear fractional transformations
interchange the upper and lower half-planes.

Now under this action, the generating set S of W is the set of reflections in
the three sides of one of the “chambers” C, as indicated in Figure 2.5. More-
over, it is known that C is a strict fundamental domain for the action of W .
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C

s3

s1

s2

0 1/2 1

Fig. 2.5. The barycentric subdivision in the upper-half-plane model.

A proof of this can be found in almost any book that discusses modular forms.
[Actually it is more likely that the analogous fact about PSL2(Z) is proved:
C ∪ s3C is a fundamental domain (but not a strict fundamental domain) for
this group. See, for instance, Serre [215, Section VII.1.2] or Lehner [152, Sec-
tion IV.5H].]

Readers who have followed all of this can probably complete the geometric
proof that (W,S) satisfies condition (A). Just identify T × {±1} with the set
of hyperbolic half-planes determined by the hyperbolic lines in Figure 2.5, and
use the action of W on these half-planes.

(iii) Linear algebra

As was the case with the group D∞, the linear algebra approach will take
the longest to explain. But it is quite instructive and worth at least reading
through, without necessarily checking all the details. It is based on a 3-dimen-
sional linear representation of W that has been studied extensively, starting
with Gauss.

The vector space V on which W acts is the space of real quadratic forms q
in two variables, i.e., the space of functions q : R

2 → R given by q(x) = ax2
1 +

2bx1x2 + cx2
2, where x = (x1, x2). Note that we can also write q(x) = β(x, x),

where β is the bilinear form on R
2 with matrix

A :=
(

a b
b c

)
.
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Thus we can, when it is convenient, identify V with the space of symmetric
bilinear forms on R

2, or, equivalently, with the space of real, symmetric 2× 2
matrices.

The group G = GL2(R) acts on V by

(g · q)(x) := q(xg)

for g ∈ G, q ∈ V , and x ∈ R
2, where x is viewed as a row vector on the right

side of the equation. This action is said to be by change of variable, since g ·q is
obtained from q by replacing x1 and x2 by linear functions of x1 and x2 (with
coefficients given by the columns of g). In terms of the symmetric matrix A
corresponding to q, the action of g is given by A �→ gAgt, where gt is the
transpose of g.

The elements q ∈ V fall into exactly six orbits under the action of G.
First, there are three types of nondegenerate forms: positive definite (G-equiv-
alent to x2

1 + x2
2); negative definite (G-equivalent to −x2

1− x2
2); and indefinite

(G-equivalent to x2
1−x2

2). Next, there are the nonzero degenerate forms, which
are either positive semidefinite (G-equivalent to x2

1) or negative semidefinite
(G-equivalent to −x2

1). And finally, there is the zero form.
It is easy to visualize this partition of V into G-orbits. Let Q : V → R be

given by
Q(q) := −det A = b2 − ac ,

where A is the matrix corresponding to q as above. (Thus Q is a quadratic
form on the 3-dimensional space V of quadratic forms.) Then the degenerate
forms q are the points of the quadric surface Q = 0 in V . If we introduce new
coordinates x, y, z in V by setting

b = x ,

a = z + y ,

c = z − y ,

then Q becomes x2 +y2−z2, so the quadric surface of degenerate forms is the
double cone z2 = x2 + y2. [Draw a picture!] The exterior of the cone is given
by Q > 0 and consists of the indefinite forms. And the interior Q < 0 has two
components, the upper half (z > 0), consisting of the positive definite forms,
and the lower half, consisting of the negative definite forms.

The action of G = GL2(R) on V is really an action of the quotient
G/ {±1} = PGL2(R), so we may restrict the action to W = PGL2(Z) ≤
PGL2(R). This is the desired 3-dimensional representation of W . Here are the
basic facts about this representation:

First, the W -action leaves the form Q invariant, i.e., Q(wq) = Q(q) for
w ∈ W and q ∈ V . This follows from the fact that every g ∈ GL2(Z) has
det g = ±1, so that

det gAgt = (det g)2 det A = det A
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for any symmetric 2× 2 matrix A. So W also leaves invariant the symmetric
bilinear form B on V such that Q(q) = B(q, q). One can easily compute B
explicitly; in terms of symmetric matrices, we have

B(A,A′) = bb′ − 1
2
(ac′ + a′c) ,

where

A =
(

a b
b c

)
and A′ =

(
a′ b′

b′ c′

)
.

The next observation is that the generators si of W act on V as linear
reflections. In fact, computing the (±1)-eigenspaces of si, one finds that si

has a 1-dimensional (−1)-eigenspace Rei and that si fixes the hyperplane
Hi := ei

⊥, where ei
⊥ is defined with respect to our bilinear form B(−,−).

One can take the ei, which are determined up to scalar multiplication, to be
the following symmetric matrices:

e1 =
(

1 0
0 −1

)
, e2 =

(
−1 −1
−1 0

)
, e3 =

(
0 1
1 0

)
.

And the fixed hyperplanes Hi are given, respectively, by a = c, c = 2b,
and b = 0.

We chose the eigenvectors ei above so that they would satisfy Q(ei) = 1;
this determines them up to sign. It then follows as a formal consequence that
the reflections si are given by the usual formula:

siq = q − 2B(ei, q)ei ;

for the map defined by this formula is the identity on ei
⊥ and sends ei to −ei.

We now focus on the action of W on the cone P of positive definite
forms, and we look for a fundamental domain for this action. Concretely,
this means that we are looking for canonical representatives for the positive
definite forms q under integral change of variable. Gauss found the following
fundamental domain. Let C be the simplicial cone in V defined by the inequal-
ities a > c > 2b > 0. Then C ⊆ P , and C is (more or less) a fundamental
domain for the action of W on P .

The qualifier “more or less” here refers to the fact that C touches the
boundary of P . For if one computes the vertices of C (i.e., the rays that are
1-dimensional faces of C), one finds that they are represented by the forms
x2

1, x2
1 +x2

2, and x2
1 +x1x2 +x2

2, the first of which is degenerate. So the correct
statement is the following: Let X be the convex cone in V consisting of the
positive definite forms together with the forms λ(ax1 + bx2)2 with λ ≥ 0 and
a, b ∈ Z. Then X =

⋃
w∈W wC, and C is a strict fundamental domain for the

action of W on X; moreover, the open simplicial cones wC are disjoint from
one another.

Note that the walls of C are precisely the fixed hyperplanes Hi of the
reflections si. So we have, once again, the usual sort of chamber geometry,
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and it is possible to verify condition (A) by identifying T × {±1} with the
half-spaces in V determined by the walls of the chambers wC. Details are
omitted.

One final comment: We normalized the ei above so that we would have
B(ei,−) > 0 on C. In view of Chapter 1 and the infinite dihedral group
example, it is therefore to be expected that

B(ei, ej) = − cos
π

mij
,

where mij is the order of sisj . This is indeed the case, as direct computation
shows. Thus our representation of W acting on V is what we should now be
ready to call the “canonical linear representation” of W . Note also, for future
reference, that the bilinear form B in this example is nondegenerate, although
not positive definite. Indeed, we showed above that Q could be written as
x2 + y2 − z2 after a change of coordinates in V , so B has signature (2, 1)
[there are 2 plus signs and 1 minus sign].

Exercise 2.9. What is the connection between the points of view in (ii)
and (iii)?

2.3 Consequences of the Deletion Condition

We return to the general theory, which is much easier than the examples.
Thus W is an arbitrary group with a set S of generators of order 2. We saw at
the end of Section 2.1 that if the action condition (A) holds then so does the
deletion condition (D). We now explore some consequences of (D). We begin
by giving two reformulations of it.

2.3.1 Equivalent Forms of (D)

We will need to formalize the concept of “word,” which we have already
used informally. By a word in the generating set S we mean a sequence
s = (s1, . . . , sd) of elements of S. We will often be less formal and simply
say that the “expression” s1 · · · sd is a word. But we must be careful to dis-
tinguish a word s from the element w = s1 · · · sd ∈ W that it represents.
Whenever there is danger of confusion, we will be more precise and revert to
the sequence notation (s1, . . . , sd).

Definition 2.10. A word s = (s1, . . . , sd) is called reduced if the correspond-
ing element w := s1 · · · sd has length l(w) = d, i.e., if it cannot be represented
by a shorter word. We will also say, in this situation, that s is a reduced de-
composition of w, or, less formally, that the equation w = s1 · · · sd is a reduced
decomposition of w.
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We can now state the first consequence of condition (D). It is called the
exchange condition:

(E) Given w ∈ W , s ∈ S, and any reduced decomposition w = s1 · · · sd of w,
either l(sw) = d + 1 or else there is an index i such that

w = ss1 · · · ŝi · · · sd .

The proof that (D) implies (E) is immediate. For if l(sw) < d+1, then (D)
implies that sw is equal to ss1 · · · sd with two letters deleted. Since l(w) = d,
one of the deleted letters must be the initial s; multiplying by s, we obtain
the conclusion of (E).

In order to put (E) into perspective, note that for general (W,S), we have
the following three possibilities for l(sw): (a) l(sw) = l(w) + 1; this happens
if and only if we get a reduced decomposition of sw by putting s in front of a
reduced decomposition of w. (b) l(sw) = l(w)− 1; this happens if and only if
w admits a reduced decomposition starting with s. (c) l(sw) = l(w).

[Possibility (c) might seem counterintuitive at first, but easy examples
show that it can happen. See the note following Exercise 1.76.]

The content of (E), then, is the following: First, possibility (c) is prohib-
ited. Second, if (b) holds then we can always find a reduced decomposition of w
starting with s by taking an arbitrary reduced decomposition w = s1 · · · sd

and then “exchanging” a suitable letter si for an s in front.
Note that (E) seems to be asymmetric, in that it involves only left multi-

plication by elements of S; but if (E) holds, then we can apply it to w−1 to
deduce the analogous fact about right multiplication. We will use this obser-
vation without comment whenever it is convenient.

Next we record a consequence of (E). It will be called the folding condition
for reasons that will become clear in Section 3.3.3 (see Remark 3.40).

(F) Given w ∈W and s, t ∈ S such that l(sw) = l(w)+1 and l(wt) = l(w)+1,
either l(swt) = l(w) + 2 or else swt = w.

To see that (E) implies (F), take a reduced decomposition w = s1 · · · sd.
Then the word s1 · · · sdt is a reduced decomposition of wt. Applying (E) to s
and wt, we conclude that either l(swt) = d+2 or else we can exchange one of
the letters in s1 · · · sdt for an s in front. Now the letter exchanged for s cannot
be an si, since that would contradict the assumption that l(sw) = d + 1; so
the letter must be the final t. Thus wt = sw; hence swt = w.

Finally, we show that (F) implies (D): Suppose w = s1 · · · sd with d > l(w).
Assuming (F), we will show by induction on d that we can delete two letters.
We may assume that the words s1 · · · sd−1 and s2 · · · sd are both reduced;
otherwise, we are done by the induction hypothesis. Set w′ = s2 · · · sd−1. (This
makes sense, because we necessarily have d ≥ 2.) Then l(s1w

′) = l(w′) + 1 =
l(w′sd), and l(s1w

′sd) < l(w′) + 2; so (F) implies that s1w
′sd = w′, i.e., that

w = ŝ1s2 · · · sd−1ŝd.



80 2 Coxeter Groups

In summary, we now know the following relations among the four condi-
tions that we have introduced:

Proposition 2.11. Given a pair (W,S) consisting of a group W and a set S
of generators of order 2, we have

(A) =⇒ (D) ⇐⇒ (E) ⇐⇒ (F) . 	


2.3.2 Parabolic Subgroups and Cosets

Assume throughout this subsection that (W,S) satisfies the equivalent condi-
tions (D), (E), and (F). We will derive some important consequences, mostly
involving standard parabolic subgroups and cosets. These are defined exactly
as in the case of finite reflection groups:

Definition 2.12. For any subset J ⊆ S, we denote by WJ the subgroup 〈J〉
generated by J . We call WJ a standard parabolic subgroup, or simply a standard
subgroup. Any coset wWJ will be called a standard coset.

Proposition 2.13. The function J �→ WJ is a poset isomorphism from the
set of subsets of S to the set of standard subgroups of W , where both sets are
ordered by inclusion. The inverse is given by W ′ �→W ′ ∩ S.

Proof. Consider the map from standard subgroups to subsets of S given by
W ′ �→ W ′∩S for any standard subgroup W ′. It is clear that W ′ = 〈W ′∩S〉 if
W ′ is a standard subgroup. It is also clear that J ⊆WJ ∩S for any J ⊆ S. To
prove the opposite inclusion, suppose s ∈ WJ ∩ S. Then we can express s as
a J-word and repeatedly apply the deletion condition until the word’s length
has been reduced to 1; thus s ∈ J . Hence J = WJ ∩ S, and our two maps
are inverses of one another. Finally, both maps clearly preserve inclusions, so
they are poset isomorphisms. 	


Our next observation is that when dealing with elements w of standard
subgroups, we can write l(w) without ambiguity.

Proposition 2.14. Let WJ be a standard subgroup, where J ⊆ S. For any
w ∈WJ ,

lJ (w) = lS(w) .

Proof. Suppose we have a J-reduced decomposition

w = s1 · · · sd. (2.2)

Thus si ∈ J for each i and there is no shorter J-word representing w. We must
show that there is no shorter S-word representing w. If there were a shorter
S-word representing w, then we could get one by deleting two letters in (2.2).
But this would contradict the assumption that the decomposition in (2.2) is
J-reduced. 	
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Here is another easy, but very useful, consequence of the deletion condition:

Lemma 2.15. Given J ⊆ S, w ∈ WJ , and s ∈ S � J , we have l(sw) =
l(w) + 1.

Proof. Choose a reduced decomposition w = s1 · · · sl with si ∈ J for all i.
Suppose l(sw) < l(w). Then w = ss1 · · · ŝi · · · sl for some i by the exchange
condition. This implies that s ∈ WJ ∩ S = J , where the equality follows from
Proposition 2.13. But this contradicts our hypothesis that s /∈ J , so we must
have l(sw) ≥ l(w) and hence l(sw) = l(w) + 1. 	


This leads to the following useful result:

Proposition 2.16. For any w ∈ W there is a subset S(w) ⊆ S such that all
reduced decompositions of w involve precisely the letters in S(w). Moreover,
S(w) is the smallest subset J ⊆ S with w ∈ WJ .

Proof. Both assertions will follow if we prove the following: Given two decom-
positions w = s1 · · · sl = t1 · · · tr with the one on the left reduced, each si

is equal to some tj . We argue by induction on l = l(w), which may be as-
sumed > 0. Let J = {t1, . . . , tr}. Since w ∈WJ and l(s1w) < l(w), the lemma
implies that s1 ∈ J . Now s2 · · · sl = s1w ∈ WJ , so we also have s2, . . . , sl ∈ J
by the induction hypothesis. 	


Proposition 2.17. Fix w ∈ W and let J := {s ∈ S | l(sw) < l(w)}. Then
every reduced J-word can occur as an initial subword of a reduced decomposi-
tion of w. Hence

l(w′w) = l(w)− l(w′) (2.3)

for every w′ ∈ WJ . In particular, the length function is bounded on WJ .

Proof. Let t1 · · · tl be a reduced J-word. Arguing by induction on l, we may
assume that we have a reduced decomposition

w = t2 · · · tls1 · · · sr .

Since l(t1w) < l(w), we can exchange one of the letters in this decomposition
for a t1 in front. The exchanged letter cannot be a ti, since that would con-
tradict the assumption that the word t1 · · · tl is reduced. So it must be an si;
hence

w = t1 · · · tls1 · · · ŝi · · · sr .

This proves the first assertion of the proposition. Applying it to a J-reduced
decomposition of w′−1, we obtain (2.3). Finally, (2.3) shows that the length
function on WJ is bounded by l(w). 	


Note that the last assertion of the proposition implies that WJ is finite if
J is finite. Of course J is automatically finite if S is finite, which it is in most
applications of the theory. But Proposition 2.16 implies that J is finite even if
S is infinite, since J ⊆ S(w), and the latter is obviously finite. Proposition 2.17
therefore has the following consequence:
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Corollary 2.18. With J as in Proposition 2.17, the group WJ is finite. 	


Here is an important special case:

Corollary 2.19. W is finite if and only if it has an element w0 such that
l(sw0) ≤ l(w0) for all s ∈ S. In this case w0 has maximal length and is the
unique element of maximal length, and it has order 2. Moreover,

l(ww0) = l(w0)− l(w) (2.4)

for all w ∈ W .

Proof. If W is finite, it obviously has an element w0 of maximal length, and
then necessarily l(sw0) ≤ l(w0) for all s ∈ S. Conversely, if w0 is an element
such that l(sw0) ≤ l(w0) for all s, then in fact l(sw0) < l(w0) for all s (see
Section 2.3.1), so W is finite by Corollary 2.18, and equation (2.4) follows
from (2.3). Taking w = w0 in (2.4), we see that w2

0 = 1. And taking w �= w0

in (2.4), we see that l(w) < l(w0), so w0 has maximal length and is the unique
element of maximal length. 	


We have already encountered w0 several times in Chapter 1, starting in
Section 1.5.2. See Exercise 1.59 for a geometric explanation of the fact that
w0 is characterized by the inequality l(sw0) < l(w0) for all s. [Note that this
can also be written as l(w0s) < l(w0) for all s.]

Next, we show how the deletion condition leads to an interesting result
about standard cosets.

Proposition 2.20. Let WJ be a standard subgroup (J ⊆ S). Then every left
coset wWJ has a unique representative w1 of minimal length. It is character-
ized by the property

l(w1s) = l(w1) + 1 (2.5)

for all s ∈ J . Moreover,

l(w1wJ ) = l(w1) + l(wJ ) (2.6)

for all wJ ∈ WJ .

Proof. Choose w1 of minimal length in the coset. Then l(w1s) ≥ l(w1) for all
s ∈ J ; hence (2.5) holds. To prove (2.6) (which implies the uniqueness of w1),
choose a reduced decomposition w1 = s1 · · · sl, and consider an arbitrary
element wJ ∈ WJ and an arbitrary reduced J-decomposition wJ = t1 · · · tr
(ti ∈ J). We must show that the word s1 · · · slt1 · · · tr is reduced.

If s1 · · · slt1 · · · tr is not reduced, then we can delete two letters. Neither
deleted letter can be an si, since that would yield an element of w1WJ shorter
than w1. On the other hand, the deleted letters cannot both be tj ’s, since that
would yield a shorter decomposition of wJ . So we have a contradiction, and
the decomposition w1wJ = s1 · · · slt1 · · · tr is indeed reduced.

Finally, if wJ �= 1, then r > 0 and l(w1wJ tr) < l(w1wJ ). Thus w1 is the
unique element of the coset satisfying (2.5) for all s ∈ J . 	
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Definition 2.21. Given s ∈ S, we say that an element w ∈ W is (right)
s-reduced if l(ws) = l(w)+1. Given J ⊆ S, we say that w is (right) J-reduced if
it is s-reduced for all s ∈ J . One defines “left s-reduced” and “left J-reduced”
elements similarly. Finally, given two subsets J,K ⊆ S, we say that an element
w ∈W is (J,K)-reduced if it is left J-reduced and right K-reduced.

Thus the proposition says that the minimal-length representative of a left
WJ -coset is the unique right J-reduced element of that coset. Left-reduced
elements are similarly related to right cosets WJw, and, as we will see, (J,K)-
reduced elements are related to double cosets WJwWK .

Remark 2.22. To get some geometric intuition for Proposition 2.20, sup-
pose W is a finite reflection group. Then standard cosets wWJ correspond to
simplices A, and coset representatives correspond to chambers D ≥ A. The
representative of minimal length corresponds to the chamber D1 ≥ A that
is closest to the fundamental chamber C, i.e., D1 = AC (see Section 1.4.6).
Moreover, equation (2.6) is a restatement of the gate property of Exercise 1.42;
see Exercise 2.27 below.

It turns out that general products AB (with B not necessarily a chamber)
are related to double cosets. We will explain this in the next chapter in a more
general setting where the groups are not necessarily finite. Our treatment will
make use of the following generalization of Proposition 2.20 to double cosets:

Proposition 2.23. Let WJ and WK be standard subgroups (J,K ⊆ S). Then
every (WJ ,WK)-double coset WJwWK has a unique representative w1 of min-
imal length. It is (J,K)-reduced and is the unique (J,K)-reduced element of
the double coset. Moreover, every element w of the double coset WJw1WK can
be written as

w = wJw1wK (2.7)

with wJ ∈WJ , wK ∈ WK , and

l(w) = l(wJ ) + l(w1) + l(wK) . (2.8)

The proof will use the following consequence of (D):

Lemma 2.24. Let J and K be subsets of S, and let w1 be an element of
minimal length in its double coset WJw1WK . Suppose u ∈ WJ and v ∈ WK

are elements such that l(uw1v) < l(u) + l(w1) + l(v). Given reduced decom-
positions u = s1 · · · sl and v = t1 · · · tr, we have uw1v = u′w1v

′, where
u′ = s1 · · · ŝi · · · sl and v′ = t1 · · · t̂j · · · tr for some indices 1 ≤ i ≤ l and
1 ≤ j ≤ r.

Proof. Consider the decomposition of uw1v obtained by combining the given
decompositions of u and v with a reduced decomposition of w1. By hypothesis
this is not reduced, so we can delete two letters. The assumption on w1 implies
that neither of the deleted letters can involve the w1-part of the word. Since
we used reduced decompositions of u and v, the only possibility is that one
deleted letter is an si and the other is a tj . 	
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Proof of the proposition. Choose w1 of minimal length in the double coset.
Then w1 is trivially (J,K)-reduced. Next, repeated applications of Lemma
2.24 show that any element w ∈ WJw1WK can be written as in (2.7) in
such a way that (2.8) holds; this implies that w1 is the unique element of
minimal length. Finally, if wJ in (2.7) is nontrivial then w is not left J-reduced,
and if wK is nontrivial then w is not right K-reduced. Hence w1 is the only
(J,K)-reduced element of the double coset. 	


We close with a technical result that will be needed in Chapter 5. It will
actually fall out of our treatment of products in Section 3.6.4 (see Exer-
cise 3.114), but we present here a purely group-theoretic proof.

Lemma 2.25. With the notation of Proposition 2.23,

WJ ∩ w1WKw−1
1 = WJ1 ,

where J1 := J ∩ w1Kw−1
1 .

Proof. Given u ∈ WJ ∩w1WKw−1
1 , we must show that u ∈WJ1 . Equivalently,

given u ∈ WJ and v ∈ WK such that uw1v = w1, we must show that u ∈ WJ1 .
Note first that by repeated applications of Lemma 2.24, we have l(u) = l(v).
Write u = s1 · · · sn with s1, ..., sn ∈ J and n = l(u) = l(v). We show by
induction on n that si ∈ w1WKw−1

1 for all i.
We have l(snw1v) < l(sn) + l(w1) + l(v) = 1 + l(w1) + n, since otherwise

uw1v = (s1 · · · sn−1)(snuv) would have length ≥ l(snw1v)−(n−1) = l(w1)+2.
We can now apply Lemma 2.24 again to get snw1v = w1v

′ for some
v′ ∈ WK and hence sn ∈ w1WKw−1

1 . But we also have w1 = uw1v =
(s1 · · · sn−1)snw1v = (s1 · · · sn−1)w1v

′. So we can apply the induction hy-
pothesis to deduce that also s1, . . . , sn−1 ∈ w1WKw−1

1 . Finally, we observe
that s = w1xw−1

1 with s ∈ J and x ∈ WK implies l(x) = 1 by the argument
at the beginning of the proof (sw1x

−1 = w1). So indeed we have si ∈ J1 for
all i; hence u ∈ WJ1 . 	


Exercises

Assume throughout these exercises that (W,S) satisfies the deletion condition.

2.26. Given two standard subgroups WJ ,WK (J,K ⊆ S), show that their
intersection WJ ∩WK is the standard subgroup WJ∩K . Generalize to an ar-
bitrary family of standard subgroups.

2.27. If W is a finite reflection group, rewrite equation (2.6) to get the gate
property of Exercise 1.42.

2.28. Let w = s1 · · · sn, where the si are distinct elements of S. Show that
l(w) = n.
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2.29. Assume that the Coxeter diagram of (W,S) has no isolated nodes. Show
that every proper standard subgroup of W has index at least 3.

2.30. Suppose that the elements of S can be enumerated as s1, . . . , sn so that
m(si, si+1) > 2 for i = 1, . . . , n−1. Thus the Coxeter diagram contains a path
of length n− 1. Set wi := s1s2 · · · si for i = 0, . . . , n.

(a) Show that the word defining wi is reduced, i.e., l(wi) = i.
(b) If j �= i, show that l(wisj) = i+1, i.e., wi is right sj-reduced in the sense

of Definition 2.21.

2.31. Let W be the finite reflection group of type An−1 (symmetric group on
n letters) with its standard generators s1, . . . , sn−1, and set J := S � {s1}.
(a) Show that the right J-reduced elements are the n elements wi :=

si · · · s2s1 (i = 0, . . . , n− 1).
(b) List the left J-reduced elements of W and the (J, J)-reduced elements.
(c) Generalize to the case n =∞.

2.3.3 The Word Problem

We continue to assume that (W,S) satisfies the equivalent conditions (D),
(E), and (F). The word problem seeks an algorithm that does the following:
Given two S-words s = (s1, . . . , sd) and t = (t1, . . . , te), decide whether they
represent the same element of W . Let’s begin with the case of a dihedral group
D2m generated by two elements s, t such that st has order m (2 ≤ m ≤ ∞).

It is obvious, first of all, that we may confine our attention to alternating
words s and t, i.e., words with no consecutive s’s or t’s. Secondly, we may
assume that both words have length at most m. For the relation (st)m = 1 (if
m is finite) can be rewritten as

stst · · · = tsts · · · , (2.9)

where both sides have length m. So in any alternating word of length > m, we
can take a subword (s, t, . . . ) of length m and replace it by the word (t, s, . . . )
of length m, thereby creating an (s, s) or (t, t) that can be deleted. Finally, the
word problem for alternating words of length ≤ m has the following simple
solution: The only two distinct alternating words of length ≤ m that represent
the same element of D2m are the two of length m (when m <∞), as in (2.9).
The proof is an easy computation, which is left to the reader. [Alternatively,
think about what galleries look like when the plane is divided into 2m cham-
bers by m lines through the origin (if m is finite) or when the line is divided
into infinitely many intervals (if m is infinite).]

Returning now to a general (W,S), not necessarily dihedral, consider the
Coxeter matrix

M :=
(
m(s, t)

)
s,t∈S

,

where m(s, t) is the order of st.
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Definition 2.32. By an elementary M -operation on a word we mean an op-
eration of one of the following two types:

(I) Delete a subword of the form (s, s).
(II) Given s, t ∈ S with s �= t and m(s, t) < ∞, replace an alternating sub-

word (s, t, . . . ) of length m = m(s, t) by the alternating word (t, s, . . . ) of
length m.

Call a word M -reduced if it cannot be shortened by any finite sequence of
elementary M -operations.

It is not hard to see that one can algorithmically enumerate all possible
words obtainable from a given one by elementary M -operations. [For exam-
ples, see Exercises 2.38 and 2.39 below.] In particular, one can decide whether
a word is M -reduced. Similarly, one can decide whether a word s can be con-
verted to a given word t by means of elementary M -operations. Consequently,
the following theorem of Tits [246] solves the word problem.

Theorem 2.33.

(1) A word is reduced if and only if it is M -reduced.
(2) If s and t are reduced, then they represent the same element of W if and

only if s can be transformed to t by elementary M -operations of type (II).

Proof. We begin with (2), for which it suffices to prove the “only if” part.
Suppose s = (s1, . . . , sd) and t = (t1, . . . , td) are reduced words representing
the same element w ∈ W . We will show by induction on d = l(w) that s can
be changed to t by operations of type (II). Let s = s1 and t = t1. There are
two cases.

(a) s = t. Then we can cancel the first letter from each side of the equation

s1 · · · sd = t1 · · · td ,

and we are done by the induction hypothesis.
(b) s �= t. Since l(sw) < l(w) and l(tw) < l(w), Proposition 2.17 implies

that m := m(s, t) is finite and that there is a reduced decomposition u of w
starting with the alternating word (s, t, s, t, . . . ) of length m. Let u′ be the
word obtained from u by replacing this initial segment of length m by the
word (t, s, t, s, . . . ) of length m. We can then get from s to t by

s→ u→ u′ → t ,

where the first and third arrows are given by case (a) and the second is an
operation of type (II). This completes the proof of (2).

Turning now to (1), we must show that if s = (s1, . . . , sd) is not re-
duced, then it can be shortened by M -operations. We argue by induction
on d. If the subword s′ := (s2, . . . , sd) is not reduced, then we are done by
the induction hypothesis. So assume that s′ is reduced and let w′ = s2 · · · sd.
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Since l(s1w
′) �= l(w′) + 1, there is a reduced decomposition of w′ starting

with s1, say t′ = (s1, t1, . . . , td−2). By statement (2), which we have already
proved, we can transform s′ to t′ by M -operations; hence we can transform
s to (s1, s1, t1, . . . , td−2) by M -operations. But this can then be shortened to
t := (t1, . . . , td−2) by an operation of type (I). 	


Remark 2.34. It is immediate from the theorem that all reduced decomposi-
tions of a given element w ∈W involve the same generators. This was already
proved in Proposition 2.16, but the theorem probably gives a conceptually
clearer explanation of why it is true.

Note that the solution of the word problem in Theorem 2.33 gives a com-
plete description of the elements of W in terms of the Coxeter matrix. Conse-
quently, we have the following generalization of a result that we already knew
for finite reflection groups:

Corollary 2.35. W is determined up to isomorphism by its Coxeter matrix.
	


We can make this more precise, in a way that gives us new information
even for finite reflection groups:

Corollary 2.36. W admits the presentation

W =
〈

S ; (st)m(s,t) = 1
〉

,

where there is one relation for each pair s, t with m(s, t) <∞.

Proof. Let W̃ be the abstract group defined by this presentation, and consider
the canonical surjection W̃ � W . By Theorem 2.33, an element w̃ in the
kernel can be represented by a word s that is reducible to the empty word by
M -operations. But M -operations do not change the element of W̃ represented
by a word, so w̃ = 1. 	


We close by giving, as a sample application of Theorem 2.33, a lemma that
will be useful in the next subsection. Recall from Proposition 2.16 that S(w)
for w ∈ W denotes the set of generators s ∈ S that occur in some (every)
reduced decomposition of w.

Lemma 2.37. If w ∈ W and s ∈ S � S(w) satisfy l(sws) < l(w) + 2, then s
commutes with all elements of S(w).

Proof. We have l(sw) = l(w) + 1 = l(ws) by Lemma 2.15. Therefore, in view
of the folding condition (Section 2.3.1), the hypothesis l(sws) < l(w) + 2 is
equivalent to the equation sw = ws. We now show by induction on l := l(w)
that s commutes with all elements of S(w). We may assume l ≥ 1. Choose a
reduced decomposition w = s1 · · · sl, and consider the equation
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ss1 · · · sl = s1 · · · sls .

By Theorem 2.33, we can perform M -operations of type (II) to the word on
the left in order to convert it to the word on the right. One of these operations
must involve the initial s. Prior to applying this operation, we have a word
of the form st1 · · · tl with w = t1 · · · tl and all ti ∈ S � {s}; so the operation
is possible only if m(s, t1) = 2. Thus s commutes with t1, hence also with
t1w = t2 · · · tl, and an application of the induction hypothesis completes the
proof. 	


Exercises

2.38. Suppose that |S| = 3 and that the generators s, t, u satisfy m(s, t) > 2
and m(t, u) > 2. Show that the word utstu is reduced.

2.39. Let W be the reflection group of type A3 [symmetric group on four
letters]. Find all reduced decompositions of the longest element w0, which is
s1s3s2s1s3s2.

2.40. Give an example to show that the hypothesis s /∈ S(w) in Lemma 2.37
cannot be replaced by the weaker hypothesis l(sw) = l(w) + 1 = l(ws).

2.41. Given w ∈W and s ∈ S�S(w) with w−1sw ∈ S, show that s commutes
with all elements of S(w).

2.42. Recall from the classification of irreducible finite reflection groups that
their Coxeter diagrams have a number of special properties, including the fol-
lowing: The edge labels are never greater than 5 if there are least 3 vertices;
the graph is a tree; it branches at at most one vertex, which is then neces-
sarily of degree 3; if it branches, there are no labeled edges (i.e., there are no
m(s, t) > 3); if it does not branch, there is at most one labeled edge. As we
mentioned in Remark 1.98, these facts are proved in the course of proving the
classification theorem. Show that they all follow from Tits’s solution of the
word problem.

*2.3.4 Counting Cosets

We continue to assume that (W,S) satisfies the deletion condition. We begin
with the following result of Deodhar [96, Proposition 4.2], who says that the
result was also known to Howlett.

Proposition 2.43. Assume that (W,S) is irreducible (i.e., its Coxeter dia-
gram is connected) and that W is infinite. If J is a proper subset of S, then
WJ has infinite index in W . 	


The proof will use the following lemma:
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Lemma 2.44. Given s, t ∈ S with m(s, t) > 2, let J := S � {s} and K :=
J �{t} = S �{s, t}. Suppose w is a right K-reduced element of WJ . Then ws
is (right) J-reduced.

Proof. Note first that l(ws) = l(w) + 1 by Lemma 2.15. We must show that
l(wsr) = l(w) + 2 for r ∈ S � {s}. If r �= t, then r ∈ K and w is r-reduced.
Since w is also s-reduced, we have l(wsr) = l(w) + l(sr) = l(w) + 2 by
Proposition 2.20. Suppose now that r = t. Assuming, as we may, that l(w) > 0,
we can write w = vt where v is t-reduced. [Recall that w is a K-reduced
element of WJ , so every reduced decomposition of it ends in t.] Since v is also
s-reduced, Proposition 2.20 yields

l(wst) = l(vtst) = l(v) + 3 = l(w) + 2 ,

as required. 	


Proof of Proposition 2.43. We will give the proof under the assumption that
S is finite. See Exercise 2.47 below for the case of infinite S. We may assume
J = S � {s} for some s ∈ S, and we argue by induction on |S|. The result is
trivial if WJ is finite, so assume WJ is infinite. Our task is to produce infinitely
many (right) J-reduced elements of J . Now (WJ , J) might be reducible, so
we cannot directly apply the induction hypothesis. But we can decompose
the Coxeter graph of (WJ , J) into connected components with vertex sets
J1, J2, . . . , and at least one of these (say J1) must correspond to an infinite
group WJ1 . So we can apply the induction hypothesis to the latter.

Choose t ∈ J1 with m(s, t) > 2; such a t exists by irreducibility of (W,S).
By induction, WJ1 contains infinitely many (J1 �{t})-reduced elements w. To
complete the proof, observe that for each such w, the element ws is (right)
J-reduced: It is J1-reduced by Lemma 2.44, and it is (J � J1)-reduced by
Lemma 2.15. 	


We now generalize the proposition to double cosets. To the best of our
knowledge, this generalization has not previously appeared in the literature.

Proposition 2.45. Assume that (W,S) is irreducible, S is finite, and W is
infinite. If I and J are proper subsets of S, then WI\W/WJ is infinite.

Remark 2.46. In contrast to the situation for ordinary cosets, one cannot
avoid the assumption that S is finite. A counterexample was given in Exer-
cise 2.31(c), and we briefly recall it here: The group W has infinitely many gen-
erators s1, s2, . . . , where m(si, si+1) = 3 and m(si, sj) = 2 if j > i+1; thus the
Coxeter diagram is an infinite path with unlabeled edges. Set J := S � {s1}.
Then straightforward computations show that there are only two (J, J)-re-
duced elements, 1 and s1, so |WJ\W/WJ | = 2. The conceptual explanation
is that W is a doubly transitive permutation group on the set N of natural
numbers, and WJ is the stabilizer of 1 ∈ N. Then W/WJ is infinite because
N is infinite, but |WJ\W/WJ | = 2 because WJ acts transitively on N � {1}.
See Exercise 2.31 and its solution for more details.
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Proof of Proposition 2.45. We argue by induction on |S|. We may assume that
I = S �{s′} and J = S �{s} for some s′, s ∈ S. We may also assume, in view
of Proposition 2.43, that WI and WJ are both infinite. Our task is to show
that W contains infinitely many (I, J)-reduced elements.

Case I, s = s′. This is very similar to the proof of Proposition 2.43. As in
that proof, we can find J1 ⊆ J and t ∈ J1 such that W1 := WJ1 is infinite
and irreducible and m(s, t) > 2. By the induction hypothesis, W1 contains
infinitely many (K,K)-reduced elements w, where K := J1 � {t}. We will
show that sws is (J, J)-reduced for each such w with l(w) > 1. By symmetry
it suffices to show that sws is right J-reduced, i.e., that l(swsr) = l(sws) + 1
for all r ∈ J . Note first that t ∈ S(w), so

l(sws) = l(w) + 2 (2.10)

by Lemma 2.37. [Recall that m(s, t) > 2, i.e., s does not commute with t.]
Consider now the following three possibilities for r.

(a) r ∈ J � J1. Then l(swsr) = l(sws) + 1 by Lemma 2.15.
(b) r ∈ K. Then sw is right r-reduced since l(wr) = l(w) + 1 and s /∈ J1,

and it is right s-reduced by (2.10). We therefore have l(swsr) = l(sw) + l(sr)
by Proposition 2.20; hence l(swsr) = l(sw) + 2 = l(sws) + 1.

(c) r = t. Note that we necessarily have w = tut with u ∈ W1 and
l(w) = l(u) + 2. (Recall that w is (K,K)-reduced and that l(w) > 1.) We
must show that l(stutst) = l(stuts) + 1. Observe that stu is right s-reduced
by Lemma 2.37 and is right t-reduced since (stu)t = sw and s /∈ J . Hence
Proposition 2.20 yields l(stutst) = l(stu) + l(tst) = l(stu) + 3 = l(stuts) + 1.

Case II, s �= s′. Denote by J1 the connected component of J = S � {s} that
contains s′. Suppose WJ1 is finite. Then there must exist another connected
component J2 of J such that WJ2 is infinite. (Recall from the beginning of
the proof that WI and WJ are infinite.) It follows that I ′ := J2 ∪ {s} is
connected, W ′

I is infinite, and I ′ is contained in I = S � {s′}. So if we denote
by I1 the connected component of I that contains s, then WI1 is infinite. We
may therefore interchange the roles of I and J if necessary and assume from
the beginning that W1 := WJ1 is infinite.

As in Case I, choose t ∈ J1 with m(s, t) > 2. Set K := J1 � {t} and
H := J1 � {s′}. (Possibly t = s′ and K = H.) The induction hypothesis gives
us infinitely many (H,K)-reduced elements w ∈ W1, and we again consider
only those w with l(w) > 1. Any such w must (being (H,K)-reduced) have
a “reduced decomposition” w = s′ut with u ∈ W1, where “reduced” means
that l(w) = l(u) + 2.

We claim that for each such w, the element ws is (I, J)-reduced. We show
first that l(rws) > l(ws) for all r ∈ I = S�{s′}. This is clear for r ∈ J �J1. It
is also clear for r = s in view of Lemma 2.37, since t ∈ S(w) and m(s, t) > 2.
Finally, if r ∈ H = J1 � {s′}, then l(rw) > w by the assumption on w, and
l(rws) > l(rw) since s /∈ J1, so l(rws) = l(w) + 2 > l(ws).
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Next we show that l(wsr) > l(ws) for all r ∈ J = S � {s}. This is again
trivial if r is in J �J1. For r ∈ K = J1 �{t} we know that w is right r-reduced
as well as right s-reduced; hence l(wsr) = l(w) + 2 > l(ws). It remains to
consider the case r = t. In this case s′u is right t-reduced (since s′ut is a
reduced decomposition of w) and right s-reduced (since s′u ∈ W1). Recalling
again that m(s, t) > 2, we conclude that l(wst) = l(s′utst) = l(s′u) + 3 =
l(w) + 2 > l(ws). 	


Exercises

2.47. Prove Proposition 2.43 if S is infinite.

2.48. What goes wrong if we try to prove Proposition 2.45 for infinite S by
imitating the solution to Exercise 2.47?

2.4 Coxeter Groups

We return now to an arbitrary (W,S), where W is a group and S is a set of
generators of W of order 2. We have seen (Corollary 2.36) that if (W,S) sat-
isfies (D) then it admits a presentation in which the relations simply specify
the orders of the pairwise products of the generators. Tits [240] initiated the
systematic study of groups with such a presentation. He called them Coxeter
groups, since Coxeter [85] had earlier studied finite groups with a presenta-
tion of this type. We will therefore call the following condition on (W,S) the
Coxeter condition:

(C) W admits the presentation
〈

S ; (st)m(s,t) = 1
〉

,

where m(s, t) is the order of st and there is one relation for each pair s, t with
m(s, t) <∞.

We have now introduced five conditions on (W,S), and we have shown
that they are related as follows:

(A) =⇒ (D) ⇐⇒ (E) ⇐⇒ (F) =⇒ (C) .

On the other hand, a Coxeter presentation as in (C) is precisely what we used
in Section 2.2.3 to give a proof by combinatorial group theory that PGL2(Z)
satisfies (A). As we noted in Remark 2.8, this proof goes through with no
change to show, in general, that (C) implies (A). Thus we have come full
circle:

Theorem 2.49. The conditions (A), (C), (D), (E), and (F) are equivalent.
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It now seems safe to conclude that we have found the right class of groups
that deserve to be called “reflection groups.” We follow Tits’s terminology,
however, and call them Coxeter groups:

Definition 2.50. We say that W is a Coxeter group (or, more precisely, that
the pair (W,S) is a Coxeter system) if the equivalent conditions of Theo-
rem 2.49 are satisfied. The matrix M =

(
m(s, t)

)
will be called the Coxeter

matrix of (W,S), and the cardinality |S| will be called the rank of (W,S).

Exercise 2.51. Let (W,S) be a Coxeter system, and let WJ be a standard
subgroup (J ⊆ S). Show that (WJ , J) is a Coxeter system.

2.5 The Canonical Linear Representation

Starting in this section, and throughout the rest of the book, we assume that
the generating set S is finite unless we explicitly state that S might be
infinite. The finite case is the most important one for the theory of buildings,
and many of the arguments are simpler in that case. Some of what we do,
however, would in fact generalize to the case of infinite S.

We emphasized in our discussion of examples in Section 2.2 that the Cox-
eter groups in those examples all admit a canonical linear representation that
can be described in terms of the Coxeter matrix. And of course, this linear
representation was there from the start in the case of finite reflection groups
(Chapter 1). We show now that such a representation exists for every Coxeter
group. As a byproduct of the discussion we will obtain an answer to the fol-
lowing natural question, which may have already occurred to the reader when
we formulated the Coxeter condition (C): Which matrices M can occur as the
Coxeter matrix of a Coxeter group?

Let M = (m(s, t))s,t∈S be a matrix with m(s, t) ∈ Z ∪ {∞}. For the
moment, S is just an index set, i.e., there is no group W yet.

Definition 2.52. We call M a Coxeter matrix if

m(s, s) = 1 and 2 ≤ m(s, t) = m(t, s) ≤ ∞ for s �= t .

We denote by WM the group defined by the presentation

WM :=
〈

S ; (st)m(s,t) = 1
〉

,

where, as usual, the relation occurs only if m(s, t) < ∞.

Note that the image of S in W := WM consists of elements of order 2
(i.e., s �= 1 in W for each s ∈ S). This follows from the fact that there is a
homomorphism W → {±1} with s �→ −1 for each s ∈ S. But it is not obvious
that S injects into W or that st has order precisely m(s, t). [It is conceivable,
a priori, that the order of st in W is a proper divisor of m(s, t).] So we cannot
immediately assert that W is a Coxeter group with Coxeter matrix M . But
we will prove this to be the case using the canonical linear representation that
we are about to construct.
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2.5.1 Construction of the Representation

As in Section 1.5.5, we introduce the vector space V := R
S of S-tuples, with

its standard basis (es)s∈S . Let B be the symmetric bilinear form on V such
that

B(es, et) = − cos
π

m(s, t)
.

We wish to make W act on V as a “reflection group,” where the bilinear
form B plays the role of the inner product that was available in Chapter 1.
Note first that if α ∈ V is any vector such that B(α, α) �= 0, then we have
a decomposition V = Rα⊕ α⊥, where α⊥ := {x ∈ V | B(α, x) = 0}. There is
therefore a linear reflection σ on V that sends α to −α and is the identity
on α⊥. It is clear from this description that σ is orthogonal with respect to B,
i.e., B(σ(x), σ(y)) = B(x, y) for all x, y ∈ V . Moreover, σ is given by the
familiar formula from Chapter 1: Assuming, for simplicity, that B(α, α) = 1,
we have

σ(x) = x− 2B(α, x)α . (2.11)

We now try to make W act on V so that a generator s ∈ S acts as the
reflection σs with respect to es. In other words, we want

s(x) = σs(x) = x− 2B(es, x)es (2.12)

for s ∈ S and x ∈ V . To get a well-defined action, we must show that

(σsσt)m = idV

if m := m(s, t) < ∞. This is clear if s = t, so assume s �= t.
Note that the bilinear form B is positive definite on the subspace V1 :=

Res ⊕ Ret. So V1 can be viewed as a Euclidean plane, and σs and σt in-
duce orthogonal reflections on that plane. Since the angle between es and et

is π − π/m, the angle between the fixed lines of σs and σt is π/m. Using
standard Euclidean geometry, we conclude that the product σsσt acts on V1

as a rotation of order m. Moreover, σs and σt act trivially on the orthogo-
nal complement V0 := V1

⊥ with respect to B, and we have a decomposition
V = V1 ⊕ V0 because B is nondegenerate on V1. Hence σsσt has order m as
an automorphism of V . This proves that we do in fact get the desired action
of W on V and that st has order m(s, t) whenever the latter is finite.

Given s, t with m(s, t) = ∞, it is still true that σs and σt restricted to
V1 := Res ⊕Ret generate a faithful linear representation of D∞, which is the
same as the one we discussed in Section 2.2.2 (where the vector space with
basis es, et was called V ∗), so σsσt has infinite order; hence st has infinite
order. [Alternatively, one can simply write out the matrices of σs and σt

on V1 and check that the product has 1 as an eigenvalue of multiplicity two;
since the product is nontrivial, this implies that it has infinite order.]

The discussion in the previous two paragraphs shows that the various σs

are distinct from one another, so S injects into W . We may therefore view S
as a subset of W , and we have proven the following result:
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Theorem 2.53. The elements of S are distinct and of order 2 in WM , and st
has order precisely m(s, t) in WM . Hence (WM , S) is a Coxeter system with
Coxeter matrix M . 	


It is now clear that a Coxeter matrix in the sense of Definition 2.52 is the
same as what we called a Coxeter matrix in Section 2.4. Moreover, the action
of W := WM on V provides a canonical linear representation for any Coxeter
group. It was first introduced by Tits [240]. Our next goal is to show that it
is faithful, i.e., that W injects into the group of linear automorphisms of V ;
thus every Coxeter group can be viewed as a linear reflection group.

Remark 2.54. It is sometimes convenient to write the formula (2.12) for the
action of W on V in a way that resembles a familiar formula from the theory
of root systems (see equation (B.3) in Appendix B). For s ∈ S, let e∨s ∈ V ∗

be given by
〈e∨s , x〉 := 2B(es, x)

for x ∈ V , where, as in Section 2.2.2, we use angle brackets for the natural
pairing between V and V ∗. Then (2.12) becomes

s(x) = x− 〈e∨s , x〉es . (2.13)

Exercises

2.55. Let M be a matrix as at the beginning of this section, but suppose we
drop the symmetry assumption m(s, t) = m(t, s).

(a) If M is not symmetric, show that there are elements s, t ∈ S such that
the order of the image of st is not m(s, t). Where does the proof of
Theorem 2.53 break down?

(b) Let S′ be the image of S in W = WM . Show that (W,S′) is still a Coxeter
system.

(c) Give a procedure for determining the set S′ and the Coxeter matrix M ′

of (W,S′).

2.56. This is a generalization of Exercise 1.101. Let (W,S) be an irreducible
Coxeter system.

(a) Show that every proper W -invariant subspace of V is contained in the
radical of B, the latter being {x ∈ V | B(x, y) = 0 for all y ∈ V }. In par-
ticular, the canonical linear representation is irreducible if B is non-
degenerate.

(b) Show that the only linear endomorphisms of V that commute with all
elements of W are the scalar-multiplication operators.
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2.5.2 The Dual Representation

The proof that the canonical linear representation is faithful will be based
on chamber geometry. The reader who has worked through the discussion
of D∞ in Section 2.2.2 will not be surprised that the natural place to look for
chambers is in the dual space V ∗ of V . Note first that the action of W on V
induces an action of W on V ∗. It is defined by

〈wξ, x〉 = 〈ξ, w−1x〉

or, equivalently,
〈wξ,wx〉 = 〈ξ, x〉

for w ∈ W , ξ ∈ V ∗, and x ∈ V . Using this definition and equation (2.13), one
can check that the action of a generator s ∈ S is given by

s(ξ) = ξ − 〈ξ, es〉e∨s (2.14)

for ξ ∈ V ∗. In particular, s acts on V ∗ as a linear reflection whose fixed
hyperplane Hs is given by 〈−, es〉 = 0. Let C be the simplicial cone in V ∗

defined by the inequalities 〈−, es〉 > 0 for s ∈ S. We call C the fundamental
chamber. Its walls are the hyperplanes Hs.

Remark 2.57. The fact that the vectors es form a basis for V , whereas the e∨s
do not in general form a basis for V ∗, explains why V ∗ is the natural place to
look for chambers rather than V .

We claim now that

wC ∩ C = ∅ for 1 �= w ∈ W . (2.15)

The idea behind the proof of (2.15) is that if we choose s ∈ S such that
l(sw) < l(w), then Hs ought to separate C from wC (see Section 3.3.3). This
motivates the following lemma, which implies (2.15):

Lemma 2.58. Fix s ∈ S and let U+(s) and U−(s) be the open half-spaces
in V ∗ defined, respectively, by 〈−, es〉 > 0 and 〈−, es〉 < 0. Then for any
w ∈W we have

wC ⊆
{

U+(s) if l(sw) = l(w) + 1,
U−(s) if l(sw) = l(w)− 1.

Proof. We argue by induction on l(w). If l(sw) < l(w), then we may apply the
induction hypothesis to the element sw to get swC ⊆ U+(s); multiplying by s,
we obtain wC ⊆ sU+(s) = U−(s), as required. Suppose now that l(sw) > l(w).
We may assume w �= 1, so there is a t ∈ S (necessarily different from s) such
that l(tw) < l(w). Choose a reduced decomposition of w starting with as
long a subword as possible involving just s and t. This yields a factorization
w = w′w′′ with w′ ∈ W ′ := 〈s, t〉, l(w) = l(w′) + l(w′′), l(sw′′) > l(w′′),
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and l(tw′′) > l(w′′). By the induction hypothesis, we have w′′C ⊆ C ′ :=
U+(s)∩U+(t). Now C ′ is essentially the fundamental chamber for the dual of
the canonical representation of W ′. More precisely, the dual of the canonical
representation of W ′ is a 2-dimensional quotient of V ∗, and C ′ is the inverse
image of the fundamental chamber. (See Exercise 2.60 below.) But we have
studied the canonical representation of W ′ and its dual in detail, whether W ′

is finite or infinite, and we know that its chamber geometry behaves in the
expected way. [See Proposition 1.118 for the finite case and Lemma 2.5 for the
infinite case.] In particular, since l(sw′) > l(w′), it follows that w′C ′ ⊆ U+(s);
hence wC = w′w′′C ⊆ w′C ′ ⊆ U+(s). 	


The following result is an immediate consequence of (2.15):

Theorem 2.59. The action of W on V is faithful. Moreover, W is a discrete
subgroup of the topological group GL(V ) of linear automorphisms of V . 	


Exercise 2.60. Let WJ be a standard subgroup (J ⊆ S). Then we have
a canonical linear representation of WJ on a vector space VJ with ba-
sis (es)s∈J . Show that there is a WJ -equivariant surjection V ∗ � VJ

∗ with
kernel

⋂
s∈J Hs, which is the fixed-point set of WJ in V ∗. Informally, then, we

can say that the action of WJ on V ∗ is essentially the dual of the canonical
linear representation of WJ .

2.5.3 Roots, Walls, and Chambers

Definition 2.61. The vectors wes (w ∈ W, s ∈ S) in V will be called roots,
the hyperplanes wHs (w ∈W , s ∈ S) in V ∗ walls, and the simplicial cones wC
(w ∈ W ) in V ∗ chambers. We denote by Φ the set of all roots, by H the set
of all walls, and by C the set of all chambers.

We emphasize once again that the roots are in V , while the chambers and
walls are in V ∗. Note that in view of (2.15), W acts simply transitively on C.

Let T be the set of reflections in W as defined in Section 2.1. Then the
elements of T act on V as orthogonal reflections with respect to the bilinear
form B. More precisely, for any t ∈ T there are two unit vectors ±α (with
respect to B) in the (−1)-eigenspace of t acting on V , and the action of t can
then be written as in equation (2.11). There are also analogues of equations
(2.13) and (2.14). We will write t = sα when t is associated to ±α in this way.
Note that we have ±α ∈ Φ. Moreover, one can easily check the equation

wsαw−1 = swα

for w ∈ W and α ∈ Φ.
It is clear from this discussion that there is a bijection between T and the

set of pairs ±α of opposite roots, under which ±α corresponds to the reflection
sα ∈ T . We therefore obtain, by duality, a bijection between T and H, which
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associates to t ∈ T the fixed hyperplane of t acting on V ∗. To verify this,
observe that if t = sα, the fixed hyperplane of t in V ∗ is given by 〈−, α〉 = 0.
[This follows, for instance, from the analogue of (2.14) with es replaced by α.]

Turning now to chambers and walls, Lemma 2.58 implies that every cham-
ber D = wC lies on one side of each wall; hence D has a well-defined sign
sequence

σ(D) =
(
σH(D)

)
H∈H

with σH(D) ∈ {+,−}; here we could arbitrarily choose the positive and neg-
ative sides of H, but we follow the usual convention that the positive side is
the one containing C. A chamber D is clearly determined by its sign sequence,
since D is a simplicial cone whose walls form a subset of H. Even though our
sign sequences are infinite in general, we claim that the sign sequences of any
two chambers differ in only finitely many places. The following lemma is the
key step in the proof of this:

Lemma 2.62. For any s ∈ S, Hs is the only wall separating C from sC.

Proof. We will use the theory of (finite) hyperplane arrangements developed
in Section 1.4. Let H0 ⊆ H be any finite subset containing the walls of C
and sC. Then C and sC are H0-chambers with a common wall Hs = sHs.
Moreover, if As is the panel of C with support Hs, then As is fixed by s and
hence is also the panel of sC with support Hs. Thus C and sC are adjacent
in the sense of Section 1.4.9 (applied to H0), and Hs is the unique element
of H0 that separates them. Since H0 could have been chosen to contain any
given wall, the lemma follows. 	


Consider now an arbitrary chamber wC (w ∈W ), and choose a decompo-
sition w = s1 · · · sn (si ∈ S). Since s1 · · · si−1C and s1 · · · siC are separated by
only one wall, the sign sequences of C and wC = s1 · · · snC differ in at most
n positions. Using the W -action, we obtain the result claimed above, which
we record for future reference:

Lemma 2.63. Any two chambers are separated by only finitely many walls.
	


Remark 2.64. We began our development of the theory of Coxeter groups in
Section 2.1 by introducing the set T × {±1} and suggesting that its elements
should be thought of intuitively as roots. It is now clear that this abstract set
can be identified with the set of roots Φ introduced above. One can in fact de-
velop the entire theory of Coxeter groups by starting with the canonical linear
representation and using its action on Φ systematically. This is the approach
taken in the book by Humphreys [133], based on ideas of Deodhar [96].

2.5.4 Finite Coxeter Groups

We show here that if the Coxeter group W is finite, then it is a finite reflection
group in the sense of Chapter 1. Roughly speaking, then, finite Coxeter groups
are exactly the same thing as finite reflection groups.
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Theorem 2.65. If W is finite, then the bilinear form B is positive definite
and W is a finite reflection group acting on V , with S as the set of reflections
with respect to the chamber defined by B(es,−) > 0 for all s ∈ S.

Proof. Let V1 = V ∗, and let’s temporarily forget that V1 is the dual of V .
By Theorem 2.59, W can be identified with a finite group of linear transfor-
mations of V1 generated by linear reflections. We can make them orthogonal
reflections by putting a W -invariant inner product on V1. To this end, start
with an arbitrary inner product (−,−) on V1, and construct a W -invariant
inner product 〈−,−〉 by “averaging”:

〈x, y〉 :=
∑

w∈W

(wx,wy) .

For each s ∈ S, the (±1)-eigenspaces of s are orthogonal to one another
with respect to this W -invariant inner product, so s indeed acts on V1 as an
orthogonal reflection. Thus (W,V1) is a finite reflection group in the sense
of Chapter 1. The set H defined in Definition 2.61 satisfies the conditions of
Section 1.5, so it is the set of walls of (W,V1). Our fundamental chamber C
is therefore a chamber for (W,V1), and S is a set of fundamental reflections.

Let fs be the unit vector in Hs
⊥ pointing to the side of Hs contain-

ing C. Then we know from Section 1.5.5 that the usual formulas hold:
s(x) = x − 2〈fs, x〉fs for x ∈ V1, and 〈fs, ft〉 = − cos

(
π/m(s, t)

)
. Thus V1,

with its W -action and inner product, is isomorphic to V , with its W -action
and bilinear form B. Everything we know about (W,V1) can now be trans-
ported to (W,V ). 	


Remarks 2.66. (a) Combining Theorem 2.65 with the classification of finite
reflection groups (Section 1.3), we recover Coxeter’s list [85] of the finite Cox-
eter groups.

(b) We can now apply to arbitrary finite Coxeter groups all of the results of
Chapter 1. For example, the result about the normalizer of S (Corollary 1.91)
is valid for every finite Coxeter group.

Next, we wish to show that the converse of the first assertion of Theo-
rem 2.65 is also true.

Proposition 2.67. If B is positive definite, then W is finite.

Proof. W is a subgroup of the orthogonal group consisting of all linear trans-
formations of V that leave B invariant. Since B is positive definite, this or-
thogonal group is compact. In view of Theorem 2.59, W is a discrete subgroup
of a compact group; hence it is finite. 	


Combining Theorem 2.65, Proposition 2.67, and the results of Chapter 1,
we obtain the following:
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Corollary 2.68. The following conditions on a Coxeter system (W,S) are
equivalent:

(i) W is finite.
(ii) W can be realized as a finite reflection group, with S as the set of reflec-

tions with respect to the walls of a fundamental chamber.
(iii) The canonical bilinear form B on V := R

S is positive definite. 	


Finally, we add several more useful criteria for a Coxeter group to be finite.
Recall that C is the fundamental chamber, C is the set of all chambers, H is
the set of walls, T is the set of reflections, and Φ is the set of roots.

Proposition 2.69. The following conditions on a Coxeter system (W,S) are
equivalent:

(i) W is finite.
(ii) −C is a chamber.
(iii) H is finite.
(iv) T is finite.
(v) Φ is finite.
(vi) C is finite.

Proof. It is clear from the discussion in Section 2.5.3 that conditions (iii), (iv),
and (v) are all equivalent. So it suffices to show

(i) =⇒ (ii) =⇒ (iii) =⇒ (vi) =⇒ (i) .

If W is finite, then it is a finite reflection group, so −C is a chamber. Hence
(i) =⇒ (ii). Next, (ii) =⇒ (iii) by Lemma 2.63 since every wall separates
−C from C. Finally, (iii) =⇒ (vi) trivially, and (vi) =⇒ (i) because W acts
simply transitively on C. 	


2.5.5 Coxeter Groups and Geometry

In this short subsection we make some remarks about three classes of Coxeter
groups that are related to classical geometry.

Definition 2.70. We will say that a Coxeter system (W,S) of rank n is spher-
ical, of dimension n−1, if it satisfies the equivalent conditions of Corollary 2.68.

The motivation for this definition should be clear from Chapter 1. The
examples in Section 2.2 were designed to suggest that there are also reasonable
notions of Euclidean and hyperbolic Coxeter system. We will study these in
Chapter 10, but by way of preview, we state some facts that have already been
illustrated in the examples. First, we introduce some standard terminology.

Definition 2.71. The bilinear form B and the Coxeter system (W,S) are said
to be of positive type if B is positive semidefinite, i.e., if B(x, x) ≥ 0 for all
x ∈ V .
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Note that we may have B(x, x) = 0 for some x �= 0; this holds if and only if
B is degenerate (Exercise 2.72).

Now suppose that (W,S) is an irreducible Coxeter system of rank n := |S|.
Then:

(1) (W,S) is spherical (of dimension n−1) if and only if B is positive definite.
(2) (W,S) is Euclidean (of dimension n − 1) if and only if B is of positive

type but degenerate.
(3) (W,S) is hyperbolic (of dimension n− 1) if B is nondegenerate of signa-

ture (n− 1, 1) and B(x, x) < 0 for all x in the fundamental chamber C.

We have already proven (1), and we will return to (2) and (3) in Chapter 10,
where in particular, we will define the terms “Euclidean Coxeter system”
and “hyperbolic Coxeter system.” But statement (3) needs some explanation
before we move on.

Recall first that the signature of a nondegenerate bilinear form on a finite-
dimensional real vector is the pair of integers (p, q) such that when the form
is diagonalized it has p positive entries and q negative entries on the diagonal.
Secondly, since B is nondegenerate in (3), we can use it to identify V with its
dual. So the fundamental chamber C that we defined in V ∗ can be identified
with the chamber (still called C) in V defined by B(es,−) > 0 for all s ∈ S.
Thus it makes sense to talk about the value of B(x, x) for x ∈ C. Thirdly,
note that there is an “if” but not an “only if” in (3). The reason is that the
condition in (3) characterizes the special class of hyperbolic Coxeter groups
that act on hyperbolic space with a simplex as fundamental domain. But it
turns out that the fundamental domain for a hyperbolic reflection group can
be a more complicated polyhedron. We will explain this further in Section 10.3.

Exercise 2.72. Let B be a positive semidefinite symmetric bilinear form on
a real vector space. If B(x, x) = 0 for some x, show that x is in the radical
of B, i.e., B(x, y) = 0 for all y.

2.5.6 Applications of the Canonical Linear Representation

Returning to the general case, we first use the canonical linear representation
to calculate the normalizer of the generating set S. We already know what
this is for a finite Coxeter group (Remark 2.66(b)), so we will know it for every
Coxeter group if we treat the infinite irreducible case. In the finite case we
gave two proofs, one algebraic and one geometric. We are now in a position to
give an analogue of the algebraic proof; in the next chapter we will see that
the geometric proof also generalizes (see Exercise 3.122).

Proposition 2.73. If (W,S) is an irreducible Coxeter system with W infinite,
then the normalizer of S is trivial. In particular, the center of W is trivial.

(This result first appeared in print in [44, Section V.4, Exercise 3]; see also
[96, Proposition 4.1].)
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Proof. The proof is almost the same as the algebraic proof of Corollary 1.91,
except that the bilinear form B(−,−) replaces the inner product 〈−,−〉, and
one has to work in both V , which contains the set Φ of roots, and V ∗, which
contains the chambers. Here are the details. Suppose w ∈ W normalizes S.
For each s ∈ S, s′ := wsw−1 ∈ T is the reflection corresponding to the
roots ±wes ∈ Φ. Hence wes = ±es′ . Irreducibility now implies, exactly as in
the proof of Corollary 1.91, that the ambiguous sign is independent of s. So
either wes = es′ for all s ∈ S or wes = −es′ for all s ∈ S. Considering now
the action of w on V ∗, we conclude that either wC = C or wC = −C. The
second case is impossible by Proposition 2.69, so wC = C and hence w = 1
by simple transitivity. 	


As a second application, we prove the following result of Niblo and Reeves
(cf. [180, Lemma 3]):

Proposition 2.74. If W is infinite, then W contains two reflections t, t′

whose product tt′ has infinite order.

Remark 2.75. Our standing assumption that S is finite is crucial here. The
proposition is obviously false, for example, if S is infinite but WJ is finite for
every finite J ⊆ S.

The proof will make use of two lemmas. The first will be proved later, but
we state it here for ease of reference.

Lemma 2.76. Let W ′ ≤ W be a subgroup generated by two reflections. If W ′

is finite, then W ′ is contained in a finite parabolic subgroup.

This is a special case of Proposition 2.87, which we will prove in the next
section using the Tits cone. Alternatively, there is a direct combinatorial proof
of this special case that will arise naturally in our study of Coxeter complexes
in the next chapter; see Corollary 3.167.

The next lemma is the crucial one. The “if” part of the first assertion can
be found in [49, Proposition 1.4], where it is attributed to Dyer [99].

Lemma 2.77. Let α and β be roots with α �= ±β, and let sα and sβ be the cor-
responding reflections. Then sαsβ has finite order if and only if |B(α, β)| < 1.
Moreover, the set of real numbers

E := {B(α, β) | α, β ∈ Φ, |B(α, β)| < 1}

is finite.

Proof. Let W ′ be the dihedral group generated by sα and sβ ; it is finite if and
only if sαsβ has finite order. Suppose first that |B(α, β)| < 1, and let V ′ be the
2-dimensional subspace of V generated by α and β. The hypothesis implies
that the form B is positive definite on V ′. In particular, it is nondegenerate,
so we have an orthogonal decomposition V = V ′ ⊕ V ′′, where V ′′ is the
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orthgonal complement of V ′ with respect to B. The dihedral group W ′ acts
trivially on V ′′, so we may view it as a subgroup of the orthogonal group
acting on V ′. Since W ′ is discrete and the orthgonal group is compact, it
follows that W ′ is finite.

Conversely, suppose W ′ is finite. By Lemma 2.76, we then have wW ′w−1 ≤
WJ for some w ∈ W and some J ⊆ S such that WJ is finite. Replacing α
and β by wα and wβ, we may assume that W ′ ≤ WJ . By Corollary 2.68, B
is positive definite on the subspace VJ spanned by the es with s ∈ J , so the
inequality |B(α, β)| < 1 will follow if we can show that α and β are in VJ .
To this end, note that, as above, we have V = VJ ⊕ (VJ)⊥, and WJ acts
trivially on (VJ )⊥. So VJ must contain the (−1)-eigenspaces of sα and sβ ;
hence α, β ∈ VJ .

Finally, we prove the finiteness of E. By the arguments above, E is the
set of numbers B(α, β) (with α, β ∈ Φ, α �= ±β) such that sα and sβ are
contained in a finite standard subgroup WJ . Now there are only finitely many
possibilities for J , and for each J , there are only finitely many possibilities
for the pair sα, sβ ∈ WJ . Since a root α is determined up to sign by the
reflection sα, the finiteness of E follows. 	


Proof of Proposition 2.74. With E as in the lemma, set N := (|E|+1)|S|. We
claim that any subset of T with more than N elements must contain two reflec-
tions whose product has infinite order. Since T is infinite by Proposition 2.69,
this implies the proposition.

In view of Lemma 2.77, an equivalent formulation of the claim is that any
set Ψ ⊆ Φ with more than N elements and with Ψ ∩ −Ψ = ∅ must contain
two distinct roots α, β such that |B(α, β)| ≥ 1. Suppose, to the contrary, that
|B(α, β)| < 1 for all α, β ∈ Ψ with α �= β. Let Ψ ′ ⊆ Ψ be a basis for the
subspace V ′ of V spanned by Ψ (so Ψ ′ has at most |S| elements). For any
α ∈ Ψ there are at most N possibilities for the sequence

(
B(α, γ)

)
γ∈Ψ ′ , since

each component is either 1 or is in E. Since |Ψ | > N , there must exist two
distinct elements α, β ∈ Ψ such that B(α,−) = B(β,−) as linear functions
on V ′. But this yields the contradiction

1 = B(α, α) = B(β, α) < 1 . 	


Exercise 2.78. Give an alternative proof that the center of an infinite irre-
ducible Coxeter group is trivial using the method of Exercise 1.102.

*2.6 The Tits Cone

We continue to assume that (W,S) is an arbitrary Coxeter system with S
finite. In Section 2.5 we constructed a representation of W on the vector
space V = R

S . We introduced a set C of chambers in V ∗, determined by a setH
of walls. Here we carry the chamber geometry further and show that a great
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deal of what we did in Chapter 1 for finite reflection groups extends to general
Coxeter groups. The main results first appeared in an unpublished paper of
Tits [240]. Published accounts later appeared in Bourbaki [44], Vinberg [270],
and Humphreys [133]. We have marked this subsection as optional because,
while it contains an extremely useful tool for the study of Coxeter groups, it
is not really needed in the rest of this book.

2.6.1 Cell Decomposition

We assume here that the reader is familiar with the elementary geometry of
polyhedral sets defined by finitely many linear equalities and inequalities, as
developed in Section 1.4. In particular, we will make use of the fact that such
a set has well-defined faces. These can be determined using a collection of
defining equalities and inequalities as in Definition 1.20, and they can also be
characterized intrinsically (Proposition 1.27).

We apply this first to the fundamental chamber C, which is a simplicial
cone. It has one face A for each subset J ⊆ S, defined by 〈−, es〉 = 0 for s ∈ J
and 〈−, es〉 > 0 for s ∈ S � J . We use these faces and the W -action to define
the cells that will be of interest to us.

Definition 2.79. The transforms wA (w ∈ W , A ≤ C) will be called cells.
The Tits cone X is defined to be the union of all the cells. Equivalently,

X =
⋃

w∈W

wC .

Note that every cell is a polyhedral set of the sort discussed above, defined by
finitely many linear equalities and inequalities.

Theorem 2.80. The cone X is convex. For any x, y ∈ X, the line segment
[x, y] crosses only finitely many walls and is contained in a finite union of
cells. Moreover:

(1) C is a strict fundamental domain for the action of W on X.
(2) The stabilizer of any x ∈ C is the standard subgroup of W generated by

Sx := {s ∈ S | sx = x}.
(3) For each cell A and wall H, A is contained either in H or in one of the

open half-spaces determined by H.

Proof. To prove the first part of the theorem, we may assume x ∈ C and
y ∈ wC for some w ∈ W . Then [x, y] crosses only finitely many walls by
Lemma 2.63, since any wall that it crosses separates C from wC. We will
prove by induction on l(w) that [x, y] is contained in a finite union of cells
(and hence, in particular, it is contained in X). Let z be the point such that
[x, z] = C ∩ [x, y]; see Figure 2.6. Then [x, z] is contained in the union of the
faces of C, so it is enough to show that [z, y] is contained in a finite union of
cells. We may assume y �= z. For each s ∈ S, we have z ∈ U+(s) or z ∈ Hs, and
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y ∈ wCC

zx

Fig. 2.6. Proof of convexity.

there must be at least one s with z ∈ Hs and y ∈ U−(s); otherwise, we could
move a positive distance from z toward y without leaving C. Lemma 2.58 now
implies that w = sw′ with l(w′) = l(w) − 1, and then [z, y] = s[z, sy] with
sy ∈ w′C, so we are done by the induction hypothesis.

We now proceed with (1)–(3). For (1) and (2) we must show that if wx = y
with x, y ∈ C, then x = y and w ∈ 〈Sx〉. We argue by induction on l(w), which
may be assumed > 0. Write w = sw′ with l(w) = l(w′) + 1. Then w′x = sy.
The left side is in U+(s) by Lemma 2.58, and the right side is in U−(s). So
w′x = sy ∈ Hs, and hence w′x = y ∈ Hs. We now have x = y and w′ ∈ 〈Sx〉
by the induction hypothesis, and finally w = sw′ ∈ 〈Sx〉 because s ∈ Sy = Sx.

(3) We may assume A ≤ C and H = wHs. We know that A is contained
in at least one of the two closed half-spaces bounded by H, since C is in
one of the open half-spaces. So we must show that if A meets H then A is
contained in H. In other words, if t is the reflection wsw−1 whose fixed-point
set is H, we must show that if tx = x for some x ∈ A then tx = x for all
x ∈ A. This follows immediately from (2), since Sx corresponds to the walls
of C containing x, which are the same as the walls of C containing A. 	


It follows from (3) that every cell A has a well-defined sign sequence σ(A),
generalizing the sign sequences for chambers, where now the possibility
σH(A) = 0 is allowed. Moreover, A is defined by the equalities and inequal-
ities corresponding to the signs. [It suffices to check this when A is a face of
the fundamental chamber, in which case the result is trivial.] In particular,
distinct cells are disjoint. It follows easily that the face relation, which makes
sense a priori because each cell is defined by finitely many linear equalities
and inequalities, has the usual interpretation:

B ≤ A ⇐⇒ B ⊆ A ⇐⇒ σ(B) ≤ σ(A) ,

where the ordering on sign sequences is the same as in Definition 1.20.

Remarks 2.81. (a) Since the cells are disjoint, the statement that every
closed line segment in X is contained in only finitely many cells can be
strengthened: Every closed line segment meets only finitely many cells.

(b) Even though H is infinite, it still determines a partition of V ∗ into sets
determined by sign sequences, exactly as in Section 1.4. For lack of a better
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name, we call these sets H-cells. What we have just shown, then, is that the
cells of the Tits cone are in fact H-cells. One must be careful in what follows
to distinguish cells as in Definition 2.79 from the more general H-cells.

(c) Although each cell of the Tits cone is determined by finitely many of the
hyperplanes in H, this is not necessarily true of arbitrary H-cells. The reader
might find it instructive to find all the H-cells if W is the infinite dihedral
group (Figure 2.2).

We can now carry the theory further.

Proposition 2.82.

(1) Given cells A and B, there is a (unique) cell AB such that

σH(AB) =

{
σH(A) if σH(A) �= 0,

σH(B) if σH(A) = 0.
(2.16)

For any x ∈ A and y ∈ B, we have (1− ε)x+ εy ∈ AB for all sufficiently
small ε > 0. The product (A,B) �→ AB makes the set of cells a semigroup.

(2) X is the entire space V ∗ if and only if W is finite.

Proof. (1) This is proved as in Section 1.4.6, the essential point being that a
line segment in X crosses only finitely many walls.

(2) If W is finite then we saw in the previous section that W can be
identified with a finite reflection group acting on V ∗, so X =

⋃
wC = V ∗ by

Chapter 1. Conversely, suppose X = V ∗. Then −C is contained in X. Since
−C is obviously an H-cell, it follows that −C is a cell of X, hence a chamber
of X, so W is finite by Proposition 2.69. 	


Remark 2.83. Using the fact that the chambers are simplicial cones, one can
show as in Section 1.5.8 that the poset Σ of cells is a simplicial complex, whose
vertices are the cells that are rays. Moreover, one can easily check, as in Sec-
tion 1.5.9, that this simplicial complex is isomorphic to the poset Σ(W,S) of
standard cosets, ordered by reverse inclusion. This simplicial complex, called
the Coxeter complex associated to (W,S), will be the main object of study in
the next chapter.

2.6.2 The Finite Subgroups of W

As an application of the Tits cone, we will use it to analyze the finite subgroups
of W . As above, let Σ denote the set of cells in X. Fix A ∈ Σ, and let HA

be the set of walls containing A. Then HA determines a partition of V ∗ into
HA-cells. This is coarser than the partition into H-cells, i.e., every HA-cell is
a union of H-cells. As in Exercise 1.45, we can prove the following:

Lemma 2.84. Let Σ≥A be the set of cells of X having A as a face, and let
ΣA be the set of HA-cells that meet X. For any cell B ∈ Σ≥A, let f(B) be
the HA-cell containing B. Then f : Σ≥A → ΣA is a bijection.
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Proof. On the level of sign sequences, f just picks out the components of σ(B)
corresponding to the hyperplanes in HA. It is 1–1 because the remaining com-
ponents of σ(B) are the same as those of σ(A). To prove that f is surjective,
start with an HA-cell B′ that meets X, choose a cell B of X contained in B′,
and form the product AB. Then a consideration of sign sequences shows that
f(AB) = B′. 	

Lemma 2.85. Let WA be the stabilizer of A. Then WA is finite if and only
if HA is finite.

Proof. If WA is finite, then it contains only finitely many reflections, so HA

is finite. Conversely, if HA is finite, then there are only finitely many HA-
cells, and hence ΣA is finite. Lemma 2.84 now implies that Σ≥A contains only
finitely many chambers. So WA is finite, since it acts simply transitively on
those chambers. [Given chambers D,E ≥ A, we know that there is a unique
w ∈ W such that wD = E. Then wA and A are W -equivalent faces of E;
hence wA = A by Theorem 2.80.] 	

Lemma 2.86. Let Xf be the set of points x ∈ X whose stabilizer Wx is
finite. Given x ∈ Xf and y ∈ X with x �= y, the half-open line segment [x, y)
is contained in Xf . In particular, Xf is convex.

Proof. In view of Lemma 2.85, Xf consists of the points x ∈ X such that x
is contained in only finitely many walls. The result now follows from the fact
that [x, y] crosses only finitely many walls. 	


We can now prove the main result of this subsection.

Proposition 2.87. Every finite subgroup of W is contained in a finite para-
bolic subgroup.

Proof. Note that Xf is W -invariant and that by Theorem 2.80, the stabilizers
Wx for x ∈ Xf are precisely the finite parabolic subgroups of W . So our task
is to show that every finite subgroup W ′ of W fixes a point of Xf . The latter
being convex by Lemma 2.86, we can prove this by averaging: Start with an
arbitrary x ∈ Xf , and then

∑
w∈W ′ wx is a point of Xf fixed by W ′. 	


Remark 2.88. See Bourbaki [44, Section V.4, Exercise 2(d)] or Brink and
Howlett [49, Proposition 1.3] for other proofs of the proposition.

Exercises

2.89. Let A be a cell and WA its stabilizer. If WA is finite, show that every
HA-cell meets X, so the map f of Lemma 2.84 is a bijection from Σ≥A to the
set of all HA-cells.

2.90. (a) Show that Xf is open in V ∗ and hence is the interior of X in V ∗.
(b) Show that the action of W on Xf is proper. Since the stabilizers Wx for

x ∈ Xf are finite by definition, the content of this is that every x ∈ Xf

has a Wx-invariant neighborhood U such that wU ∩ U = ∅ if w /∈Wx.
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2.6.3 The Shape of X

Suppose (W,S) is irreducible. If W is neither spherical nor Euclidean, then a
result of Vinberg [270, p. 1112, Lemma 15] says that the Tits cone X is strictly
convex, i.e., its closure does not contain any lines through the origin. (This
is obviously false in the spherical case. It is also false in the Euclidean case,
where the closure of the Tits cone is a closed half-space. We have seen this in
the case of the infinite dihedral group in Section 2.2.2, and the assertion in
general follows from some results that we will prove in Section 10.2.2.) Our
goal in this subsection is to prove the following weak form of Vinberg’s result,
which is valid in the Euclidean case also; see Krammer [149, Theorem 2.1.6]
for a different proof.

Proposition 2.91. If W is infinite and irreducible, then the Tits cone X does
not contain any lines through the origin.

Our proof will be based on the following lemma:

Lemma 2.92. Suppose W is infinite and irreducible. For any x �= 0 in X,
there are infinitely many walls not containing x.

Proof. We may assume that the cell A containing x is a face of the fundamen-
tal chamber C and hence that its stabilizer is WJ for some J � S. Suppose
x (and hence A) is contained in all but finitely many walls. Then there is
an upper bound on the gallery distance d(A,D), where D ranges over the
chambers wC (w ∈ W ). [Here d(A,D) is defined as in Exercise 1.61, and, as
in that exercise, it is equal to the number of walls that strictly separate A
from D.] Equivalently, there is an upper bound on d(wA,C) for w ∈W . This
implies that the W -orbit of A is finite and hence that WJ has finite index
in W , contradicting Proposition 2.43. 	


(See also Exercise 3.83(b), where the same result is stated and proved from a
combinatorial point of view.)

Proof of Proposition 2.91. Suppose X contains a pair of opposite points ±x
with x �= 0. Since x and −x are strictly separated by all walls that do not
contain them, it follows from Theorem 2.80 that x is contained in all but
finitely many walls. This contradicts Lemma 2.92. 	


*2.7 Infinite Hyperplane Arrangements

In the previous section we encountered a possibly infinite hyperplane arrange-
ment for which we were nevertheless able to carry out much of the theory of
Section 1.4. The purpose of the present (optional) section is to axiomatize this
situation and carry the theory further.
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Throughout this section we denote by H an arbitrary collection of linear
hyperplanes in a finite-dimensional real vector space V . For convenience, we
assume that we have chosen for each H ∈ H a linear function fH : V → R

such that H is defined by the equation fH = 0. Exactly as in Definition 1.18,
we then obtain a partition of V into “cells” A, each of which is defined by
equalities or strict inequalities, one for each H ∈ H. We again encode the
definition of a cell A by its sign sequence σ(A) =

(
σH(A))H∈H. Explicitly, we

define σ(A) to be σ(x) for any x ∈ A, where σH(x) is the sign of fH(x). The
set of cells is a poset under the face relation defined in terms of sign sequences
as in Definition 1.20.

Continuing as in Section 1.4.2, we can also work with the closed cells A.
Here A is the set obtained by replacing the strict inequalities in the definition
of A by weak inequalities; it is also the topological closure of A in V . We have

A =
⋃

B≤A

B .

This implies the following characterization of the partial order on cells, which
does not explicitly refer to H:

B ≤ A ⇐⇒ B ⊆ A . (2.17)

We define the support of a cell A, denoted by suppA, to be its linear span, and
we define the dimension of A by dimA := dim(suppA). It is immediate from
the definitions that if B < A then dimA < dim B, since A is contained in at
least one hyperplane that does not contain B. In particular, every nonempty
collection of cells has a maximal element.

Assume throughout the rest of the section that we are given a nonempty
set Σ of cells, and set

X :=
⋃

A∈Σ

A .

We can now state our axioms.

(H0) X linearly spans V .

This axiom is harmless; if it failed, we could simply replace V by the span V ′

of X, and we could replace H by H′ := {H ∩ V ′ | H ∈ H, H � X}.

(H1) Σ is closed under passage to faces; equivalently, X is a union of closed
cells.

The next two axioms are more serious and can be viewed as finiteness prop-
erties. For any A,B ∈ Σ, let S(A,B) be the set of hyperplanes H ∈ H that
strictly separate A and B, i.e., that satisfy σH(A) = −σH(B) �= 0.

(H2) For any A,B ∈ Σ, the set S(A,B) is finite.

(H3) For any A ∈ Σ there is a finite subset HA ⊆ H that defines A.
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Here, as in Section 1.4.3, the statement means that A is defined by the condi-
tions fH = σH(A) for H ∈ HA. It follows that each cell A ∈ Σ is a polyhedral
cone of the sort studied in Section 1.4.

One consequence of (H3) is that A is open in its support. More precisely,
we have

suppA ⊆
⋂

H∈H
H⊇A

H ⊆
⋂

H∈HA
H⊇A

H , (2.18)

and A is open in the last of these spaces. Hence the latter is spanned by A,
and the three spaces are equal.

Before proceeding further, we need to resolve a potential ambiguity. Given
A ∈ Σ, we can talk about the faces of A as defined at the beginning of this
section; let’s call these the H-faces of A. But if (H3) holds, then it would seem
more natural to consider the HA-faces of A, which can in fact be intrinsically
defined, without reference to the set HA (see Proposition 1.27). It is this
second notion of “face” that we used in the case of the Tits cone. Fortunately,
there is no conflict:

Lemma 2.93. Suppose that axiom (H3) holds. Given A ∈ Σ and HA as
in (H3), the HA-faces of A are the same as the H-faces of A.

Proof. Since HA ⊆ H, the partition of A into H-cells refines the partition into
HA-cells. It therefore suffices to show that every HA-face of A is contained in
an H-cell. Let B be an HA-face of A, and consider any H ∈ H. Suppose, for
instance, that fH ≥ 0 on A. Then fH ≥ 0 on B; hence, since B is open in its
support, either fH > 0 on B or fH ≡ 0 on B. Thus every fH has a constant
sign on B, so B is contained in an H-cell. 	


We turn now to the most interesting axioms, involving products and con-
vexity. Given two sign sequences σ = (σH)H∈H and τ = (τH)H∈H, we define
their product στ to be the sign sequence given by

(στ)H =

{
σH if σH �= 0,

τH if σH = 0,

for H ∈ H. Consider now the following two conditions:

(H4) For any two cells A,B ∈ Σ, there is a cell AB ∈ Σ such that σ(AB) =
σ(A)σ(B).

(H5) X is a convex subset of V .

These two conditions are in fact equivalent:

Proposition 2.94. In the presence of (H1) and (H2), axioms (H4) and (H5)
are equivalent to one another. When these axioms are satisfied, the product
of cells can be characterized as follows: Given x ∈ A and y ∈ B, the cell AB
contains (1− t)x + ty ∈ AB for all sufficiently small t > 0.
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Proof. Suppose (H4) holds. Given x, y ∈ X, let A (resp. B) be the cell con-
taining x (resp. y). We show by induction on |S(A,B)| that the open seg-
ment (x, y) is contained in X. If S(A,B) �= ∅, let z be the first point (i.e.,
the point closest to x) where (x, y) crosses a hyperplane in H. Otherwise, set
z = y. Let F be the cell containing z. Then every point in (x, z) has sign
sequence equal to σ(A)σ(B), so (x, z) ⊆ AB ⊆ X. We also have F ≤ AB, so
F is in Σ and z is in X. If z = y, we are done. Otherwise, S(F,B) � S(A,B);
hence (x, y) = (x, z) ∪ {z} ∪ (z, y) ⊆ X by the induction hypothesis. This
proves (H5).

Conversely, suppose that (H5) holds. Given A,B ∈ Σ, choose x ∈ A and
y ∈ B, and consider zt := (1− t)x + ty for 0 < t ≤ 1. By hypothesis, zt ∈ X
for all t. If t is small enough, σH(zt) = σH(A) �= 0 for all H ∈ S(A,B);
hence σH(zt) =

(
σ(A)σ(B)

)
H

for such H. And if H ∈ H � S(A,B), then
σH(zt) =

(
σ(A)σ(B)

)
H

for all t ∈ (0, 1). There is therefore a cell in Σ with
sign sequence σ(A)σ(B), and it contains zt for sufficiently small t > 0. Thus
(H4) holds, as does the last assertion of the proposition. 	


Assume from now on that X and Σ satisfy axioms (H0)–(H5). (In partic-
ular, X could be the Tits cone associated to a Coxeter group.) It is then easy
to extend to Σ most of the concepts and results of Section 1.4. We will briefly
run through some of these.

(1) Any two cells A,B ∈ Σ have a greatest lower bound A ∩B, whose corre-
sponding closed cell is the intersection A ∩B.

Use a finite subset of H that defines both A and B, and then appeal to the
corresponding fact about finite hyperplane arrangements.

(2) A chamber of Σ is a cell C ∈ Σ such that σH(C) �= 0 for all H ∈ H. These
are precisely the maximal elements of Σ.

Indeed, a chamber is trivially maximal. Conversely, suppose C ∈ Σ is max-
imal and consider any H ∈ H. In view of (H0), there is a cell A ∈ Σ with
σH(A) �= 0. But then C = CA by maximality; hence σH(C) = σH(CA) �= 0,
and C is a chamber.

(3) A panel is a cell P ∈ Σ with exactly one 0 in its sign sequence. Equiva-
lently, it is a cell in Σ of dimension equal to dimV − 1. Every panel is a face
of at least one chamber and at most two.

(4) Two distinct chambers C,D ∈ Σ are adjacent if they have a common
panel. One can now define galleries in the obvious way and prove that any
two chambers C,D can be connected by a gallery; moreover, the minimal
length of such a gallery is |S(C,D)|.

(5) More generally, we can consider galleries connecting two arbitrary cells
A,B ∈ Σ as in Exercise 1.62. The solution to that exercise goes through
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without change to show that the minimal length d(A,B) of such a gallery
is |S(A,B)|. Moreover, the chambers that can start a minimal gallery from
A to B are precisely those having AB as a face. In particular, every minimal
gallery from a cell A to a chamber C starts with AC.

We turn now to subcomplexes, which we did not have occasion to consider
in the setting of finite hyperplane arrangements. By a subcomplex of Σ we
mean a nonempty subset Σ′ that is closed under passage to faces. Let Σ′ be
a subcomplex and let X ′ :=

⋃
A∈Σ′ A. Then we can study Σ′ by viewing it as

a set of H′-cells in the linear span V ′ of X ′, where

H′ := {H ∩ V ′ | H ∈ H, H � X ′} .

Viewed in this way, Σ′ satisfies all of the axioms of this section except possibly
the (equivalent) axioms (H4) and (H5).

Definition 2.95. We say that a subcomplex Σ′ of Σ is convex if Σ′ satisfies
(H4) and (H5), i.e., if X ′ :=

⋃
A∈Σ′ A is a convex subset of V or, equivalently,

if Σ′ is a subsemigroup of Σ.

Thus we can apply to convex subcomplexes all of the results that we
have proven about Σ. To state one explicitly, assume for simplicity that the
chambers of Σ are simplicial cones (as in the setting of Section 2.6). We make
this assumption only so that we can apply the language of Section A.1.3. Then
the results of this section show that Σ is a chamber complex in which any
panel is a face of at most two chambers. Consequently:

Proposition 2.96. Suppose that the chambers of Σ are simplicial cones.
Then every convex subcomplex Σ′ of Σ is a chamber complex in which every
panel is a face of at most two chambers. 	


(Of course we might have dim Σ′ < dim Σ, so Σ′ is not in general a chamber
subcomplex of Σ.)

We close this section by giving some useful characterizations of con-
vex subcomplexes. Note first that there is an obvious way of construct-
ing convex subcomplexes of Σ using half-spaces. Namely, for any H ∈ H
we have a convex subcomplex Σ+(H) (resp. Σ−(H)) consisting of the cells
in Σ on which fH ≥ 0 (resp. fH ≤ 0). Further examples can be obtained
from these by taking intersections. For example, the convex subcomplex
Σ0(H) := {A ∈ Σ | σH(A) = 0} is the intersection Σ+(H)∩Σ−(H). The fol-
lowing proposition, which should be compared with Exercise 1.68, implies that
every convex subcomplex can be obtained as an intersection of such “halves”
of Σ.

Let D be a nonempty set of chambers in Σ. We say that D is convex if for
all C,D ∈ D, every minimal gallery in Σ from C to D is contained in D.

Proposition 2.97. Let Σ′ be a subcomplex of Σ. Then the following two con-
ditions are equivalent:
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(i) Σ′ is a convex subcomplex of Σ.
(ii) Σ′ is an intersection of subcomplexes of the form Σ±(H) (H ∈ H).

If Σ′ contains at least one chamber, then (i) and (ii) are equivalent to each
of the following conditions:

(iii) The maximal elements of Σ′ are chambers of Σ, and the set of chambers
in Σ′ is convex.

(iv) Given A,C ∈ Σ′ with C a chamber, Σ′ contains every minimal gallery
in Σ from A to C.

Proof. The implication (ii) =⇒ (i) is trivial, since an intersection of convex
subcomplexes is a convex subcomplex. [Note that it is automatically nonempty
because it contains the smallest cell, which is

⋂
H∈H H.] To prove the converse,

assume first that Σ′ contains a chamber, in which case we will prove (i) =⇒
(iv) =⇒ (iii) =⇒ (ii).

(i) =⇒ (iv): Consider a minimal gallery A ≤ C0, C1, . . . , Cl = C in Σ.
Set A0 := A and Ai := Ci−1 ∩ Ci for i = 1, . . . , l. Then Ci, Ci+1, . . . , Cl is a
minimal gallery from Ai to C for 0 ≤ i ≤ l; hence Ci = AiC. So if (i) holds
and A,C ∈ Σ′, it follows inductively that Ci ∈ Σ′ for all i.

(iv) =⇒ (iii): This is trivial.
(iii) =⇒ (ii): Let Σ′′ be the intersection of the subcomplexes Σ±(H) that

contain Σ′. If (iii) holds, we claim that Σ′ and Σ′′ have the same chambers.
This implies that they are equal, since Σ′′ is a subsemigroup of Σ containing
a chamber, and hence every maximal cell of Σ′′ is a chamber. To prove the
claim, let C be the set C(Σ) of chambers of Σ, and set D := C(Σ′). We must
show that for any C ∈ C � D there is a hyperplane H ∈ H that separates C
from D.

Choose D ∈ D at minimal distance from C, and let D,D′, . . . , C be a
minimal gallery from D to C. Then D′ /∈ D, and the hyperplane H separating
D from D′ also separates D from C. We will show that all chambers in D are
on the D-side of H. Given E ∈ D, we have d(E,D) = d(E,D′)± 1. The sign
cannot be +, because then there would be a minimal gallery from E to D
passing through D′, contradicting the convexity of D. So the sign is −, which
means that E and D are on the same side of H. This completes the proof
that (iii) =⇒ (ii) and hence that all four conditions are equivalent when Σ′

contains a chamber.
Suppose now that Σ′ does not necessarily contain a chamber. To prove

(i) =⇒ (ii), note that (i) implies that all maximal cells of Σ′ have the same
support U . [If A and B are maximal, then A = AB and B = BA; now use
the fact that AB and BA have the same zeros in their sign sequences.] Let
HU := {H ∩ U | H ∈ H, H � U}, and let ΣU be the set of elements of Σ
contained in U . Then ΣU is a set of HU -cells in U satisfying all of our axioms,
and Σ′ is a convex subcomplex of ΣU whose maximal simplices are chambers
of ΣU . Moreover, the “halves” of ΣU are the subcomplexes ΣU ∩ Σ±(H)
for H ∈ H, H � U . By the case already treated, it follows that Σ′ is an
intersection of such subcomplexes. This implies (ii), since
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ΣU =
⋂

H⊇U

Σ0(H) =
⋂

H⊇U

Σ+(H) ∩Σ−(H) . 	


Exercise 2.98. Show that in the presence of the other axioms, (H3) can be
replaced by the following apparently weaker condition:

(H3′) Any chamber C ∈ Σ can be defined by finitely many linear inequalities
of the form f > 0.



3

Coxeter Complexes

Let (W,S) be a Coxeter system (Definition 2.50). Recall from Section 2.6
that S is assumed to be finite. In Chapter 2 we proved some algebraic results
about (W,S), guided by our geometric intuition from Chapter 1. We now
develop the corresponding geometric theory. Our point of view in this chapter
is purely combinatorial, though we often indicate alternative proofs that make
use of the (optional) Sections 2.6 and 2.7. We will also refer to those sections
in some exercises, which the reader may omit.

3.1 The Coxeter Complex

Recall from Definition 2.12 that a standard coset in W is a coset of the
form wWJ with w ∈ W and WJ := 〈J〉 for some subset J ⊆ S. The results of
Section 1.5.9 [and Section 2.6] motivate the following definition.

Definition 3.1. Let Σ(W,S) be the poset of standard cosets in W , ordered
by reverse inclusion. Thus B ≤ A in Σ if and only if B ⊇ A as subsets of W ,
in which case we say that B is a face of A. We call Σ(W,S) the Coxeter
complex associated to (W,S).

It is worth reemphasizing the motivating example:

Definition 3.2. The Coxeter complex Σ(W,S) is called spherical if it is finite
or, equivalently, if W is finite.

The terminology comes from the fact that by Theorem 2.65, a spherical
Coxeter complex is isomorphic to the complex Σ(W,V ) associated to a finite
reflection group (Section 1.5); hence it is a simplicial complex triangulating a
sphere by Proposition 1.108. In the more general setting of Definition 3.1, the
word “complex” will be justified in Theorem 3.5 below, where we will prove
that Σ := Σ(W,S) is indeed a simplicial complex. [See also Remark 2.83.]
Anticipating this result, we proceed with some further terminology.
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Definition 3.3. The elements of Σ are called simplices. The maximal sim-
plices, which are the singletons {w}, are called chambers and are identified
with the elements of W . The simplices of the form w〈s〉 = {w,ws} (with
w ∈W and s ∈ S) are called panels. We set C := 1 and call it the fundamen-
tal chamber. Each panel w〈s〉 is a face of exactly two chambers, w and ws,
which are said to be s-adjacent.

Note that there is an action of W on Σ by left translation, and the action
on the chambers is simply transitive. Note further that we can construct
“galleries” in Σ in the way that is familiar from Chapter 1: Given w ∈W and
a decomposition w = s1 · · · sl (with si ∈ S), we have a sequence of chambers

Γ : C = C0, Cl, . . . , Cl = wC , (3.1)

where Ci = s1 · · · siC, and Ci−1 is si-adjacent to Ci for i = 1, . . . , l.
At this point the reader may need to refer to Section A.1.3 in Appendix A

for the terminology regarding chamber complexes and type functions. Let’s
add one more bit of terminology:

Definition 3.4. A chamber complex is called thin if every panel is a face of
exactly two chambers.

Theorem 3.5. The poset Σ := Σ(W,S) is a simplicial complex. Moreover, it
is a thin chamber complex of rank equal to |S|, it is colorable, and the action
of W on Σ is type-preserving.

Proof. To show that Σ is simplicial, there are two things we must verify (see
Definition A.1):

(a) Any two elements A,B ∈ Σ have a greatest lower bound.
(b) For any A ∈ Σ, the poset Σ≤A is a Boolean lattice.

For (a) we can use the W -action on Σ to reduce to the case that one of
the two elements is a face of the fundamental chamber C, i.e., is a standard
subgroup. What we must prove, then, is that a standard subgroup WJ and a
standard coset wWK (where J,K ⊆ S) have a least upper bound in the set of
standard cosets, with respect to the ordering by inclusion. Now any standard
coset containing the two given ones contains the identity and hence is a stan-
dard subgroup. Moreover, it contains w and hence also WK = w−1(wWK).
So the upper bounds of our two standard cosets are the standard subgroups
containing J , K, and w. In view of Proposition 2.16, there is indeed a smallest
upper bound, namely, the standard subgroup WL, where L := J ∪K ∪ S(w).

To prove (b), we may assume that A is the fundamental chamber C. In
this case, Σ≤C is the set of standard subgroups of W (ordered by reverse
inclusion). By Proposition 2.13 we have

Σ≤C
∼= (subsets of S)op ∼= (subsets of S) ,
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where the second isomorphism is given by J �→ S�J for J ⊆ S. This proves (b)
and completes the proof that Σ is simplicial. The proof also shows that all
maximal simplices have the same rank, equal to |S|. And the discussion sur-
rounding (3.1) above implies that any two of them can be connected by a
gallery and that any panel is a face of exactly two chambers. So Σ is a thin
chamber complex.

Finally, we can define a W -invariant type function τ on Σ, with values
in S, by setting τ(wWJ ) := S � J . 	


We will continue to denote by τ the type function constructed in the proof.
For emphasis, we repeat the definition:

Definition 3.6. Σ(W,S) has a canonical type function with values in S, de-
fined by

τ(wWJ ) = S � J

for w ∈ W and J ⊆ S. Equivalently, the simplex wWJ has cotype J .

We have already seen the canonical type function in Section 1.6.2 in the
context of finite reflection groups, where we also saw examples illustrating it.
Here is one more:

Example 3.7. Let W be the group of isometries of the plane generated by
the (affine) reflections with respect to the sides of an equilateral triangle. This
is an example of a Euclidean reflection group. Although we will not treat the
theory of such groups systematically until Chapter 10, the reader should find
it plausible that W is the Coxeter group

〈
s, t, u ; s2 = t2 = u2 = (st)3 = (tu)3 = (su)3 = 1

〉

and that the Coxeter complex Σ
(
W, {s, t, u}

)
is the plane tiled by equilat-

eral triangles. We will give an ad hoc proof of this in Section 3.4.2 below
(Example 3.76); in the meantime, the reader is advised to take the assertion
on faith. Figure 3.1 shows the panels of the fundamental chamber C labeled
by the reflections that fix them, or, equivalently, by their cotypes. The black
vertex of C is not in the panel fixed by s, so it is of type s and hence all black
vertices are of type s. Similar remarks apply to the other two types.

Exercises

Throughout these exercises (W,S) is a Coxeter system and Σ := Σ(W,S) is
the associated Coxeter complex.

3.8. Give an alternative proof that Σ is simplicial based on Exercise A.3.

3.9. The canonical type function yields a notion of s-adjacency for any s ∈ S
(Section A.1.4). Show that this is consistent with Definition 3.3.
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C
s t

u

Fig. 3.1. The canonical type function; black = s, gray = t, white = u.

3.10. For every simplex A ∈ Σ, show that

A =
⋂

C≥A

C ,

where C ranges over the chambers ≥ A.

3.11. (a) Let C and D be chambers of Σ such that d(C,D′) ≤ d(C,D) for
every chamber D′ adjacent to D. Show that Σ is spherical and that C
and D are opposite. [Recall that if Σ is spherical, then Σ can be identified
with the complex associated to a finite reflection group, so “opposite”
makes sense.]

(b) Deduce (or show directly) that Σ is spherical if and only if it has finite
diameter, where the diameter of a chamber complex is the supremum of
the gallery distances between its chambers.

3.12. Assume that (W,S) is irreducible and W is infinite. The content of
Proposition 2.43, then, is that Σ has infinitely many vertices of each type s.
[Take J = S � {s} in the proposition.]

(a) Deduce that for each chamber C and each s ∈ S, the distance d(C, y) is
unbounded as y ranges over the vertices of type s. Equivalently, d(C, y)
is unbounded for a fixed vertex y of type s as C ranges over all chambers.
Here d(−,−) denotes the gallery distance defined in Section A.1.3.

(b) Use Proposition 2.45 to prove the following stronger result: For each
vertex x ∈ Σ and each s ∈ S, the distance d(x, y) is unbounded as y
ranges over the vertices of type s.



3.2 Local Properties of Coxeter Complexes 119

3.13. For any simplex A ∈ Σ, show that the stabilizer WA of A in W acts
transitively on the set C(Σ)≥A of chambers having A as a face.

Warning. There is potential confusion between the notation WA for the sta-
bilizer of a simplex and WJ for a standard subgroup. But it should always be
clear from the context which one is intended.

3.14. We have followed the conventions of Section A.1.1 in describing Σ as
a poset. Convert this to a more conventional description as follows: There is
one vertex for each maximal (proper) standard coset, and a finite collection of
such cosets forms a simplex if and only if their intersection is nonempty. More
succinctly, one expresses this by saying that Σ is the nerve of the covering
of W by its maximal standard cosets.

3.15. Give a bijection between the geometric realization |Σ| and equivalence
classes of points of the Tits cone under multiplication by positive scalars.

3.2 Local Properties of Coxeter Complexes

We continue to denote by Σ the Coxeter complex Σ(W,S) associated to a
fixed Coxeter system (W,S). By “local properties” of Σ we mean properties
of the links of simplices (Definition A.19). For example, it is of interest to
know whether these links are chamber complexes.

Proposition 3.16. Given A ∈ Σ, let J := S �τ(A) be its cotype. Then lkΣ A
is isomorphic to the Coxeter complex Σ(WJ , J) associated to the Coxeter sys-
tem (WJ , J). In particular, this link is a chamber complex.

(Note that the statement makes sense because (WJ , J) is indeed a Coxeter
system by Exercise 2.51.)

Proof. We may assume that A is a face of the fundamental chamber. Then A
is the standard subgroup WJ . Recall now that there is a poset isomorphism
lkΣ A ∼= Σ≥A; hence the link of A is isomorphic to the set of standard cosets
in W that are contained in WJ , ordered by reverse inclusion. But the standard
cosets that are contained in WJ are precisely the same as the standard cosets
associated to the Coxeter system (WJ , J). Thus Σ≥A = Σ(WJ , J). 	


It follows that Σ satisfies the hypotheses of Proposition A.20. Conse-
quently:

Corollary 3.17. Σ is completely determined by its underlying chamber sys-
tem. More precisely, the simplices of Σ are in 1–1 correspondence with the
residues in C(Σ), ordered by reverse inclusion. Here a simplex A corresponds
to the residue C(Σ)≥A, consisting of the chambers having A as a face. 	
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Remark 3.18. We have included this corollary only to force the reader to
learn the terminology associated with chamber systems, especially the concept
of residue. But the statement of the corollary is in fact a complete tautology in
view of the definition of Σ in terms of standard cosets. Indeed, if one identifies
chambers with elements of W , then it is immediate from the definitions that
the residues are the standard cosets.

Proposition 3.16 has a simple interpretation in terms of Coxeter matrices.
Recall, first, that the Coxeter system (W,S) is determined by its Coxeter
matrix M =

(
m(s, t)

)
s,t∈S

. So we may think of Σ as a simplicial complex
associated to M . Next, note that the rows and columns of M are indexed
by S, which is also the set of types of the vertices of Σ. What the proposition
says, then, is that lkA is the Coxeter complex associated to the matrix MJ

obtained from M by selecting the rows and columns belonging to the cotype J
of A.

This becomes even easier to use if we translate it into the language of
Coxeter diagrams. Recall that the diagram of (W,S) is a graph D with labels
on some edges. There is one vertex for each s ∈ S, with s joined to t if
m(s, t) ≥ 3, and with a label over that edge if m(s, t) ≥ 4. The passage from
M to MJ above, and hence the passage from Σ to lk A, corresponds to passing
to the induced subdiagram DJ with vertex set J equal to the cotype of A. In
other words, we retain the vertices in the cotype (and all edges between them).
Equivalently, we delete all vertices in τ(A) (and all edges touching them).

Consider, for example, the group W = PGL2(Z) studied in Section 2.2.3.
Its diagram is

∞ .

The Coxeter complex Σ has rank 3 (dimension 2), so there are three types of
vertices. Let’s compute the link of each type of vertex.

According to the recipe above, we must delete one vertex at a time from
the Coxeter diagram of W . This yields the Coxeter diagrams of the dihedral
groups D2m, where m =∞, 2, and 3, respectively. Now it is easy to figure out
what the Coxeter complex associated to D2m looks like, and in fact, we have
already seen it in Chapters 1 and 2. Namely, it is a 2m-gon; in other words, it
is a triangulated circle with 2m edges if m < ∞, and it is a triangulated line
if m = ∞. So our three links in this example are a line, a quadrilateral, and
a hexagon.

Exercise 3.19. Look at Figure 2.5. Can you find the three types of links in
the picture?

This example illustrates a general principle, valid for all Coxeter com-
plexes: The link of a codimension-2 simplex of cotype {s, t} (with s �= t) is a
2m-gon, where m = m(s, t). This fact yields a geometric interpretation of the
Coxeter matrix M :
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Corollary 3.20. The Coxeter matrix M of (W,S) can be recovered from Σ
as follows: For any s, t ∈ S with s �= t, m(s, t) is the unique number m
(2 ≤ m ≤ ∞) such that the link of every simplex of cotype {s, t} is a 2m-gon.

	


This shows, in particular, that the Coxeter group W is determined up to
isomorphism by Σ. We will see this again in the next section, from a different
point of view.

Remark 3.21. Note that a 2m-gon has diameter m, where the diameter of a
chamber complex is the supremum of the gallery distances between its cham-
bers. So we can also write the geometric interpretation of M as

m(s, t) = diam(lkA) ,

where A has cotype {s, t} as above. The result in this form is valid even when
s = t. [In this case the link has exactly two chambers, which are adjacent, so
the diameter is indeed 1 = m(s, s).]

We can use this corollary, together with Tits’s solution to the word problem
for Coxeter groups, to give a simple answer to a question that might seem,
a priori, to be very difficult: How can one describe the totality of minimal
galleries connecting two given chambers? This is easy in the 1-dimensional
case, where Σ is a 2m-gon: Minimal galleries are unique unless m <∞ and the
two given chambers C1 and C2 are at maximum distance m from each other,
i.e., they are opposite. In this case there are exactly two minimal galleries
connecting C1 to C2.

Translating this result to the link of a simplex A of codimension 2 in an
arbitrary Coxeter complex, we obtain a similar description of the minimal
galleries in the subposet Σ≥A. Visualize, for example, the case that Σ is
2-dimensional and A is a vertex v whose link is finite. Then for some m <∞,
Σ≥A contains 2m chambers that form a solid 2m-gon centered at v. The only
nonuniqueness of minimal galleries in this subposet arises from the fact that
there are two ways of going around the 2m-gon to get from a given chamber
to the opposite chamber.

Since galleries correspond to words, we can use the solution to the word
problem (Section 2.3.3) to analyze the general case. The answer, roughly,
is that the nonuniqueness of minimal galleries in a Coxeter complex can be
explained entirely in terms of the obvious nonuniqueness that occurs in links
of codimension-2 simplices. To state this precisely, we need some terminology.

Definition 3.22. If Γ : C0, . . . , Cd is a gallery, then the type of Γ is the se-
quence s := (s1, . . . , sd) such that Ci−1 is si-adjacent to Ci for i = 1, . . . , d.

(This notion of “type of a gallery” makes sense in any colorable chamber
complex; we will use it again later.)
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Suppose Γ has a subgallery of type (s, t, s, t, . . . ) and of length m =
m(s, t) < ∞, where s �= t. Then this subgallery lies in Σ≥A for some
codimension-2 simplex A of cotype {s, t}, and we may replace it by the other
minimal gallery in Σ≥A with the same extremities. This produces a new gallery
Γ ′ from C0 to Cd.

Definition 3.23. The gallery Γ ′ is said to be obtained from Γ by an ele-
mentary homotopy. Two galleries are said to be homotopic if there is a finite
sequence of elementary homotopies transforming one to the other.

Figure 3.2 shows an elementary homotopy from a gallery of type (u, t, s, t, u)
to one of type (u, s, t, s, u).

u u

t s u t

u t s

t

C

D

u

s

Fig. 3.2. An elementary homotopy.

The following result is now immediate from our earlier observations:

Proposition 3.24. Any two minimal galleries with the same extremities are
homotopic. 	


Remark 3.25. We have framed our discussion in terms of links. We could
equally well have used the language of residues. Indeed, if A is a codimension-2
simplex of cotype {s, t} as above, then the set of chambers in Σ≥A is a residue
of type {s, t}. So our elementary homotopies all take place in rank-2 residues.
Here the rank of a residue is the cardinality of its type, which is the same as
the codimension of the corresponding simplex A.

Exercise 3.26. Give a method for using homotopies to decide whether a given
gallery is minimal and if not, to obtain a minimal gallery from it.

Finally, we can use our calculation of links to answer another natural
question, at least to readers who are familiar with combinatorial topology:
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When is Σ a manifold? This question arises naturally because triangulated
manifolds (without boundary) are the canonical examples of thin chamber
complexes (Example A.9). We already know the answer if W is finite: In this
case Σ is a sphere (see the remarks following Definition 3.2); in particular, Σ
is a manifold.

What happens if W and Σ are infinite? There is an obvious necessary
condition. Namely, manifolds are locally compact, hence locally finite, i.e.,
every nonempty simplex A is a face of only finitely many chambers. In other
words, the link of A must be finite. Conversely, if the link of every nonempty
simplex is finite, then it is in fact a sphere (since it is a finite Coxeter complex).
We leave it as an exercise for the interested reader to deduce that Σ is then
a manifold. This proves the following:

Corollary 3.27. The following conditions are equivalent:

(i) Σ is a manifold.
(ii) Σ is locally finite.
(iii) Every proper standard subgroup of W is finite. 	


For example, the Coxeter complex associated to PGL2(Z) is not a mani-
fold. One can see the nonmanifold points in Figures 2.3 and 2.5: They are the
cusps.

Exercise 3.28. If (iii) holds and W is infinite, show that (W,S) is irreducible.

Remark 3.29. Condition (iii) is quite restrictive. One can show that it holds
only in the following three cases: (a) W is finite; (b) W is an irreducible Euclid-
ean reflection group; (c) W is a hyperbolic reflection group whose fundamental
domain is a closed simplex contained entirely in the interior of the hyperbolic
space. See Chapter 10 for definitions of the terms used in (b) and (c) and for
more information.

Even though we have not yet officially discussed Euclidean reflection
groups, most readers probably have some intuition about them. For exam-
ple, D∞ is a Euclidean reflection group acting on the line, and the group
of Example 3.7 is a Euclidean reflection group acting on the plane. It is
natural to wonder why reducible Euclidean reflection groups were excluded
in Remark 3.29 (and in Exercise 3.28): Given Euclidean reflection groups
W1 and W2 acting on Euclidean spaces E1 and E2, isn’t their product W a
Euclidean reflection group acting on E = E1×E2, which is a Euclidean space
and hence a manifold? And doesn’t Σ triangulate this manifold? The answer
is “yes” to the first question, but “no” to the second. The following exercise
explains what happens.

Exercise 3.30. Let (W ′, S′) and (W ′′, S′′) be Coxeter systems, and let (W,S)
be their product (with W := W ′ ×W ′′ and S := S′ ∪ S′′). Show that

Σ(W,S) ∼= Σ(W ′, S′) ∗Σ(W ′′, S′′) ,
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where the asterisk denotes the join operation. [Recall that the join ∆ of two
simplicial complexes ∆′ and ∆′′ with vertex sets V ′ and V ′′ has vertex set
equal to the disjoint union V ′ � V ′′ and has one simplex A′ ∪ A′′ for every
A′ ∈ ∆′ and A′′ ∈ ∆′′. From the poset point of view, then, ∆ is simply
the Cartesian product of ∆′ and ∆′′. But its geometric realization |∆| is not
the Cartesian product |∆′| × |∆′′|; in fact, ∆ does not even have the right
dimension for this to be true.]

Returning to the question whether a reducible Coxeter group can yield a
Coxeter complex that is a manifold, the essential point is that the join of two
manifolds that are not spheres is generally not a manifold. [But the join of
two spheres is a sphere.]

This discussion suggests that the Coxeter complex Σ(W,S) is not always
the “best” geometric model for a Coxeter group W . For example, it would
seem more reasonable to use a product of Euclidean spaces rather than a
join of Euclidean spaces in the case of a reducible Euclidean reflection group.
The result is a cell complex whose cells are products of simplices rather than
simplices. We will return to this circle of ideas in Chapter 12.

3.3 Construction of Chamber Maps

We continue to assume that (W,S) is a Coxeter system and that Σ = Σ(W,S)
is the associated Coxeter complex.

3.3.1 Generalities

In studying Σ, it is quite easy to work with the chambers and the adjacency
relations. It is awkward, on the other hand, to work with the vertices, which
correspond to the maximal (proper) standard cosets wWJ with J = S � {s}
for some s ∈ S (see Exercise 3.14). It is therefore useful that we never have to
think about the vertices, i.e., that Σ is determined by its associated chamber
system, consisting of the set of chambers [which correspond to the elements
of W ] together with the adjacency relations [given by right multiplication by
elements of S]. See Corollary 3.17 and Remark 3.18. The specific consequence
of this that we will need is that if we want to construct an endomorphism
of Σ (i.e., a chamber map φ : Σ → Σ), then we need only give a function φ′

on the chambers that is compatible with the adjacency relations.
We could deduce this from general considerations involving chamber sys-

tems, but we prefer to give a direct proof. In order to motivate the precise
statement, let’s think about what “compatible” should mean in the rough
statement given above. If we take this to mean “preserving s-equivalence for
all s,” then we are dealing only with type-preserving endomorphisms of Σ. To
handle the general case we must specify, in addition to φ′, a permutation φ′′

of S that describes how φ mixes up the vertex types (see Proposition A.14).
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The compatibility condition, then, is that φ′ takes s-equivalent chambers to
φ′′(s)-equivalent chambers.

Here, now, is the precise result:

Lemma 3.31. Endomorphisms φ of Σ are in 1–1 correspondence with pairs
(φ′, φ′′), where φ′ is a function W → W , φ′′ is a permutation of S, and
φ′(ws) = φ′(w) or φ′(w)φ′′(s) for all w ∈W and s ∈ S.

Proof. Let φ be an endomorphism of Σ. Then the restriction of φ to the
chambers yields a function φ′ : W → W . (Recall that the chambers are the
singleton standard cosets and are identified with the elements of W .) We also
have a type-change map φ∗ (Proposition A.14), which is a bijection φ′′ :=
φ∗ : S → S. Then φ takes s-adjacent chambers to φ′′(s)-equivalent chambers,
i.e., φ′(ws) = φ′(w) or φ′(w)φ′′(s).

Note that φ is completely determined by the pair (φ′, φ′′). For if A := wWJ

is an arbitrary simplex of Σ, then A is the face of cotype J of the chamber w;
so φ(A) must be the face of φ′(w) of cotype φ′′(J); in other words, φ(wWJ ) =
φ′(w)Wφ′′(J).

Finally, we must show that every pair (φ′, φ′′) as in the statement of the
lemma arises from an endomorphism φ. To this end we simply define φ, as we
must, by φ(wWJ ) = φ′(w)Wφ′′(J). It is easy to check that φ is a well-defined
chamber map that induces φ′ on the chambers and φ′′ on the types. 	


The next two subsections illustrate the lemma.

3.3.2 Automorphisms

Recall that the W -action on Σ is simply transitive on the chambers; in partic-
ular, this action is faithful, in the sense that the corresponding homomorphism
W → AutΣ is injective. Here Aut Σ denotes the group of simplicial automor-
phisms of Σ.

Proposition 3.32. The image of W ↪→ AutΣ is the normal subgroup Aut0 Σ
consisting of the type-preserving automorphisms of Σ.

(This shows, for the second time, that W is determined up to isomorphism
by its Coxeter complex Σ.)

Proof. We already know that W acts as a group of type-preserving automor-
phisms of Σ. Conversely, suppose φ is an arbitrary type-preserving automor-
phism, and let φ′ and φ′′ be its “components” as in Lemma 3.31. Then φ′′ is the
identity, so φ′(ws) = φ′(w)s for all w and s. [The possibility φ′(ws) = φ′(w) is
excluded because φ is an automorphism.] It follows easily that φ′(w) = φ′(1)w
for all w, so φ′ is left multiplication by w1 := φ′(1), and hence φ is given by the
action of w1. This proves everything except the normality of Aut0 Σ, which
is left as an exercise. 	




126 3 Coxeter Complexes

There is a second obvious source of automorphisms of Σ. Namely, there
is a homomorphism Aut(W,S) → AutΣ, where Aut(W,S) is the group of
automorphisms of W stabilizing S; for such an automorphism takes standard
cosets to standard cosets and hence induces an automorphism of Σ.

Proposition 3.33. The homomorphism Aut(W,S) → AutΣ just defined is
injective, and its image is the group Aut(Σ,C) consisting of the automor-
phisms of Σ that stabilize the fundamental chamber C = 1.

Proof. Given f ∈ Aut(W,S), its image φ ∈ AutΣ has components φ′ = f and
φ′′ := f |S . This shows that the homomorphism is injective. And φ stabilizes
C because f(1) = 1. Conversely, suppose we are given φ ∈ Aut(Σ,C), and
let φ′, φ′′ be its components. Then φ′ is a bijection satisfying φ′(1) = 1 and
φ′(ws) = φ′(w)φ′′(s). It follows that φ′(s1 · · · sd) = φ′′(s1) · · ·φ′′(sd) for all
s1, . . . , sd ∈ S. This implies that φ′ is a homomorphism, hence an automor-
phism, and that φ′(s) = φ′′(s) for all s ∈ S. Thus φ′ is in Aut(W,S) and φ is
its image in Aut(Σ,C). 	


Remark 3.34. The group Aut(W,S) is quite easy to understand, in view
of the Coxeter presentation of W : An element of this group is determined by
giving a permutation π of S that is compatible with the Coxeter matrix, in the
sense that m(π(s), π(t)) = m(s, t) for all s, t ∈ S. More concisely, Aut(W,S)
is simply the group of automorphisms of the Coxeter diagram of (W,S).

Exercises

3.35. Show that the full automorphism group of Σ is the semidirect product
Aut0 Σ � Aut(Σ,C). Hence Aut Σ ∼= W � Aut(W,S).

3.36. Suppose W is an irreducible finite reflection group. By looking at the
list in Section 1.5.6 of possible Coxeter diagrams, show that with one excep-
tion, Aut(W,S) is either trivial or of order 2. [The exception is the group of
type D4.] So, with one exception, W is either the full automorphism group of
Σ or a subgroup of index 2.

3.37. Specialize now to the case that W is the group of symmetries of a
regular solid X, and note (again by looking at the list) that Aut(W,S) is of
order 2 if and only if X is self-dual. Explain this geometrically. More precisely,
explain why an isomorphism from X to its dual induces a “type-reversing”
automorphism of Σ.

3.3.3 Construction of Foldings

As a final illustration of Lemma 3.31, we will construct maps that, intuitively,
“fold Σ onto a half-space along a wall.” The significance of this will become
clear in the next section.
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Proposition 3.38. Let C1 and C2 be adjacent chambers of Σ = Σ(W,S).
Then there is an endomorphism φ of Σ with the following properties:

(1) φ is a retraction onto its image α.
(2) Every chamber in α is the image of exactly one chamber not in α.
(3) φ(C2) = C1.

To construct φ, we may assume that C1 is the fundamental chamber C,
in which case C2 is necessarily sC for some s ∈ S. Before beginning the proof
based on Lemma 3.31, we remark that there is a very short proof that uses
the Tits cone instead of the proposition. Namely, identify Σ with the set of
cells in the latter, and let α+ (resp. α−) be the set of cells in the closed half-
space U+(s) (resp. U−(s)), where the notation is that of Sections 2.5 and 2.6.
Then we can take φ to be the map given by the reflection s on α− and by the
identity on α+. It is well defined because s is the identity on α+ ∩ α−, which
consists of the cells in Hs.

But we will give a purely combinatorial proof using Lemma 3.31. The crux
of the proof is the next lemma, which constructs the φ′ component of the
desired φ (still assuming that C1 = C and C2 = sC). Recall, for motivation,
that there are two possibilities for an element w ∈W : either l(sw) = l(w)− 1
or l(sw) = l(w) + 1. In the first case, w admits a reduced decomposition
starting with s, so there is a minimal gallery of the form C, sC, . . . , wC. We
therefore expect that there is a “wall” that separates C from sC, and this wall
should also separate C from wC. Thus we should have wC /∈ α in this case.
In the second case, there is a minimal gallery of the form C, sC, . . . , swC. So
we expect that swC is not in α but that its “mirror image” wC is in α. These
considerations motivate the following lemma and its proof:

Lemma 3.39. Fix s ∈ S. Then there is a function φs : W → W with the
following properties:

(1) φ is a retraction onto its image αs, which consists of the elements w ∈ W
such that l(sw) = l(w) + 1.

(2) Each element of αs is the image under φs of exactly one element of the
complement α′

s.
(3) The left-translation action of s on W interchanges the sets αs and α′

s.
(4) For each t ∈ S, φs takes t-adjacent elements of W to elements that are

either equal or t-adjacent.

Proof. It is clear how we should define φs:

φs(w) :=

{
w if l(sw) = l(w) + 1,

sw if l(sw) = l(w)− 1.

And it is immediate from this definition that (1)–(3) hold. It remains to
verify (4). We will prove a more precise result, which should be plausible
in view of the “folding” interpretation: Consider two t-adjacent elements w
and wt for some w ∈ W . Then we claim:
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(a) If w and wt are both in αs or both in α′
s, then φs(wt) = φs(w)t.

(b) If w is in αs and wt is in α′
s, then φs(w) = w = φs(wt).

Assertion (a) is immediate from the definition of φs. To prove (b), note that
the assumptions imply that l(sw) = l(w) + 1 and l(swt) = l(wt) − 1. This
implies, first, that l(wt) = l(w) + 1. For we have

l(wt) = l(swt) + 1 ≥ l(sw) = l(w) + 1 .

We can now apply the folding condition (F) of Section 2.3.1 to conclude that
swt = w; hence φs(wt) = swt = w, as claimed. 	


Remark 3.40. The proof explains why we called condition (F) the folding
condition.

Proof of Proposition 3.38. Assuming still that C1 = C and C2 = sC, we can
set φ′ = φs and φ′′ = idS . Everything should be clear now, except perhaps
for (1), which can be expressed by saying that φ is idempotent, i.e., that φ2 =
φ. But φ2 and φ are type-preserving chamber maps that agree on chambers;
hence they agree on all simplices. 	


3.4 Roots

We are ready, finally, to complete the circle of ideas begun in Chapter 2. Recall
that our treatment of Coxeter groups, starting in Section 2.1, was based on
the intuition that W should be a “reflection group” and that there should be
a pair of “opposite roots” for each reflection. We justified this intuition by
means of the canonical linear repesentation in Section 2.5.3. We now describe
an alternative approach to roots from a purely combinatorial point of view.

We will begin by developing, following Tits [247], a theory of roots and
reflections in an arbitrary thin chamber complex; this theory is based on the
notion of “folding” that we have already introduced informally. Once the basic
properties of foldings have been laid out, it will be evident that a Coxeter
complex Σ(W,S) does indeed possess a rich supply of roots and that W is
generated by reflections of Σ. Finally, we will prove a theorem of Tits that
characterizes the Coxeter complexes as the thin chamber complexes with a
“rich supply” of roots.

A note on terminology: We will not have root vectors in this context, but
we will have the analogues of half-spaces, and, following Tits, these will be
called “roots.” In the setting of finite reflection groups, they are of course in
canonical 1–1 correspondence with root vectors (see Section 1.5.10). Roots are
sometimes called half-apartments because Coxeter complexes are called apart-
ments in the theory of buildings, as we will see in Chapter 4. As a reminder
of the heuristic connection with the root vectors of Chapter 1, the roots in
the present chapter will be denoted by lowercase Greek letters α, β, . . . .
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3.4.1 Foldings

Let Σ be an arbitrary thin chamber complex. Recall that an endomorphism
φ of Σ is called idempotent if φ2 = φ or, equivalently, if φ is a retraction onto
its image.

Definition 3.41. A folding of Σ is an idempotent endomorphism φ such that
for every chamber C ∈ φ(Σ) there is exactly one chamber C ′ ∈ Σ � φ(Σ)
with φ(C ′) = C.

Proposition 3.38 gives many examples of foldings. More concretely, the
reader can easily visualize foldings in the finite Coxeter complexes of Chap-
ter 1 (where one folds along a hyperplane) or in the plane tiled by equilateral
triangles (Example 3.7 above).

Let φ be a folding and let α be its image φ(Σ). It is easy to see that α
is a chamber complex in its own right, since φ takes galleries to pregalleries.
Let α′ be the subcomplex of Σ generated by the chambers not in α; thus α′

consists of all such chambers and their faces. By the definition of “folding,”
then, φ induces a bijection

C(α′) ∼−→ C(α) ,

where C(α) (resp. C(α′)) denotes the set of chambers in α (resp. α′). For
brevity, we will temporarily refer to α and α′ as the halves of Σ determined
by φ.

We now define a function φ′ on C(Σ) by taking φ′|C(α′) to be the identity
and φ′|C(α) to be the inverse of the bijection above. Intuitively, φ′ is the
“folding opposite to φ”; but φ′ is not really a folding, since it is defined only
on chambers. We do not know whether, in the present generality, φ′ can be
extended to an endomorphism of Σ. Nevertheless, the following is true.

Lemma 3.42. φ′ takes adjacent chambers to chambers that are equal or ad-
jacent.

Proof. Let C and D be adjacent chambers. If they are both in α′, there is
nothing to prove. So assume that at least one of them, say C, is in α. Then
φ′(C) is the unique chamber C ′ ∈ α′ such that φ(C ′) = C. Let A := C ∩D
be the common panel of C and D, and let A′ be the panel of C ′ such that
φ(A′) = A. Finally, let D′ be the chamber adjacent to C ′ along A′. See
Figure 3.3. The figure shows the picture we expect if C and D are both in α;
the dashed vertical line in the middle is intended to suggest the “fold line,”
i.e., the “wall separating α from α′.”

Since φ(D′) is a chamber having A as a face, we must have either φ(D′) =
C or φ(D′) = D. Suppose first that D′ ∈ α′, as suggested by the picture. Then
we cannot have φ(D′) = C, since then C ′ and D′ would be distinct chambers
in α′ mapping to C. So we must have φ(D′) = D, which implies that D ∈ α
and that φ′(D) = D′. Thus φ′(D) is adjacent to φ′(C) in this case.
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DAC A′ C ′D′

α′

φ

φ′
α

Fig. 3.3. Proof of Lemma 3.42, first case.

The other possibility is that D′ ∈ α. In this case the correct picture is
presumably as in Figure 3.4, but we must prove this rigorously. Since D′ is in α,
so is its face A′. Hence A = φ(A′) = A′. Thus all four of our chambers have
the common face A. The thinness of Σ now implies that {C,D} = {C ′,D′}.

D = C ′C = D′

φ

α α′

φ′

Fig. 3.4. Proof of Lemma 3.42, second case.

Since C �= C ′ [because one is in α and the other is in α′], the only possibility
is that C = D′ ∈ α and D = C ′ ∈ α′. Thus φ′(D) = D = C ′ = φ′(C). 	


Note that as a consequence of this lemma, φ′ takes galleries to pregalleries.
In particular, it follows that α′ is a chamber complex. We now proceed to
develop the basic properties of our folding φ and the associated function φ′

and subcomplexes α and α′.

Lemma 3.43. There exists a pair C,C ′ of adjacent chambers with C ∈ α and
C ′ ∈ α′. For any such pair, we have φ(C ′) = C and φ′(C) = C ′.
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Proof. Since C(α) and C(α′) are both nonempty, there is a gallery Γ that starts
in α and ends in α′. Then Γ must cross from α to α′ at some point, whence
the first assertion. Suppose, now, that C and C ′ are as in the statement of the
lemma, and let A := C ∩ C ′. Then A < C ∈ α, so A is fixed by φ and hence
φ(C ′) has A as a face. By thinness, we must have φ(C ′) = C or φ(C ′) = C ′.
But the second possibility would imply C ′ ∈ α, so φ(C ′) = C. It now follows
from the definition of φ′ that φ′(C) = C ′. 	


Lemma 3.44. α and α′ are convex subcomplexes of Σ, in the sense that if Γ
is a minimal gallery in Σ with both extremities in α (resp. α′), then Γ lies
entirely in α (resp. α′).

Proof. Suppose Γ is a minimal gallery with both extremities in α. If Γ is not
contained in α, then it must cross from α to α′ at some point. Thus there
is a pair of consecutive chambers in Γ to which we can apply Lemma 3.43.
But then the pregallery φ(Γ ) has a repetition. We can therefore get a shorter
gallery with the same extremities as Γ , contradicting the minimality. A similar
argument (using φ′) works for α′. 	


Lemma 3.45. Let C and C ′ be as in Lemma 3.43. Then

C(α) = {D ∈ C(Σ) | d(D,C) < d(D,C ′)}

and

C(α′) = {D ∈ C(Σ) | d(D,C) > d(D,C ′)} .

In particular, no chamber of Σ is equidistant from C and C ′.

(Note that the last assertion is not vacuous, i.e., there are thin chamber com-
plexes in which a chamber D is equidistant from two adjacent chambers C,C ′.
The intuitive reason for the impossibility of this in the present context is that
the “wall” separating C from C ′ would have to cut through D, contradicting
the fact that our two halves α and α′ are subcomplexes.)

Proof. Note that the right-hand sides of the two equalities to be proved are
disjoint sets of chambers. Consequently, since α and α′ partition the chambers
of Σ, it suffices to prove that the left-hand sides are contained in the right-
hand sides. Suppose, then, that we are given a chamber D ∈ α, and let Γ be a
minimal gallery from D to C ′. Then, as before, Γ must cross from α to α′ at
some point, so we may fold it (i.e., apply φ to it) to obtain a pregallery from
D to φ(C ′) = C that has a repetition. Hence d(D,C) < d(D,C ′), as required.
A similar argument using φ′ proves the second inclusion. 	


Lemma 3.46. Suppose C and C ′ are adjacent chambers such that φ(C ′) = C.
Then φ is the unique folding taking C ′ to C.
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Proof. Note first that we have C ∈ φ(Σ) = α and C ′ ∈ α′ [because φ(C ′) �=
C ′]. So Lemma 3.45 is applicable and yields a description of the two halves α
and α′ of Σ determined by φ. If ψ is a second folding with ψ(C ′) = C, then we
can similarly apply Lemma 3.45 to obtain the same description of the halves
of Σ determined by ψ. In particular, it follows that ψ, like φ, is the identity
on α and maps C(α′) bijectively to C(α). We must show that ψ agrees with φ
on all vertices of α′.

To begin with, we know that the two foldings both take C ′ to C and fix
all vertices of the panel C ∩ C ′ of C ′; hence they agree pointwise on C ′ (i.e.,
they agree on all vertices of C ′). We will complete the proof by showing that φ
and ψ continue to agree pointwise as we move away from C ′ along a gallery Γ
in α′. It suffices to show that if φ and ψ agree pointwise on a chamber D ∈ α′

then they agree pointwise on any chamber E ∈ α′ that is adjacent to D.
Let A be the common panel D ∩ E. Let D1 := φ(D) = ψ(D), let A1 :=

φ(A) = ψ(A), and let E1 be the unique chamber distinct from D1 and having
A1 as a face; see Figure 3.5. Then necessarily φ(E) = E1 = ψ(E); for the only

DE1 A EA1 D1

α α′

Fig. 3.5. Uniqueness of foldings.

other possibility is that φ or ψ maps E to D1, contradicting the injectivity of
φ and ψ on C(α′). And φ and ψ must agree pointwise on E, since they are
already known to agree on all but one vertex of E. 	


Remark 3.47. The argument used in the previous two paragraphs will be
called the standard uniqueness argument. It will be used repeatedly as we
proceed. For pedagogical reasons, we prefer not to formalize the argument,
since we think readers will benefit from thinking it through several more times.
The basic idea to remember is the following: If a chamber map is known on
all the vertices of one chamber, then one can often figure out what it has to
do as one moves away from that chamber along a gallery. We have already
used this idea twice before: once in the proof of uniqueness of type functions
(Section A.1.3) and once in the proof of Corollary 1.131.
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Definition 3.48. We will say that the folding φ is reversible if the function φ′

defined above on chambers extends to a folding. Note that if C and C ′ are
as in Lemma 3.46, then we have φ′(C) = C ′; so if φ is reversible, then the
extension of φ′ to a folding is unique: It is the unique folding of Σ taking C
to C ′. We will use the same symbol φ′ for this extension, and we will call it
the folding opposite to φ.

Lemma 3.49. Let C and C ′ be adjacent chambers with φ(C ′) = C. Then
φ is reversible if and only if there exists a folding taking C to C ′. In this
case there is an automorphism s of Σ such that s|α = φ′ and s|α′ = φ.
This automorphism is of order 2, and it can be characterized as the unique
nontrivial automorphism of Σ that fixes C ∩ C ′ pointwise. Finally, the set of
simplices of Σ fixed by s is the subcomplex α ∩ α′ of Σ.

Proof. We have already seen that if φ is reversible then the opposite folding φ′

takes C to C ′. Conversely, suppose there is a folding φ1 such that φ1(C) = C ′.
Then we can apply Lemma 3.45 to φ1 to deduce that φ1 determines the same
halves α and α′ as φ (but with their roles reversed, i.e., α′ is the image of φ1).
In particular, φ and φ1 are both the identity on H := α ∩ α′, so there is a
well-defined endomorphism s of Σ with s|α = φ1 and s|α′ = φ. Note that H is
the full fixed-point set of s; for if A /∈ H, say A /∈ α, then s(A) = φ(A) �= A.

It is clear that s maps C(α) bijectively to C(α′), and vice versa, so s is
bijective on C(Σ). Hence s2 is bijective on C(Σ). Since s2 fixes C pointwise,
the standard uniqueness argument is applicable and shows that s2 is the
identity. In particular, s is an automorphism.

We now prove that φ1|C(Σ) = φ′, and hence that φ is reversible. Since
φ′ and φ1 are both the identity on C(α′), it suffices to consider chambers
D ∈ α. For any such D we have D = s2(D) = φ(φ1(D)), so φ1(D) is the
(unique) chamber in α′ that is mapped by φ to D. Hence φ1(D) = φ′(D) by
the definition of the latter.

Finally, to prove the characterization of s stated in the lemma, suppose
that t is another nontrivial automorphism fixing C∩C ′ pointwise. Then t must
interchange C and C ′; for otherwise t would have to fix them pointwise, and
the standard uniqueness argument would show that t is trivial. Thus t agrees
with s (pointwise) on C, and both are bijective on C(Σ). We can therefore
apply the standard uniqueness argument yet again to deduce that s = t. 	


We now introduce geometric language and summarize some of the results
above in this language.

Definition 3.50. A root of Σ is a subcomplex α that is the image of a re-
versible folding φ. In view of Lemmas 3.43 and 3.46, the folding φ is uniquely
determined by α. The subcomplex α′ generated by the chambers not in α is
again a root, being the image of the opposite folding φ′; it is called the root
opposite to α. We will often write α′ = −α. The intersection ∂α := α∩−α of
two opposite roots will be called the wall bounding ±α.
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Note that we can recover the pair of roots ±α from the wall H = ∂α and,
in fact, from any panel A of Σ that is contained in H. To see this, it suffices
to describe the foldings {φ, φ′} in terms of A: Let C1 and C2 be the chambers
having A as a face. Note that they are necessarily in opposite roots, because
α and α′ each contain a chamber ≥ A. There is a unique folding φ1 (resp. φ2)
such that φ1(C2) = C1 (resp. φ2(C1) = C2), and {φ, φ′} = {φ1, φ2}.

A wall H determines an automorphism s := sH by Lemma 3.49. It fixes H
pointwise and interchanges the two roots determined by H. For any panel
A ∈ H as in the previous paragraph, we can characterize s as the unique
nontrivial automorphism of Σ that fixes A pointwise; in particular, s is the
unique nontrivial automorphism fixing every simplex of H.

Definition 3.51. Given a wall H, we call sH the reflection of Σ with respect
to H.

Finally, two chambers C,C ′ ∈ Σ will be said to be separated by the wall H
if one is in α and the other is in −α. If the two chambers are adjacent, Lemmas
3.43 and 3.46 imply that H is then the unique wall separating them.

In case Σ is a Coxeter complex Σ(W,S), Proposition 3.38 shows that every
pair C1, C2 of adjacent chambers is separated by a wall. For we have a folding
taking C2 to C1 and also one taking C1 to C2; these foldings are therefore
opposite to one another by Lemma 3.49 and determine a wall separating
C1 from C2. If C1 and C2 are C and sC for some s ∈ S, where C is the
fundamental chamber, it is easy to see that the reflection associated to this
wall is given by the action of s. It follows that the reflections of Σ determined
by all possible walls are precisely the elements of W that we called reflections
in Chapter 2.

For future reference, let’s explicitly spell out what the roots look like in this
example, starting with the “simple roots.” As in Definition 3.3, we identify
the chambers of Σ = Σ(W,S) with the elements of W . For each s ∈ S there
is then a unique root αs with 1 ∈ αs and s /∈ αs. In view of Lemma 3.45, its
set of chambers is given by

C(αs) = {w ∈W | l(sw) > l(w)} . (3.2)

See also Lemma 3.39, where the folding onto αs was explicitly constructed.
The general root, then, is gotten from roots of the form αs by using the
W -action. Explicitly, if we are given a pair of adjacent chambers w,ws with
w ∈W and s ∈ S, then wαs is the root containing w but not ws.

The reader who prefers to think of all this in terms of the Tits cone can eas-
ily reformulate the definitions from that point of view. For example, the roots
correspond in the obvious way to the closed half-spaces associated with the
hyperplanes that were called walls in Sections 2.5 and 2.6; see the paragraph
following the statement of Proposition 3.38.
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Example 3.52. Let W be the symmetric group on n letters with its standard
generating set S = {s1, . . . , sn−1}, where si is the transposition that inter-
changes i and i + 1. In Example 1.119 we studied roots in Σ(W,S) from the
point of view of finite reflection groups. We show now how the present com-
binatorial approach leads to the same conclusions. We need some preliminary
observations.

For any permutation π ∈ W , let ι(π) be the number of inversions of π,
i.e., the number of ordered pairs (i, j) with 1 ≤ i < j ≤ n and π(i) > π(j).
For any 1 ≤ i ≤ n− 1 one easily checks that

π(i) < π(i + 1) =⇒ ι(πsi) = ι(π) + 1,
π(i) > π(i + 1) =⇒ ι(πsi) = ι(π)− 1.

Indeed, if one identifies a permutation π with the list π(1), . . . , π(n), then the
effect of right-multiplying by si is to interchange the elements in positions i
and i + 1. Our assertions follow at once. One can very quickly deduce that
ι(π) = l(π), a fact that we have already proven twice by other methods (see
Example 1.81 and Exercise 1.125). Consequently,

l(πsi) > l(π) ⇐⇒ π(i) < π(i + 1) . (3.3)

Returning now to roots, we can use (3.3) and (3.2) to get the following
concrete description of the simple root αi := αsi

for 1 ≤ i ≤ n− 1:

C(αi) =
{
π ∈W | π−1(i) < π−1(i + 1)

}
. (3.4)

To see this, note that

π ∈ αi ⇐⇒ l(siπ) > l(π) by (3.2)

⇐⇒ l(π−1si) > l(π−1) since l(w) = l(w−1)

⇐⇒ π−1(i) < π−1(i + 1) by (3.3) .

An arbitrary root α has the form wαi for some w ∈ W and 1 ≤ i ≤ i + 1,
and one checks that its chamber set is

{
π ∈W | π−1(w(i)) < π−1(w(i + 1))

}
.

Now w(i) and w(i + 1) can be any pair of integers i �= j with 1 ≤ i, j ≤ n.
So we have arrived at the same conclusion as in Example 1.119: Σ has one
root αij for each ordered pair of integers i, j with 1 ≤ i, j ≤ n and i �= j. Its
chamber set is given by

C(αij) =
{
π ∈ W | π−1(i) < π−1(j)

}
.

We close this subsection by recording two simple but useful facts about
roots and walls. The first is that one cannot have nested roots in a spherical
Coxeter complex. (In fact, we will see in Section 3.6.8 that this property
characterizes spherical Coxeter complexes.)

Lemma 3.53. If α and β are distinct roots of a spherical Coxeter complex Σ,
then α � β.
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Proof. This is obvious from the point of view of Chapter 1, where roots cor-
respond to half-spaces whose bounding hyperplanes pass through the origin.
Alternatively, the lemma follows from the fact that α and β have the same
finite number of chambers, equal to half the number of chambers in Σ. See
Exercise 3.56 for a third proof. 	


For the final observation, recall that a subcomplex ∆′ of a simplicial com-
plex ∆ is said to be full if it contains every simplex of ∆ whose vertices are
all in ∆′.

Lemma 3.54. Roots and walls in a thin chamber complex Σ are full subcom-
plexes.

Proof. For roots, this follows from Lemma A.15. For walls the result follows
from the fact that a wall is an intersection of two roots. Alternatively, one can
use the fact that a wall is the fixed-point set of a reflection. 	


Exercises

3.55. Let ±α be a pair of opposite roots with bounding wall H := α ∩ −α,
and let C,C ′ be chambers with C ∈ α and C ′ ∈ −α. Recall that one can speak
of the gallery distance d(−,−) between arbitrary simplices (Section A.1.3).
Prove the following generalization of Lemma 3.45:

α � H = {A ∈ Σ | d(A,C) < d(A,C ′)} ,

−α � H = {A ∈ Σ | d(A,C) > d(A,C ′)} ,

H = {A ∈ Σ | d(A,C) = d(A,C ′)} .

3.56. Give a proof of Lemma 3.53 based on the opposition involution (Sec-
tion 1.6.2).

3.57. Let α be a root and s the associated reflection. If C and C ′ are chambers
in α, show that d(C, sC ′) > d(C,C ′).

3.58. This is a continuation of Example 3.52. Thus W is the symmetric group
on n letters with its standard generating set S. According to Exercise 1.112
and its solution, Σ := Σ(W,S) is isomorphic to the flag complex Σ′ of proper,
nonempty subsets of {1, 2, . . . , n}. We wish to describe the roots αij from this
point of view. Given indices 1 ≤ i, j ≤ n with i �= j, let α′

ij be the root of Σ′

corresponding to αij under the canonical isomorphism between Σ and Σ′.

(a) Show that the vertices of α′
ij are the proper nonempty subsets X ⊂

{1, . . . , n} such that j ∈ X =⇒ i ∈ X.
(b) Show that the vertices of ∂α′

ij are the proper nonempty subsets X ⊂
{1, . . . , n} such that i ∈ X ⇐⇒ j ∈ X.

(c) Show that the interior vertices of α′
ij (i.e., the vertices in α′

ij � ∂α′
ij) are

the proper nonempty subsets X ⊂ {1, . . . , n} such that i ∈ X and j /∈ X.
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3.59. Let (W,S) be a Coxeter system.

(a) Prove the following strong form of the exchange condition: Given w ∈W ,
suppose t is a reflection such that l(tw) < l(w). Then for any decomposi-
tion w = s1 · · · sd, there is an index i such that tw = s1 · · · ŝi · · · sd. (Note
that if t ∈ S, this essentially reduces to the exchange condition stated in
Section 2.3.1, except that there we also required the decomposition of w
to be reduced.)

(b) Given w,w′ ∈ W , show that the following conditions are equivalent:
(i) For every decomposition w = s1 · · · sd, there is an index i such that

w′ = s1 · · · ŝi · · · sd.
(ii) For some reduced decomposition w = s1 · · · sd, there is an index i

such that w′ = s1 · · · ŝi · · · sd.
(iii) l(w′) < l(w), and there is a reflection t such that w′ = tw.

(c) The Bruhat graph of (W,S) is the directed graph with vertex set W and
with a directed edge w′ → w whenever w′ and w satisfy the equivalent
conditions in (b). Show that this graph is acyclic (i.e., there are no di-
rected cycles). Consequently, there is a partial order on W , called the
Bruhat order, with w′ ≤ w if and only if there is a directed path

w′ = w0 → w1 → · · · → wk = w

from w′ to w (k ≥ 0).

(d) Given w ∈ W and s ∈ S, note that sw and w are always comparable
in the Bruhat order: We have w < sw if l(sw) > l(w), and sw < w
otherwise. So the expression “max {sw,w}” is meaningful. Prove now
that if w′ < w then sw′ ≤ max {sw,w} for any s ∈ S. [Note that we
might have sw′ = w = max {sw,w}, so equality can definitely hold. If
l(sw) > l(w), however, then length considerations show that we must
have sw′ < max {sw,w} = sw.]

(e) Given w,w′ ∈ W , show that the following conditions are equivalent:
(i) w′ < w in the Bruhat order.
(ii) For every decomposition of w as a product of elements of S, there is

a decomposition of w′ obtained by deleting one or more letters.
(iii) For some reduced decomposition of w, there is a decomposition of w′

obtained by deleting one or more letters.

Remark 3.60. The Bruhat order was introduced by Chevalley in a widely
circulated unpublished manuscript in the late 1950s. It arose in connection
with his study of inclusion relations among “Schubert varieties.” A slightly
edited version of Chevalley’s paper finally appeared in print in 1994; see [82].
In a foreword to that paper, Borel pointed out that the name “Chevalley
order” would be more appropriate than “Bruhat order,” and he proposed
“Bruhat–Chevalley order” as a compromise. This suggestion does not seem
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to have gained wide acceptance, probably because there is too much existing
literature referring to the Bruhat order. See Humphreys [133, Sections 5.9–
5.11] for more information about the Bruhat order and for further references.

3.61. Let ±α be a pair of opposite roots, let C,C ′ be adjacent chambers with
C ∈ α and C ′ ∈ −α, and let v be the vertex of C not in the common panel
C ∩ C ′. Show that v /∈ −α.

3.62. Let Σ be the Coxeter complex Σ(W,S). For any simplex A ∈ Σ, show
that the stabilizer WA of A in W is generated by the reflections sH , where H
ranges over the walls containing A.

3.63. You have now seen the standard uniqueness argument applied several
times. Try to write down a lemma that includes all of these applications.
[Warning : Unless you have incredible foresight, you can expect to have to
modify your lemma one or more times as you see further applications of the
argument. In fact, this might even happen in the next few pages.]

3.4.2 Characterization of Coxeter Complexes

It should now be clear that Coxeter complexes possess a good theory of roots.
Our next goal is to show that this property characterizes Coxeter complexes
among the thin chamber complexes. Since we will be considering chamber
complexes that are not necessarily given to us as Σ(W,S), it is convenient to
slightly expand our previous terminology.

Definition 3.64. A simplicial complex Σ is called a Coxeter complex if it is
isomorphic to Σ(W,S) for some Coxeter system (W,S). It is called a spherical
Coxeter complex if it is finite.

This differs from our previous use of the term “Coxeter complex” in that
we do not assume that Σ = Σ(W,S). In fact, we do not assume that we are
given a specific isomorphism Σ ∼−→ Σ(W,S) as part of the structure of Σ. In
particular, no chamber of Σ has been singled out as “fundamental.”

The following theorem of Tits says, roughly speaking, that Coxeter com-
plexes can be characterized as the thin chamber complexes with “enough”
roots.

Theorem 3.65. A thin chamber complex Σ is a Coxeter complex if and only
if every pair of adjacent chambers is separated by a wall.

(We can restate the condition of the theorem as follows: For every ordered
pair C,C ′ of adjacent chambers, there is a folding φ of Σ with φ(C ′) = C.
We do not need to specify here that φ is reversible; for this follows, as we saw
above in the case of Σ(W,S), from the existence of a folding taking C ′ to C.)
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Proof of Theorem 3.65 (start). We have already proven the “only if” part.
For the converse, assume that every pair of adjacent chambers is separated by
a wall. Choose an arbitrary chamber C, called the fundamental chamber, and
let S be the set of reflections determined by the panels of C. Let W ≤ AutΣ
be the subgroup generated by S. We will prove that (W,S) is a Coxeter system
and that Σ ∼= Σ(W,S).

We could simply repeat, essentially verbatim, the arguments that led to
the analogous results for finite reflection groups in Chapter 1. For the sake
of variety, however, we will use a different method. This is actually a little
longer, but it adds some geometric insight that we would not get by repeating
the previous arguments. In particular, it gives a simple geometric explanation
of the deletion condition.

We now proceed with a sequence of lemmas, after which we can complete
the proof.

Lemma 3.66. W acts transitively on the chambers of Σ.

Proof. This is identical to the proof given in Chapter 1 for finite reflection
groups (Theorem 1.69). 	


Lemma 3.67. Σ is colorable.

Proof. Let C be the subcomplex Σ≤C . It suffices to show that C is a retract
of Σ. The idea for showing this is to construct a retraction ρ by folding and
folding and folding. . . , until the whole complex Σ has been folded up onto C.

To make this precise, let C1, . . . , Cn be the chambers adjacent to C, and
let φ1, . . . , φn be the foldings such that φi(Ci) = C. Let ψ be the composite
φn ◦ · · · ◦φ1. We claim that d(C,ψ(D)) < d(C,D) for any chamber D �= C. To
prove this, let Γ : C,C ′, . . . , D be a minimal gallery from C to D; we will show
that ψ(Γ ) has a repetition. If φ1(Γ ) has a repetition, we are done. Otherwise,
the standard uniqueness argument shows that φ1 fixes all the chambers of Γ
pointwise. In this case, repeat the argument with φ2, and so on. Eventually
we will be ready to apply the folding φi that takes C ′ to C. If the previous
foldings did not already produce a repetition in Γ , then they have fixed Γ
pointwise, and the application of φi yields a pregallery with a repetition. This
proves the claim.

It follows that for any chamber D, ψk(D) = C for k sufficiently large. Since
ψ fixes C pointwise, this implies that the “infinite iterate” ρ := limk→∞ ψk is
a well-defined chamber map that retracts Σ onto C. 	


It will be convenient to choose a fixed type function τ with S as the set
of types, analogous to the canonical type function that we used earlier in
the chapter. To this end we assign types to the vertices of the fundamental
chamber C by declaring that the panel fixed by the reflection s ∈ S is an
s-panel. We then extend this to all of Σ by means of a retraction ρ of Σ
onto C. Note that this type function τ has a property that by now should be
very familiar: For any s ∈ S, the chambers C and sC are s-adjacent.
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Lemma 3.68. Foldings and reflections are type-preserving; hence all elements
of W are type-preserving. Consequently, wC and wsC are s-adjacent for any
w ∈W and s ∈ S.

Proof. A folding φ fixes at least one chamber pointwise, so the type-change
map φ∗ is the identity (see Proposition A.14). This proves that foldings are
type-preserving, and everything else follows from this. 	


If Γ : C0, . . . , Cd is a gallery and Hi is the wall separating Ci−1 from Ci,
then, as usual, we will say that H1, . . . , Hd are the walls crossed by Γ .

Lemma 3.69. If Γ : C0, . . . , Cd is a minimal gallery, then the walls crossed
by Γ are distinct and are precisely the walls separating C0 from Cd. Hence
the distance between two chambers is equal to the number of walls separating
them.

Proof. Suppose H is a wall separating C0 from Cd. Let ±α be the correspond-
ing roots, say with C0 ∈ α and Cd ∈ −α. Then there must be some i with
1 ≤ i ≤ d such that Ci−1 ∈ α and Ci ∈ −α. Since α and −α are convex
(Lemma 3.44), it follows that we have C0, . . . , Ci−1 ∈ α and Ci, . . . , Cd ∈ −α.
In other words, Γ crosses H exactly once. Now suppose H is a wall that does
not separate C0 from Cd. Then C0 and Cd are both in the same root α, so
the convexity of α implies that Γ does not cross H. 	


The crux of the proof of Lemma 3.69, obviously, is the convexity of roots,
which in turn was based on the idea of using foldings to shorten galleries.
We can now use this same idea to prove a geometric analogue of the deletion
condition. The statement uses the notion of type of a gallery (Definition 3.22).

Lemma 3.70. Let Γ be a gallery of type s = (s1, . . . , sd). If Γ is not minimal,
then there is a gallery Γ ′ with the same extremities as Γ such that Γ ′ has type
s′ = (s1, . . . , ŝi, . . . , ŝj , . . . , sd) for some i < j.

Proof. Since Γ is not minimal, Lemma 3.69 implies that the number of walls
separating C0 from Cd is less than d. Hence the walls crossed by Γ cannot
all be distinct; for if a wall is crossed exactly once by Γ , then it certainly
separates C0 from Cd. We can therefore find a root α and indices i, j, with
1 ≤ i < j ≤ d, such that Ci−1 and Cj are in α but Ck ∈ −α for i ≤ k < j; see
Figure 3.6. Let φ be the folding with image α. If we modify Γ by applying φ
to the portion Ci, . . . , Cj−1, we obtain a pregallery with the same extremities
that has exactly two repetitions:

C0, . . . , Ci−1, φ(Ci), . . . , φ(Cj−1), Cj , . . . , Cd .

So we can delete Ci−1 and Cj to obtain a gallery Γ ′ of length d − 2. The
type s′ of Γ ′ is (s1, . . . , ŝi, . . . , ŝj , . . . , sd) because φ is type-preserving. 	


Lemma 3.71. The action of W is simply transitive on the chambers of Σ.
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Fig. 3.6. A geometric proof of the deletion condition.

Proof. We have already noted that the action is transitive. To prove that the
stabilizer of C is trivial, note that if wC = C then w fixes C pointwise, since w
is type-preserving. But then w = 1 by the standard uniqueness argument. 	


It follows from Lemma 3.71 that we have a bijection W → C(Σ) given
by w �→ wC. This yields the familiar 1–1 correspondence between galleries
starting at C and words s = (s1, . . . , sd), where the gallery (Ci) corresponding
to s is given by Ci := s1 · · · siC for i = 0, . . . , d. In view of Lemma 3.68, the
type of this gallery is the word s that we started with. So a direct translation
of Lemma 3.70 into the language of group theory yields the deletion condition
for (W,S). Consequently:

Lemma 3.72. (W,S) is a Coxeter system. 	


Remark 3.73. Another way to prove that (W,S) is a Coxeter system is to
verify condition (A) of Chapter 2 by using the action of W on the set of roots
of Σ. Indeed, Lemma 3.66 implies that every panel of Σ is W -equivalent to a
face of C. Hence every reflection of Σ is W -conjugate to an element of S. This
shows that the “reflections” in W , in the sense of Definition 2.1, are precisely
the reflections of Σ obtained from the theory of foldings. We can therefore
identify the set T used in Chapter 2 with the set of reflections of Σ, and we
can identify T ×{±1} with the set of roots of Σ. The action of W on the roots
therefore yields an action of W on T × {±1} with the properties required for
condition (A). Details are left to the interested reader.

For the next lemma, we need a simplicial analogue of the concept of “strict
fundamental domain” (Definition 1.103).

Definition 3.74. If a group G acts on a simplicial complex ∆, then we call a
set of simplices ∆′ ⊆ ∆ a simplicial fundamental domain if ∆′ is a subcomplex
of ∆ and is a set of representatives for the G-orbits of simplices.
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(This yields a strict fundamental domain |∆′| for the action of G on the
geometric realization |∆|.)

Lemma 3.75. The subcomplex C := Σ≤C is a simplicial fundamental domain
for the action of W on Σ. Moreover, the stabilizer of the face of C of cotype J
is the standard subgroup WJ of W .

Proof. The first assertion follows from the transitivity of W on the chambers,
together with the fact that W is type-preserving. To prove the second, let A
be a face of C and let τ(A) = S � J . It follows from the definition of τ that
J is the set of elements of S that fix A pointwise. In particular, the subgroup
WJ stabilizes A. To prove that WJ is the full stabilizer, suppose wA = A. We
will show by induction on l(w) that w ∈ WJ . We may assume w �= 1, so we
can write w = sw′ with s ∈ S and l(w′) < l(w). Our correspondence between
words and galleries now implies that there is a minimal gallery of the form
C, sC, . . . , wC. By Lemma 3.69, then, the wall H corresponding to s separates
C from wC.

Let α be the root bounded by H that contains C. Then wC ∈ −α = sα,
so we have w′C ∈ α. The equation wA = A now yields

w′A = sA ∈ α ∩ sα = H ,

hence A ∈ H and w′A = A. We therefore have s ∈ J [because s fixes A
pointwise] and w′ ∈WJ by induction; thus w = sw′ ∈ WJ . 	


We have now done all the work required to complete the proof of the
theorem.

Proof of Theorem 3.65 (end). Recall that we have assumed that every pair of
adjacent chambers in Σ is separated by a wall, and we are trying to prove that
Σ is a Coxeter complex. By Lemma 3.72, we have a Coxeter system (W,S),
and Lemma 3.75 easily yields an isomorphism Σ ∼= Σ(W,S). Thus Σ is a
Coxeter complex. 	


Example 3.76. Let Σ be the plane tiled by equilateral triangles. It is geo-
metrically evident that we can construct, for any adjacent chambers C,C ′, a
folding taking C ′ to C. So Σ is indeed a Coxeter complex, as claimed in Ex-
ample 3.7. To see that the Coxeter group W is the one given in that example,
one can compute the orders of pairwise products of fundamental reflections,
or one can observe that the link of every vertex is a hexagon.

The last assertion of Lemma 3.69 is the analogue of a fact that we used
many times in Chapter 1, giving two different ways of computing the distance
between two chambers. The final result of this section generalizes this to
arbitrary simplices. Recall that one can talk about the gallery distance d(A,B)
between arbitrary simplices (Section A.1.3).
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Definition 3.77. We say that a wall H strictly separates two simplices if
they are in opposite roots determined by H and neither is in H. We denote
by S(A,B) the set of walls that strictly separate two simplices A and B.

Proposition 3.78. For any two simplices A,B in a Coxeter complex Σ, we
have

d(A,B) = |S(A,B)| ,
i.e., d(A,B) is equal to the number of walls H that strictly separate A from B.
More precisely, the walls crossed by any minimal gallery from A to B are
distinct and are precisely the walls in S(A,B).

Proof. A proof from the point of view of the Tits cone was sketched in Sec-
tion 2.7. Here is a combinatorial proof: Let Γ : C0, . . . , Cd be a minimal gallery
from A to B. Then it is also a minimal gallery from C0 to Cd, so it crosses d
distinct walls, and these are the walls separating C0 from Cd. It is immediate
that S(A,B) ⊆ S(C0, Cd), so Γ crosses all the walls in S(A,B). We must
show, conversely, that every wall H crossed by Γ is in S(A,B). Suppose not.
Then there is a root α bounded by H that contains both A and B. But then
we can get a shorter gallery from A to B by applying the folding of Σ onto α.
This contradicts the minimality of Γ . 	


We close this section by making some remarks that will be useful later,
concerning links. Given a simplex A in a Coxeter complex Σ, recall that its
link Σ′ := lkΣ A is again a Coxeter complex (Proposition 3.16). We wish to
explicitly describe its walls and roots. Suppose H is a wall of Σ containing A,
and let ±α be the corresponding roots. Then one checks immediately from
the definitions that H ′ := H ∩ Σ′ is a wall of Σ′, with associated roots
±α′ := ±α ∩Σ′.

Proposition 3.79. The function H �→ H ′ := H ∩ Σ′ is a bijection from the
set of walls of Σ containing A to the set of walls of Σ′. Similarly, the function
α �→ α′ := α ∩ Σ′ is a bijection from the set of roots of Σ whose boundary
contains A to the set of roots of Σ′.

Proof. It suffices to prove the first assertion. Since a wall of Σ′ is completely
determined by any panel that it contains, we can reformulate the assertion as
follows: For any panel P ′ of Σ′, there is a unique wall H of Σ with A ∈ H
and P ′ ∈ H ∩ Σ′. Equivalently, there is a unique wall of Σ containing the
simplex P := P ′ ∪ A. [The equivalence follows from the fact that walls are
full subcomplexes by Lemma 3.54.] Since P is a panel of Σ, the proposition
is now immediate. 	


Remark 3.80. Recall that we may identify Σ′ with Σ≥A via B′ �→ B′ ∪ A
for B′ ∈ Σ′, and B �→ B � A for B ∈ Σ≥A. If we make this identification,
then the bijections in the proposition are still given by intersection. In other
words, if H is a wall of Σ containing A and H ′ := H ∩Σ′, then
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{B ∈ Σ≥A | (B � A) ∈ H ′} = H ∩Σ≥A ,

and similarly for roots.

Exercises

Assume throughout these exercises that Σ is a Coxeter complex.

3.81. Let H be a wall with associated roots ±α, and let A be an arbitrary
simplex. Show that A ∈ H if and only if there are chambers C,C ′ ≥ A with
C ∈ α and C ′ ∈ −α.

3.82. With the notation of the previous exercise, if A ∈ H show that the
chambers C,C ′ can be taken to be adjacent. Thus there is a panel P in Σ
such that A ≤ P ∈ H.

3.83. Assume that Σ is infinite.

(a) Show that Σ has infinitely many walls.
(b) Assume that Σ is irreducible (i.e., its Coxeter diagram is connected).

For every vertex x of Σ, show that there are infinitely many walls not
containing x. [See Lemma 2.92 for the same result expressed in terms of
the Tits cone.]

3.5 The Weyl Distance Function

In this section we introduce an important tool, whose usefulness will become
more and more apparent as we develop the theory of buildings. Let Σ be a
Coxeter complex. Choose a type function on Σ with values in a set S, which
is not necessarily given to us as the set of generators of a Coxeter group.

Definition 3.84. The Coxeter matrix of Σ is the matrix M =
(
m(s, t)

)
s,t∈S

defined by
m(s, t) := diam(lk A) ,

where A is any simplex of cotype {s, t} (see Remark 3.21). Note that if
Σ = Σ(W,S) for some Coxeter system (W,S) and we use the canonical type
function, then M is the Coxeter matrix of (W,S). It follows that M is well de-
fined in general. The Weyl group of Σ is defined to be the Coxeter group WM

defined by M . It has generating set S and defining relations (st)m(s,t) = 1.

Note that if Σ is given to us as Σ(W,S) (with its canonical type function),
then WM is the group W that we started with. The following result is therefore
not surprising:

Proposition 3.85. There is a type-preserving isomorphism Σ ∼= Σ(WM , S),
where Σ(WM , S) is given its canonical type function with values in S.
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Proof. By definition, there is a simplicial isomorphism φ : Σ ∼−→ Σ(W ′, S′)
for some Coxeter system (W ′, S′). Let φ∗ : S → S′ be the induced type-
change bijection (Proposition A.14), where Σ(W ′, S′) is given its canonical
type function. For any s, t ∈ S and any simplex A of cotype {s, t}, the image
A′ := φ(A) has cotype {s′, t′}, where s′ := φ∗(s) and t′ := φ∗(t). Since φ
induces an isomorphism lkΣ A ∼−→ lkΣ′ A′, it follows that m(s, t) = m′(s′, t′),
where m′(−,−) denotes the Coxeter matrix of (W ′, S′). Hence φ∗ extends
to an isomorphism (WM , S) ∼−→ (W ′, S′) of Coxeter systems, which in turn
induces an isomorphism ψ : Σ(WM , S) ∼−→ Σ(W ′, S′). Note that the induced
type-change bijection ψ∗ : S → S′ is equal to φ∗. It follows that the composite
isomorphism ψ−1 ◦ φ : Σ ∼−→ Σ(WM , S) is type-preserving. 	


This motivates the following terminology.

Definition 3.86. Let (W,S) be a Coxeter system with Coxeter matrix M .
We say that a Coxeter complex Σ is of type (W,S) (or of type M) if Σ comes
equipped with a type function having values in S such that the Coxeter matrix
of Σ is M or, equivalently, such that there is a type-preserving isomorphism
Σ ∼−→ Σ(W,S). We can then identify W with the Weyl group WM of Σ.

We now wish to define a function δ : C(Σ)×C(Σ) → WM , called the Weyl
distance function, such that

d(C1, C2) = l
(
δ(C1, C2)

)
(3.5)

for any two chambers C1, C2. Intuitively, δ(C1, C2) is something like a vector
pointing from C1 to C2; it tells us the distance from C1 to C2 as well as what
“direction” to go in to get from C1 to C2.

To define δ(C1, C2), choose an arbitrary gallery from C1 to C2, let
(s1, s2, . . . , sd) be its type, and set

δ(C1, C2) := s1s2 · · · sd ∈WM . (3.6)

To see that the right-hand side is independent of the choice of gallery, we
may assume that Σ = Σ(W,S) with its canonical type function. Then we can
identify C(Σ) with W , and a gallery of type (s1, . . . , sd) from a chamber w1

to a chamber w2 has the form w1, w1s1, . . . , w1s1 · · · sd = w2. Hence the right-
hand side of (3.6) is equal to w−1

1 w2, which is indeed independent of the choice
of gallery. See Figure 3.2 for an example, where δ(C,D) = utstu = ustsu.

This discussion gives us a concrete interpretation of δ as a “difference” map
W ×W →W , sending (w1, w2) to w−1

1 w2, when Σ = Σ(W,S). Equivalently,

δ(w1C,w2C) = w−1
1 w2 , (3.7)

where C is the fundamental chamber. In particular,

δ(C,wC) = w . (3.8)
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One can also deduce from the discussion that for arbitrary Σ, galleries from
C1 to C2 are in 1–1 correspondence with decompositions of δ(C1, C2), and
minimal galleries correspond to reduced decompositions.

Finally, returning to an arbitrary Coxeter complex of type (W,S) we show
that δ extends in a natural way to a function on arbitrary pairs of simplices.
Let A be a simplex of cotype J and let B be a simplex of cotype K (J,K ⊂ S).
Consider the set of elements δ(C,D), where C and D are chambers with C ≥ A
and D ≥ B. We claim that this set is a double coset WJwWK . To see this,
we may assume Σ = Σ(W,S) with its canonical type function. Thus A is a
coset w1WJ , B is a coset w2WK , C corresponds to an arbitrary element of A,
and D corresponds to an arbitrary element of B. The set of elements δ(C,D)
is then the set of differences A−1B :=

{
a−1b | a ∈ A, b ∈ B

}
, which is the

double coset (w1WJ )−1(w2WK) = WJw−1
1 w2WK , whence the claim.

We can now define δ(A,B) to be the element of minimal length in the
double coset (see Proposition 2.23). Note that pairs C,D with C ≥ A, D ≥ B,
and δ(C,D) = δ(A,B) are precisely those pairs such that there is a minimal
gallery from A to B of the form

C = C0, . . . , Cl = D .

We have proved the following:

Proposition 3.87. Let Σ be a Coxeter complex of type (W,S), and let A
and B be arbitrary simplices. Then there is an element δ(A,B) ∈ W such
that

δ(A,B) = δ(C0, Cl)

for any minimal gallery C0, . . . , Cl from A to B. In particular,

d(A,B) = l
(
δ(A,B)

)
. 	


Note that reduced decompositions of δ(A,B) are not necessarily in 1–1
correspondence with minimal galleries from A to B, since in general there is
more than one possible C0 that can start such a gallery. The reader can easily
find examples of this in Figure 3.2. We will get a clearer understanding of this
phenomenon in the next section.

Exercise 3.88. Prove the following strong version of the triangle inequality:
Given three chambers C1, C2, C3, we have δ(C1, C3) = δ(C1, C2)δ(C2, C3).

3.6 Products and Convexity

This section gives analogues for Coxeter complexes of some of the results of
Chapter 1 on hyperplane arrangements. The results should all be believable
because of this analogy, but there are technicalities. The reader anxious to get
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to buildings may want to skip ahead to Chapter 4 and return to the present
section as needed.

Throughout this section, Σ denotes an arbitrary Coxeter complex in the
sense of Definition 3.64, and H denotes its set of walls (Definition 3.50). For
each pair ±α of opposite roots, we arbitrarily declare one of them to be
positive and the other negative. The most common convention is to choose a
“fundamental chamber” C and declare a root to be positive if it contains C.

3.6.1 Sign Sequences

Let A be a simplex of Σ and let H be a wall with its associated pair of
roots ±α, where α is the positive one. We have three possibilities: A is in α
but not −α, A is in −α but not α, or A is in H. We set σH(A) = +, −, or 0,
accordingly. The resulting family

σ(A) :=
(
σH(A)

)
H∈H

is the sign sequence of A.

Remark 3.89. If Σ = Σ(W,S), the sign sequence just defined can be iden-
tified with the sign sequence introduced in our study of the Tits cone (Sec-
tion 2.6).

The first observation is that the sign sequence determines the face relation
in the expected way. As in Definition 1.20, we order sign sequences coordi-
natewise, with the convention that 0 < + and 0 < − .

Proposition 3.90. Given simplices A,B ∈ Σ, we have B ≤ A if and only if
σ(B) ≤ σ(A). In particular, A = B if and only if σ(A) = σ(B), i.e., a simplex
is uniquely determined by its sign sequence.

Proof. If one wants to use the Tits cone, the result is already contained in
Section 2.6 (see the paragraph following Definition 2.79). But here is a purely
combinatorial proof.

Suppose B ≤ A. Then σ(B) ≤ σ(A), since every root containing A must
contain B (roots are subcomplexes). Conversely, suppose σ(B) ≤ σ(A). Then
Proposition 3.78 implies that d(A,B) = 0. In other words, there is a cham-
ber C having both A and B as faces. We now show that every vertex v of B
is also a vertex of A. Let P be the panel of C not containing v, and let H be
the wall containing P . Then v /∈ H (Exercise 3.61), so σH(B) �= 0 and hence
σH(A) �= 0. Thus A is not a face of the panel P , which means that v is a
vertex of A. 	

Exercise 3.91. Show that a simplex A is a chamber if and only if σH(A) �= 0
for all H ∈ H.

We will make extensive use of sign sequences, primarily in connection
with products (Section 3.6.4 below). But first we pause to give two easier
applications, the first involving convexity and the second involving supports.
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3.6.2 Convex Sets of Chambers

Definition 3.92. Let ∆ be a chamber complex, and let C := C(∆) be its set
of chambers. A subset D ⊆ C is called convex if it is nonempty and for all
D,D′ ∈ D, every minimal gallery in C from D to D′ is contained in D.

For example, C(α) is a convex subset of C(Σ) for any root α of our Coxeter
complex Σ (Lemma 3.44). We can get further examples from this one, since
an intersection of convex sets is convex (if it is nonempty). For example:

Proposition 3.93. For any simplex A ∈ Σ, the set C(Σ)≥A of chambers
having A as a face is convex. More concisely, residues are convex.

Proof. Proposition 3.90 implies that C(Σ)≥A is an intersection of convex sets
of the form C(α) for various roots α, one for each wall H such that σH(A) �= 0.
This proves the first assertion, and the second assertion is simply a restatement
of the first (see Corollary 3.17). 	


We will study convexity systematically in Section 3.6.6, but we give here
one further result, since we have just been talking about intersections of roots.

Proposition 3.94. Let D be a nonempty set of chambers in Σ. Then D is a
convex subset of C(Σ) if and only if D is an intersection of sets C(α) for some
family of roots α.

Proof. It suffices to prove the “only if” part. The proof is essentially the same
as the solution to Exercise 1.65 [see also Proposition 2.97], but for variety,
we will say it in a slightly different way that will yield extra information (see
Exercise 3.97).

By a boundary panel of D we mean a panel A such that one of the two
chambers having A as a face is in D and the other is not. Let these two
chambers be denoted by D,D′, with D ∈ D, and let α = αA be the root
containing D but not D′. Assume now that D is convex. We claim that D ⊆ α.
For suppose E ∈ D but E /∈ α. Then d(E,D) = d(E,D′) + 1 by Lemma 3.45,
and hence there is a minimal gallery from E to D passing through D′. By
convexity this implies D′ ∈ D, contradicting our assumptions.

To complete the proof we will show that

D =
⋂

A

C(αA) ,

where A ranges over the boundary panels of D. If C is a chamber of Σ not in D,
we must find a boundary panel A with C /∈ αA. Choose D ∈ D at minimal
distance from C, and let D,D′, . . . , C be a minimal gallery from D to C. Then
D′ /∈ D, so A := D ∩ D′ is a boundary panel. Since d(C,D′) < d(C,D), we
have D /∈ αA by Lemma 3.45, as required. 	
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Exercises

3.95. Give an alternative proof of Proposition 3.93 using properties of reduced
words in Coxeter groups.

3.96. Let α be a root, and let C be a chamber not in α but adjacent to a
chamber in α. Show that C(α) is maximal among the convex sets of chambers
not containing C.

3.97. Let D be a nonempty convex set of chambers in Σ, and consider the
expression D =

⋂
A C(αA) that occurred in the proof of Proposition 3.94.

There may be redundancy in this expression because a root α could be αA

for more than one boundary panel A. To remedy this, we index αA by the
wall H := αA ∩ −αA, said to be a wall of D. We then set αH := αA; it is
independent of the choice of A because, of the two roots bounded by H, it is
the one containing D. In summary, we have

D =
⋂

H

C(αH) ,

where H ranges over the walls of D.

(a) Show that this expression is irredundant, in the sense that if any C(αH)
is deleted, then the resulting intersection is strictly bigger than D.

(b) Let H1 and H2 be distinct walls of D, let Ai be a boundary panel of D
contained in Hi for i = 1, 2, let αi be the corresponding root αHi

= αAi
,

and let Di,D
′
i be the chambers > Ai, with Di ∈ D. Show that

d(D′
1,D

′
2) = d(D1,D2) + 2 ;

in other words, there is a minimal gallery of the form D′
1,D1, . . . , D2,D

′
2,

where the inner part is a minimal gallery from D1 to D2 in D.

3.6.3 Supports

Definition 3.98. The support of a simplex A ∈ Σ, denoted by suppA, is the
intersection of the walls containing A.

We record two results about supports that will be needed later. They both
have easy proofs using the Tits cone (which we leave to the interested reader),
and they also have easy combinatorial proofs that we will give.

Proposition 3.99. A is a maximal simplex of its support.

Proof. If A < B in Σ, then Proposition 3.90 implies that there is a wall H
with σH(A) = 0 and σH(B) �= 0; hence B /∈ suppA. 	
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Proposition 3.100. If Σ = Σ(W,S) with its natural W -action, then the
stabilizer WA of any simplex A fixes suppA pointwise, i.e., it fixes every
simplex of suppA. Moreover, supp A is the full fixed-point set of WA.

Proof. This is an immediate consequence of the fact that WA is generated by
the reflections that fix A, i.e., the reflections sH with A ∈ H; see Exercise 3.62.

	


There is a lot more to say about supports, but it fits most naturally into
the setting of convex subcomplexes, which we cannot treat properly until we
have introduced products.. We will therefore leave the subject now and return
to it in Section 3.6.6.

Exercises

3.101. If Σ = Σ(W,S) and we identify Σ with the set of cells in the Tits cone,
how is the present definition of support related to the support as defined in
Section 2.7?

3.102. What is the support of a vertex if Σ is 1-dimensional?

3.6.4 Semigroup Structure

Given A,B ∈ Σ, we wish to define their product AB as in Section 1.4.6. Thus
AB should be the simplex with sign sequence given by

σH(AB) =

{
σH(A) if σH(A) �= 0,

σH(B) if σH(A) = 0,
(3.9)

for any wall H ∈ H. Of course, one has to prove the existence of such a
simplex.

The existence proof was quite easy in the setting of Chapter 1, and we
have already given the analogous easy proof in general using the Tits cone
(Proposition 2.82, part (1)). But we will give an independent proof here, which
is purely combinatorial. It is longer, but it is instructive, and it will generalize
to buildings in the next chapter. In the course of the proof we will see that the
chambers having AB as a face are precisely those that can start a minimal
gallery from A to B, as we would expect from Exercise 1.62 [and Section 2.7].
This completely characterizes the desired AB, since a simplex is determined
by the set of chambers having it as a face; see, for instance, Corollary 3.17 or
Exercise 3.10.

The existence of the desired AB is quite easy to prove if B is a chamber
(in which case (3.9) forces AB to be a chamber), so we begin with that case.
The result should be compared with Proposition 1.40.
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Proposition 3.103. Given a simplex A and a chamber C, there is a (unique)
chamber AC such that for any H ∈ H,

σH(AC) =

{
σH(A) if σH(A) �= 0,

σH(C) if σH(A) = 0.
(3.10)

It has A as a face, and among the chambers having A as a face, it is the
unique one at minimal distance from C. Every minimal gallery from A to C
starts with AC.

Proof. Choose a minimal gallery Γ : C0, . . . , Cd = C from A to C. Given
H ∈ H, if σH(A) �= 0, then σH(C0) = σH(A), since C0 ≥ A. If σH(A) = 0,
then H /∈ S(A,C) [see Definition 3.77], so Proposition 3.78 implies that Γ does
not cross H; hence σH(C0) = σH(C). Thus C0 is the desired chamber AC. The
last two assertions of the proposition follow from the existence proof, since
we started with an arbitrary minimal gallery from A to C. Alternatively, the
second-to-last assertion follows from (3.10) as in the proof of Proposition 1.40,
and the last assertion is simply a restatement of it. 	

Definition 3.104. Given simplices A,C ∈ Σ with C a chamber, their product
is the chamber AC described in Proposition 3.103. The product is also denoted
by projA C and called the projection of C onto A.

Equation (3.10) leads to the following important property of AC, which
we call the gate property.

Proposition 3.105. For any simplex A and any chambers C,D with D ≥ A,

d(C,D) = d(C,AC) + d(AC,D) . (3.11)

Proof. Partition the walls H separating C from D into two subsets according
to whether or not σH(A) = 0. Those with σH(A) = 0 are precisely the walls
separating AC from D, while those with σH(A) �= 0 are the walls separating
AC from C. Equation (3.11) now follows from the fact that we can compute
distances by counting separating walls (Lemma 3.69). 	


We already saw the gate property in the context of hyperplane arrange-
ments in Chapter 1; see Exercise 1.42 and Figure 1.6. As we noted there, it
says that C≥A is a “gated subset” of the metric space C = C(Σ) in the sense
of Dress–Scharlau [97].

We now proceed to the existence of AB for arbitrary B. We will use ideas
borrowed from the Dress–Scharlau theory, with some simplifications achieved
in the present context by the use of sign sequences. Our first goal will be to
find a simplex AB such that the chambers ≥ AB are precisely those that can
start a minimal gallery from A to B. We will then be able to check that (3.9)
holds.

Let C = C(Σ), and for any simplex A, let CA ⊆ C be the set C≥A of
chambers ≥ A. For any two simplices A,B, let CA,B ⊆ CA be the set of
chambers that can start a minimal gallery from A to B.
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Proposition 3.106.

(1) CA,B is the image of the projection map CB → CA given by D �→ AD.
(2) The projection maps CA,B � CB,A, given by C �→ BC and D �→ AD

(C ∈ CA,B, D ∈ CB,A), define mutually inverse bijections.
(3) Given any minimal gallery C0, . . . , Cl from A to B, we have C0 = ACl

and Cl = BC0. In other words, C0 and Cl correspond to one another
under the bijections in (2).

Proof. A minimal gallery C0, . . . , Cl from A to B is also minimal from A to Cl,
so C0 = ACl by Proposition 3.103. Similarly, Cl = BC0. This proves (3) and
shows that CA,B is contained in the image of the projection map CB → CA,
which is part of (1). To prove the opposite inclusion, consider any D ∈ CB.
Then one sees by checking sign sequences that S(AD,B(AD)) = S(A,B);
hence d(AD,B(AD)) = d(A,B) by Proposition 3.78. Thus there is a minimal
gallery from A to B starting with AD. This proves (1). It follows from (1)
that the projection maps do define maps CA,B � CB,A, and it is easy to check
(using sign sequences) that these maps are inverse to one another, whence (2).

	


We need one more simple observation before we can complete the analysis
of CA,B .

Lemma 3.107. The projection C → CA takes adjacent chambers to chambers
that are equal or adjacent. Consequently, CA,B is a connected subset of the
chamber graph of Σ, i.e., any two elements of CA,B can be connected by a
gallery in CA,B.

Proof. The first assertion is immediate if one calculates projections in terms
of sign sequences (equation (3.10)). The second assertion now follows from
part (1) of Proposition 3.106 because CB is connected (by Proposition 3.16 or
Proposition 3.93). 	


We can now prove the main result of this subsection. Choose a type
function on Σ with values in a set S, so that we can define the Weyl
group W = WM and the Weyl distance function δ as in Section 3.5. Recall
that the abstract set S then becomes a set of generators of W .

It will be convenient to use residue terminology in what follows. Recall
that by Corollary 3.17, the residues are the sets of the form CA, one for each
simplex A. The main point in what follows is to show that CA,B is again a
residue, so that we can define AB to be the corresponding simplex.

Theorem 3.108. Let A be a simplex of cotype J , let B be a simplex of co-
type K, and let w = δ(A,B). Then CA,B is a residue of type J1 := J∩wKw−1.
In other words, there is a simplex AB of cotype J1 such that CA,B = CAB,
i.e., the chambers that can start a minimal gallery from A to B are precisely
those having AB as a face. Moreover, the sign sequence of AB is given by
equation (3.9).
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Proof. To show that CA,B is contained in a residue of type J1 it suffices, by the
lemma, to prove that any two adjacent chambers in CA,B are J1-equivalent.
Let C1, C2 ∈ CA,B be s-adjacent, and let D1 = BC1 and D2 = BC2. Then
D1 and D2 are distinct by part (2) of Proposition 3.106 and are adjacent by
Lemma 3.107. Let t ∈ S be the element such that D1 and D2 are t-adjacent.
For i = 1, 2 there is a minimal gallery from A to B starting with Ci and,
necessarily, ending with Di (see part (3) of Proposition 3.106). So δ(C1,D1) =
w = δ(C2,D2). Computing δ(C1,D2) in two different ways, we conclude that
sw = wt. See Figure 3.7, which should be viewed as a schematic picture of
the chamber graph. We have s ∈ J because C1, C2 ≥ A, and similarly t ∈ K.

C1

D2

w

w
t

D1

CBCA s

C2

Fig. 3.7. sw = wt.

So s = wtw−1 ∈ J ∩ wKw−1, whence C1 and C2 are J1-equivalent.
To show that CA,B is an entire residue of type J1, it suffices to prove that

if C1 is in CA,B and C2 is s-adjacent to C1 for some s ∈ J1, then C2 is in CA,B .
Write sw = wt with t ∈ J , and let D1 = BC1. Then δ(C2,D1) = sw = wt;
see Figure 3.8. Since decompositions of δ(C2,D1) correspond to galleries from

C1
w

D1

CBCA

C2

s

Fig. 3.8. δ(C2, D1) = sw.

C2 to D1, it follows that there is a chamber D2 such that δ(C2,D2) = w and
δ(D2,D1) = t. In other words, we have achieved the situation in Figure 3.7,
where D2 ∈ CB because t ∈ K. Since d(C2,D2) = l(w) = d(A,B), it follows
that C2 ∈ CA,B , as required.

Now let AB be the simplex such that CA,B = CAB . We must calculate the
sign sequence of AB. We have AB ≥ A since CAB ⊆ CA; so σH(AB) = σH(A)
if σH(A) �= 0. Suppose σH(A) = 0. Then H /∈ S(A,B), so the minimal
galleries Γ : C0, . . . , Cl from A to B do not cross H, i.e., C0 and Cl are on the
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same side of H. If σH(B) �= 0, it follows that σH(C0) = σH(B). In other words,
every chamber C ≥ AB satisfies σH(C) = σH(B); hence σH(AB) = σH(B)
by Exercise 3.81. If σH(B) = 0, on the other hand, then Γ is in one root α
associated to H, and we can fold onto −α to get another minimal gallery
from A to B. Thus there are elements of CA,B = CAB on both sides of H, and
σH(AB) = 0. This proves (3.9). 	


Definition 3.109. Given simplices A,B ∈ Σ, their product is the cham-
ber AB described in Theorem 3.108 and characterized by equation (3.9). The
product is also denoted by projA B and called the projection of B onto A.

As in Section 1.4.6, equation (3.9) has the following consequence:

Corollary 3.110. The product of simplices is associative. Hence Σ is a semi-
group. 	


Example 3.111. Let C and C ′ be adjacent chambers. Let v, v′ be the vertices
of C,C ′ that are not in the common panel, as in Figure 3.9. Consider the

v′C C ′v

Fig. 3.9. Adjacent chambers.

product vv′. We show by two different methods that vv′ ≤ C. Method 1:
There is a minimal gallery C,C ′ from v to v′ since v and v′ are not joinable.
[They have the same type.] Hence vv′ is a face of the starting chamber C.
Method 2: Use sign sequences. Assume for simplicity (and without loss of
generality) that σH(C) = + for every wall H, so that σH(v) ≥ 0 for all H.
We then have σH(C ′) = + for all H except the one containing P := C ∩ C ′;
hence σH(v′) ≥ 0 for all H except the one containing P . Since σH(v) = + for
that exceptional wall, it follows that σH(vv′) ≥ 0 for all H and hence that
vv′ ≤ C.

We close this subsection by recording some connections between the poset
and semigroup structures on Σ as in Proposition 1.41 and Exercise 1.44. The
proofs are easy via sign sequences and are left to the reader

Proposition 3.112. Let A and B be arbitrary simplices in Σ.

(1) A ≤ AB, with equality if and only if suppB ≤ suppA.
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(2) A ≤ B if and only if AB = B.
(3) suppA = suppB if and only if AB = A and BA = B.
(4) If suppA = suppB, then left multiplication by B and A defines mutually

inverse bijections Σ≥A � Σ≥B. In particular, dim A = dim B.
(5) AB and BA have the same support, which is the intersection of the walls

containing both A and B. 	


Corollary 3.113. For any simplices A,B ∈ Σ, dim AB = dimBA. Conse-
quently, dim AB ≥ max {dim A,dim B}.

Proof. The first assertion follows immediately from parts (5) and (4) of the
proposition. For the second, we have dimAB ≥ dim A trivially because A ≤
AB, and similarly dimBA ≥ dim B; now use the fact that dimBA = dimAB.

	


Exercises

3.114. Use Theorem 3.108 to give a new proof of Lemma 2.25.

3.115. Show that every root is a subsemigroup, and hence every intersection
of roots is a subsemigroup. In particular, this applies to the support of any
simplex (Definition 3.98).

3.116. Show that (finitely many) simplices A,B, . . . , C are joinable if and
only if they commute with one another in the semigroup Σ, in which case
their product is their least upper bound (see Exercise 1.43). Deduce, as in the
proof of Proposition 1.127, that Σ is a flag complex.

3.117. Given simplices A1, A2, B ∈ Σ with A1 ≤ A2, show that d(A1, B) ≤
d(A2, B), with equality if A2 ≥ A1B. In particular, d(A,B) = d(AB,B) for
any two simplices A,B.

3.118. Figure 3.9 suggests that vv′ = C. Give examples to show that this is
not necessarily the case. For instance, vv′ could be a vertex or an edge.

3.119. Recall that the link LA := lkΣ A of any simplex A is again a Coxeter
complex; hence it has a semigroup structure. Is it a subsemigroup of Σ? If
not, how is the product on LA related to the product in Σ?

The remaining exercises are intended to show how the use of products
can sometimes replace arguments based on the Tits cone. The intent of the
exercises, then, is that they should be solved combinatorially, without the Tits
cone. Given a chamber C and a panel P of C, the wall containing P will be
called a wall of C. Thus every chamber has exactly n + 1 walls if dimΣ = n.

3.120. Fix a chamber C and let HC be its set of walls.

(a) Show that C is defined by HC ; in other words, if D is a chamber such
that σH(D) = σH(C) for all H ∈ HC , then D = C.
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(b) Suppose A is a simplex such that σH(A) ≤ σH(C) for all H ∈ HC . Show
that A ≤ C.

(c) If A and B are faces of C, show that A ≤ B if and only if σH(A) ≤ σH(B)
for all H ∈ HC .

(d) If A ≤ C, show that A is defined by HC ; in other words, if B is a simplex
such that σH(B) = σH(A) for all H ∈ HC , then B = A.

3.121. (a) Let C be a chamber, and let s and t be reflections with respect to
two distinct walls of C, denoted by Hs and Ht. Let m be the order of st,
and assume m ≥ 3. If D is another chamber that also has Hs and Ht as
two of its walls, show that either Hs and Ht both separate C from D or
else neither of them separates C from D.

(b) Give an example to show that we cannot drop the assumption that m ≥ 3
in (a).

(c) Generalize (a) as follows. Let H1, . . . , Hk be walls of a chamber C such
that the corresponding reflections si generate an irreducible Coxeter
group. If D is another chamber having H1, . . . , Hk as walls, show that
either every Hi separates C from D or else no Hi separates C from D.

3.122. Use the previous exercise to give a combinatorial proof of the following
fact, which we have proven earlier by different methods: If (W,S) is irreducible
and wSw−1 = S for some w �= 1 in W , then W is finite and w is the longest
element. [We gave two proofs of this for finite reflection groups, one algebraic
and one geometric; see the proof of Corollary 1.91. And we generalized the
algebraic proof to the infinite case in the proof of Proposition 2.73. The point
of the exercise is that we now have the tools to generalize the geometric proof.]

3.6.5 Applications of Products

In this brief subsection we use products to prove two results that will be
needed later. Both proofs make use of the following lemma.

Lemma 3.123. Let Σ = Σ(W,S), and let WA for A ∈ Σ be the stabilizer of
A in W . Then for any two simplices A,B ∈ Σ we have WAB = WA ∩WB.

Proof. It is clear that WA ∩ WB ≤ WAB and that WAB ≤ WA. [For the
latter, note that A ≤ AB and W is type-preserving.] So all that remains
to show is that WAB fixes B. This follows from Proposition 3.100 because
B ∈ suppBA = suppAB. 	


We can now prove a finiteness result that, a priori, is far from obvious:

Proposition 3.124. Let A and B be arbitrary simplices of Σ(W,S). Choose
a chamber C ≥ AB. Then every minimal gallery from A to B is equivalent
under WA∩WB to one that starts with C. In particular, there are only finitely
many (WA ∩WB)-orbits of minimal galleries from A to B.
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Proof. By the lemma and Exercise 3.13, WA ∩WB is transitive on CAB . This
implies the first assertion. For the second assertion, we need only recall that a
minimal gallery from A to B starting with C must end with BC, so there are
only finitely many of these, one for each reduced decomposition of δ(C,BC)
[= δ(A,B)]. 	


Our next result is taken from Tits [247, Lemma 12.12].

Proposition 3.125. Let Σ be an irreducible Coxeter complex, and let H be
a wall of Σ. Then Σ contains a chamber C that is disjoint from H, in the
sense that none of the vertices of C are in H. More generally, every simplex A
disjoint from H is a face of a chamber disjoint from H.

Note that we cannot drop the irreducibility assumption. For example, sup-
pose Σ is of type A1 × A1, i.e., Σ is the poset of cells associated with the
reflection group {±1} × {±1} acting on R×R. Then there are two walls and
four chambers, and each chamber has a nontrivial face in each wall.

Proof of the proposition. Let A be disjoint from H, and choose a maximal
simplex B ≥ A disjoint from H. Clearly B is not the empty simplex, since H
cannot contain every vertex of Σ. We will show that B is a chamber. Let τ be
a type function on Σ with values in a set S. By irreducibility of Σ, it suffices
to show that m(s, t) = 2 for all s ∈ τ(B) and t ∈ S � τ(B). [This will imply
that τ(B) = S, so that B is a chamber.]

Choose a panel P ≥ B of cotype t, and let C and C ′ be the chambers
having P as a face. Let v (resp. v′) be the vertex of C (resp. C ′) not in P .
Thus τ(v) = τ(v′) = t. Let F (resp. F ′) be the panel of C (resp. C ′) of
cotype s. Thus the vertex of C not in F , which is the same as the vertex of C ′

not in F ′, has type s and hence is a vertex of B. Note further that v and v′

are both joinable with B, so we must have v, v′ ∈ H by the maximality of B.
Figure 3.10 summarizes some of the notation. We have drawn the picture so

C

v v′
F F ′

C ′

B

Fig. 3.10. m(s, t) = 2; • = s, ◦ = t.

as to suggest that suppF = suppF ′, since the proof will show that this is in
fact the case.
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We now assume, without loss of generality, that Σ = Σ(W,S) with its
canonical type function and that C is the fundamental chamber. Then t is
the fundamental reflection that fixes P = C ∩ C ′, and s is the fundamental
reflection that fixes F . Consider the product vv′. By Example 3.111 we have
vv′ ≤ C. We also have vv′ ∈ H because v and v′ are both in H. Since the
vertex of C not in F is in B and hence not in H, it follows that vv′ ≤ F .

Thus vv′ is fixed by the reflection s. In view of Lemma 3.123, it follows
that s fixes v′. But s also fixes F ∩ F ′, which contains every vertex of F ′

except v′. So s fixes F ′. On the other hand, we have F ′ = tF , so the reflection
fixing F ′ is the conjugate tst of s. Thus tst = s and m(s, t) = 2. 	


Note that a great deal of the proof remains valid if we drop the irreducibil-
ity assumption, but the conclusion becomes more complicated. Namely, we can
no longer prove that B is a chamber, but we can say that τ(B) is a union of
one or more connected components of the Coxeter diagram. This yields the
following more precise result:

Proposition 3.126. Let Σ be a Coxeter complex with a type function τ . If
H is a wall of Σ and A is a simplex disjoint from H, then there is a simplex
B ≥ A disjoint from H such that τ(B) is a union of connected components of
the Coxeter diagram of Σ. 	


This has the following immediate consequence, which we will have occasion
to use in Chapter 7:

Corollary 3.127. Let Σ be a Coxeter complex, and let r be the minimal car-
dinality of a connected component of its Coxeter diagram. If H is a wall of Σ
and A is a simplex disjoint from H, then there is a simplex B ≥ A disjoint
from H such that rankB ≥ r. Equivalently, there is a chamber C ≥ A such
that the maximal face of C in H has codimension ≥ r. 	


Example 3.128. Suppose the Coxeter diagram of Σ has no isolated nodes.
Then r ≥ 2, and the proposition implies the following: Given a wall H and a
vertex v /∈ H, there is an edge containing v that is disjoint from H. Equiva-
lently, there is a chamber containing v and having no panel in H.

3.6.6 Convex Subcomplexes

We have already introduced some convexity concepts, but with the aid of
products, we are now ready to be more systematic. We begin by discussing
convexity for chamber subcomplexes (Definition A.12).

Definition 3.129. Let ∆ be a chamber complex and let ∆′ be a chamber
subcomplex. We say that ∆′ is a convex subcomplex of ∆ if its set of cham-
bers C(∆′) is a convex subset of C(∆), i.e., if every minimal gallery in ∆
joining two chambers of ∆′ is contained in ∆′.
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In this subsection we will be concerned exclusively with the case that ∆ is
a Coxeter complex Σ. In this case, as we will see, convexity is closely related
to the product in Σ. The following lemma gives the first hint of this.

Lemma 3.130. Let Σ be a Coxeter complex.

(1) Every convex chamber subcomplex of Σ is a subsemigroup of Σ.
(2) Let Σ′ be a subcomplex of Σ that is a subsemigroup. If Σ′ ∩ C(Σ) is a

convex subset of C(Σ), then Σ′ is a convex chamber subcomplex of Σ.
(3) Let Σ′ be an intersection of convex chamber subcomplexes of Σ. If Σ′

contains at least one chamber, then Σ′ is a convex chamber subcomplex
of Σ.

Proof. (1) Let Σ′ be a convex chamber subcomplex of Σ. Given A,B ∈ Σ′, we
must show that AB ∈ Σ′. Choose a chamber C ∈ Σ′ with C ≥ B. By checking
sign sequences, one sees that AB ≤ AC; so it suffices to prove AC ∈ Σ′. To
this end choose a chamber D ≥ A and note that by the gate property (3.11),
there is a minimal gallery from D to C passing through AC. This gallery is
contained in Σ′ by convexity; hence AC ∈ Σ′.

(2) The only thing that needs to be proved is that Σ′ is a chamber sub-
complex of Σ. The convexity assumption implies that Σ′ ∩C(Σ) is nonempty
and that any two of its elements can be joined by a gallery in Σ′. So we need
only show that every maximal simplex A of Σ′ is a chamber of Σ. Choose an
arbitrary chamber C ∈ Σ′ ∩ C(Σ). Then we have A ≤ AC ∈ Σ′, so A = AC
and A is indeed a chamber of Σ.

(3) It is obvious that C(Σ′) is a convex subset of C(Σ). Moreover, (1)
implies that Σ′ is an intersection of subsemigroups and hence is itself a sub-
semigroup. The result therefore follows from (2). 	


We can now give several characterizations of convex chamber subcom-
plexes.

Theorem 3.131. Let Σ be a Coxeter complex and Σ′ a subcomplex containing
at least one chamber. Then the following conditions are equivalent:

(i) Σ′ is a convex chamber subcomplex of Σ.
(ii) Σ′ is an intersection of roots.
(iii) Σ′ is a subsemigroup of Σ.
(iv) Given A,C ∈ Σ′ with C a chamber of Σ, every minimal gallery from A

to C in Σ is contained in Σ′.

Proof. The equivalence of (i) and (ii) is almost immediate from Proposi-
tion 3.94, but one must be a little careful: Suppose (i) holds, and let Σ′′

be the intersection of all roots containing Σ′. Then Σ′′ is a chamber subcom-
plex of Σ by part (3) of the lemma, and C(Σ′′) = C(Σ′) by Proposition 3.94.
So Σ′′ = Σ′ and (ii) holds. Conversely, (ii) =⇒ (i) by part (3) of the lemma
again, since roots are convex chamber subcomplexes by Lemma 3.44.
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We already know from part (1) of Lemma 3.130 that (i) =⇒ (iii), and
it is easy to check that (iv) =⇒ (i). So it remains to prove (iii) =⇒ (iv).
Suppose (iii) holds, and let A,C be as in (iv). Consider a minimal gallery
A ≤ C0, C1, . . . , Cl = C from A to C. Recall from Proposition 3.103 that
C0 = AC. Moreover, if Ai is the common panel between Ci−1 and Ci for
i = 1, . . . , n, then we have C1 = A1C, C2 = A2C, and so on, as one sees
by checking sign sequences or by using the fact that C is closer to Ci than
to Ci−1. Since Σ′ is a subsemigroup and a subcomplex, it follows inductively
that all Ci ∈ Σ′. 	


Remark 3.132. The equivalence between (i) and (iii) has an intuitive inter-
pretation. In the setting of hyperplane arrangements, for example, knowing
the product AB of two cells A,B is equivalent to knowing the beginning of
a line segment joining a point of A to a point of B. An analogue of Theo-
rem 3.131 in that context was given in Exercise 1.68 [see also Proposition 2.97].
In our present combinatorial setting, we can therefore think of products as a
substitute for line segments (or geodesics). Of course minimal galleries also
provide a substitute for geodesics, and it is reassuring that they yield the same
notion of convexity for chamber subcomplexes.

Examples 3.133. (a) Given two chambers C,D, we define their convex hull
Γ (C,D) to be the smallest convex chamber subcomplex containing C and D
or, equivalently, the intersection of all roots containing C and D. One easily
checks by counting separating walls (cf. Exercise 1.66) that the chambers
E ∈ Γ (C,D) are precisely those such that

d(C,D) = d(C,E) + d(E,D) ,

i.e., they are the chambers that can occur in a minimal gallery from C to D.
See Figure 3.11 for an example. Note that in Figure 3.11, one could also speak
of the convex hull of C and D in the usual sense of Euclidean geometry, and
this is strictly smaller than the geometric realization of Γ (C,D). Whenever
this could lead to confusion, we will call Γ (C,D) the combinatorial convex
hull of C and D.

(b) For any simplex A ∈ Σ, the star of A, denoted by stA or stΣA, is the set
of simplices joinable to A. It consists of all the chambers ≥ A and their faces,
so it is a convex chamber subcomplex of Σ by Proposition 3.93.

(c) The concept of “convex hull” that we introduced in (a) generalizes in an
obvious way. Given an arbitrary collection of simplices containing at least
one chamber, we define their convex hull to be the smallest convex chamber
subcomplex containing them or, equivalently, the intersection of all roots con-
taining them. For example, one can speak of the convex hull Γ (A,C) of a
simplex A and a chamber C. It is an intersection of roots, where there is one
root for each wall that does not strictly separate A from C.
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D

C

Fig. 3.11. The (combinatorial) convex hull of C and D.

(d) Here is a specific instance of (c) that will be useful in the theory of build-
ings. Suppose Σ is spherical. Let P and P ′ be opposite panels, and let C ′ be
a chamber having P ′ as a face. Then the wall of Σ containing P and P ′ is
the only wall that does not strictly separate P from C ′, so the convex hull
Γ (P,C ′) is the (unique) root containing P and C ′. See Figure 3.12.

P

P ′ C ′

Fig. 3.12. The convex hull of P and C′ is a root.

We turn now to convexity for subcomplexes that are not necessarily cham-
ber subcomplexes. It is not clear that there is a sensible way to define this
concept in the generality of arbitrary chamber complexes. For Coxeter com-
plexes, however, Theorem 3.131 and Remark 3.132 motivate the following
generalization of convexity to arbitrary subcomplexes:

Definition 3.134. A subcomplex Σ′ of a Coxeter complex Σ is called a con-
vex subcomplex if it is a subsemigroup of Σ.
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Remark 3.135. Further motivation for the definition is provided by the the-
ory of the Tits cone (Sections 2.6 and 2.7). If Σ = Σ(W,S), then the Tits
cone is a convex cone X in a real vector space V of dimension |S|. It is de-
composed into conical cells by a collection of hyperplanes, one for each wall
of Σ. These cells are in 1–1 correspondence with the simplices of Σ, with a
dimension shift. Thus the cell {0} corresponds to the empty simplex of Σ,
the cells that are rays correspond to the vertices of Σ, and so on. If Σ′ is a
subcomplex of Σ and X ′ is the union of the corresponding cells in X, then Σ′

is convex in the sense of Definition 3.134 if and only if X ′ is a convex subset
of V . (See Definition 2.95 and the discussion leading up to it.)

The main results about convex subcomplexes are given in the following
two propositions:

Proposition 3.136. If Σ′ is a convex subcomplex of Σ, then Σ′ is a chamber
complex in which every panel is a face of at most two chambers.

Proposition 3.137. Let Σ′ be a subcomplex of a Coxeter complex Σ. Then
the following conditions are equivalent:

(i) Σ′ is convex.
(ii) Σ′ is an intersection of roots.
(iii) Σ′ is an intersection of convex chamber subcomplexes.

It is trivial that an intersection of convex subcomplexes is convex. So the
essential content of Proposition 3.137 is the implication (i) =⇒ (ii). This has
a concrete interpretation in terms of sign sequences. It says that every convex
subcomplex is defined by conditions of the form σH(A) ≥ 0, σH(A) ≤ 0, or
σH(A) = 0, where there is at most one such condition for each H ∈ H. We
will discuss the proofs of the propositions after a remark and a few examples.

Remark 3.138. A useful consequence of Proposition 3.137 and Lemma 3.54
is that convex subcomplexes of a Coxeter complex are always full subcom-
plexes. One can also derive this directly from the definition of “convex sub-
complex,” together with Exercise 3.116.

Examples 3.139. (a) Every wall is an intersection of two roots and hence is
convex.

(b) The support of any simplex is an intersection of walls and hence is convex.

(c) The convex hull of a collection of simplices is the smallest convex sub-
complex containing them or, equivalently, the intersection of all roots con-
taining them. For example, we can speak of the convex hull Γ (A,B) of two
simplices A,B. It is defined by one condition for each wall H /∈ S(A,B): If
σH(A) = σH(B) = 0, the condition is σH = 0; otherwise, σH(A) and σH(B)
are either both ≥ 0 or both ≤ 0, and the condition is σH ≥ 0 or σH ≤ 0
accordingly. The reader is encouraged to draw some examples of Γ (A,B)
in Figure 3.11. See Exercises 3.148 and 3.149 below for more information
about Γ (A,B).
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Propositions 3.136 and 3.137 both have fairly short proofs based on the
Tits cone, which we have already given in the optional Section 2.7 (see Propo-
sitions 2.96 and 2.97). We wish to give combinatorial proofs also. The treat-
ment that follows is based largely on [8, Section 1]. We begin with some easy
consequences of the definition.

Lemma 3.140. Let Σ′ be a convex subcomplex of Σ.

(1) All maximal simplices of Σ′ have the same dimension.
(2) If A is a maximal simplex of Σ′, then Σ′ ⊆ suppA.

Proof. (1) If A and B are maximal simplices of Σ′, then AB = A and BA = B,
so A and B have the same dimension by Corollary 3.113.

(2) For any simplex B ∈ Σ′, we have AB = A by maximality of A; hence
suppA = suppAB = suppBA (see Proposition 3.112(5)). Since B ≤ BA, it
follows that B ∈ suppA. 	


This has some useful consequences for supports:

Corollary 3.141.

(1) For any simplex A ∈ Σ, we have dim A = dim(suppA).
(2) Let A and B be simplices in Σ with dim A = dimB. If B ∈ suppA, then

suppA = suppB.

Proof. (1) The subcomplex suppA is convex, so all of its maximal simplices
have the same dimension by the lemma; now apply Proposition 3.99.

(2) B is a maximal simplex of suppA, so suppA ⊆ suppB by the lemma.
The opposite inclusion is immediate from the definition of “support.” 	


Lemma 3.142. If Σ′ is a convex subcomplex of Σ, then any two maximal
simplices A,B ∈ Σ′ can be connected by a Σ′-gallery.

Proof. We argue by induction on d(A,B), where the latter denotes the gallery
distance between A and B in Σ (see Section A.1.3). If d(A,B) = 0, then A
and B are joinable in Σ, and one sees immediately by using sign sequences
that AB = BA (see Exercise 3.116); hence A = B by maximality, and there
is nothing to prove.

Assume now that d(A,B) > 0, and choose a minimal Σ-gallery C0, C1, . . .
from A to B. Then A � C1, so A′ := A ∩ C1 has codimension 1 in A,
and d(A′, B) < d(A,B). Now observe that A′B is again a maximal simplex
of Σ′ since dim A′B = dimBA′ = dim B, where the first equality follows
from Corollary 3.113. Moreover, d(A′B,B) = d(A′, B) by Exercise 3.117, so
d(A′B,B) < d(A,B). By the induction hypothesis, there is a Σ′-gallery from
A′B to B; since A and A′B have the common codimension-1 face A′, it follows
that there is a Σ′-gallery from A to B. 	
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H ∩Σ′

A′

A′BA B

Fig. 3.13. A wall separating A from B.

One can understand the proof intuitively by considering the wall H of Σ
separating C0 from C1. Then A′ ∈ H, so we can think of H ∩ Σ′ as a “wall
of A in Σ′” separating A from B; see Figure 3.13. Readers of Section 2.7
will note that this intuition can be made precise via the theory of hyperplane
arrangements.

Lemma 3.143. Let x be a vertex of Σ. Then suppx is 0-dimensional and
either has x as its only vertex or else has exactly two vertices x, y.

The combinatorial proof of this is somewhat tricky. To avoid disrupting
the flow of ideas, we postpone the proof to the next subsection.

Remarks 3.144. (a) Lemma 3.143 is obvious from the point of view of the
Tits cone. [The vertex x corresponds to a cell that is a ray, and suppx cor-
responds to the cells in the line spanned by that ray.] Moreover, one obtains
from this point of view a sharper result: If suppx contains a vertex y �= x,
then the sign sequence of y is opposite to that of x (i.e., σH(y) = −σH(x)
for every wall H). In more geometric language, this says that every wall of Σ
either contains both x and y or else strictly separates x from y. We will say
that x and y are opposite vertices in this situation.

If Σ is spherical, then every vertex x has an opposite vertex −x. It turns
out that this is essentially the only situation in which opposite vertices exist.
See Proposition 2.91 and Exercise 3.156.

(b) It may seem counterintuitive at first that a 2-vertex 0-dimensional simpli-
cial complex, which is not even connected, can be viewed as convex. But the
interpretation in terms of the Tits cone explains this, since, as we just saw
in (a), that 0-dimensional complex corresponds to a line in a vector space.
And a line is indeed convex in the usual sense.
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We can now prove our two propositions:

Proof of Proposition 3.136. Lemmas 3.140 and 3.142 show that Σ′ is a cham-
ber complex, so it remains to show that every Σ′-panel P is a face of at
most two Σ′-chambers. Let A be a Σ′-chamber having P as a face. Since
Σ′ ⊆ suppA and the two have a common maximal simplex, they have the
same dimension. We may therefore assume that Σ′ = suppA. Moreover, we
may replace Σ by lkΣ P (see Proposition 3.79) and thereby reduce to the case
that P is the empty simplex and A is a vertex. The result now follows from
Lemma 3.143. 	


Proof of Proposition 3.137. It is immediate that (ii) =⇒ (iii) =⇒ (i),
so it suffices to show that (i) =⇒ (ii). Assume that Σ′ is convex. Given
B ∈ Σ such that B /∈ Σ′, we must find a root α of Σ that contains Σ′ but
not B. Choose a Σ′-chamber A that minimizes d(A,B), the latter being the
gallery distance in Σ as in the proof of Lemma 3.142. Then Σ′ ⊆ suppA by
Lemma 3.140, and the two have the same dimension. If B /∈ supp A, then we
are done because suppA is an intersection of roots. So assume B ∈ suppA.

Next, note that d(A,B) > 0, since otherwise we would have AB = BA;
this would imply B ≤ AB = A, contradicting the assumption that B /∈ Σ′.
Now apply the proof of Lemma 3.142 to the convex subcomplex suppA. We
obtain a codimension-1 face A′ of A such that A′B is a (supp A)-chamber
with d(A′B,B) < d(A,B). Moreover, we get a wall H of Σ such that A′ ∈ H
and H ∈ S(A,B) (see Proposition 3.78). This is illustrated in Figure 3.13,
which should now be viewed as a picture of suppA. Since σH(A′B) = σH(B),
we conclude that H ∈ S(A′B,B). To complete the proof, we show that Σ′ is
contained in the root α bounded by H that contains A.

It suffices to show that α contains every Σ′-chamber D. Consider the
product A′D ∈ Σ′. Then A′D is a chamber of Σ′ (and suppA), since
dim A′D ≥ dim D = dim Σ′ = dim suppA. Now A and A′B are the only two
(suppA)-chambers having A′ as a face by Proposition 3.136, and A′B /∈ Σ′

by the choice of A and the fact that d(A′B,B) < d(A,B); so we must have
A′D = A. Thus σH(D) = σH(A), and hence D ∈ α. 	


Exercises

We continue to assume that Σ is a Coxeter complex.

3.145. Find the convex hull of C and D in Figure 3.2.

3.146. This is a variant of Example 3.133(d). Suppose that Σ is spherical and
set d := diam Σ. If C and D are chambers such that d(C,D) = d − 1, show
that Γ (C,D) is a root.

3.147. If Σ is spherical, show that every root is a maximal (proper) convex
subcomplex.
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3.148. Show that Γ (A,B) is the intersection of the subcomplexes Γ (C,D)
with C ∈ CA,B and D = BC.

3.149. Show that AB is a maximal simplex in Γ (A,B). Show further that it
is the unique maximal simplex of Γ (A,B) having A as a face. So we have yet
another characterization of AB.

3.150. Show that the convex hull of a finite set of simplices is finite.

3.151. What is the convex hull of a single simplex? Show directly, without
using Proposition 3.137, that it is an intersection of roots.

3.152. Given chambers C,D ∈ Σ, let I(C,D) be the intersection of all roots α
with C ∈ α and D /∈ α. Prove that I(C,D) is a convex chamber subcomplex
of Σ whose chambers are those E ∈ C(Σ) such that

d(D,E) = d(D,C) + d(C,E) .

Intuitively, these are the chambers that one can reach by moving on a geodesic
from D to C and continuing past C.

3.153. Let Σ′ be a convex subcomplex of Σ and H a wall not containing Σ′.

(a) Show that dim(H ∩Σ′) < dim Σ′.
(b) Now specialize to the case that Σ′ = suppA for some simplex A. If H

contains a codimension-1 face P of A, show that H ∩ suppA = suppP .

3.154. Let C be a chamber and A a face of C. Show that suppA is the
intersection of the walls of C containing A.

3.155. Let (W,S) be a Coxeter system and let Σ = Σ(W,S) with its natural
W -action. Given A ∈ Σ, let WA be the stabilizer of A and let NA be the
normalizer of WA in W . Show that NA/WA acts simply transitively on the
set of simplices in supp A having the same type as A.

3.156. (a) Suppose Σ is infinite and irreducible (i.e., its Coxeter diagram is
connected). If x is a vertex of Σ, show that x does not have an opposite
vertex as defined in Remark 3.144(a). Thus the support of x consists
only of x and the empty simplex. [Proposition 2.91 proves this result
from the point of view of the Tits cone. The present exercise is asking for
a combinatorial proof.]

(b) In the general case, decompose Σ as a join Σ1 ∗ · · · ∗ Σn according to
the connected components of the Coxeter diagram (Exercise 3.30). Show
that a vertex x has an opposite vertex y if and only if the factor Σi

containing x is spherical.

3.157. Let (W,S) be a Coxeter system, and let J ⊆ S satisfy |J | = |S| − 1.
Let NJ be the normalizer of WJ in W .
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(a) Show that WJ has index 1 or 2 in NJ .
(b) Show that WJ = NJ if (W,S) is irreducible and W is infinite.

3.158. Assume that Σ = Σ(W,S), and identify Σ with the set of cells in the
Tits cone. Let Σf be the set of simplices in Σ with finite stabilizer. (Equiva-
lently, Σf is the poset of finite standard cosets ordered by reverse inclusion,
or the set of simplices with finite link, or the set of simplices whose link is
a sphere.) It follows trivially from Lemma 3.123 that Σf is a subsemigroup
of Σ. Does this yield an alternative proof that Xf is convex in Lemma 2.86?

3.6.7 The Support of a Vertex

In this subsection we give a combinatorial proof of Lemma 3.143, which was
needed in the combinatorial proofs of Propositions 3.136 and 3.137. This turns
out to be less straightforward than one would expect, given how obvious the
result is from the point of view of the Tits cone.

Let Σ be a Coxeter complex. We start by considering 1-dimensional convex
subcomplexes of Σ and using products to construct “geodesic paths.” In the
following lemma, d(−,−) denotes gallery distance in Σ.

Lemma 3.159. Let Σ′ be a 1-dimensional convex subcomplex of Σ, and let x
and y be two distinct vertices of Σ′. For any edge F of Σ′ such that yx ≤ F ,
there is a sequence x = x0, . . . , xn = y of vertices of Σ′ with the following
properties:

(1) Ei := {xi−1, xi} is an edge of Σ′ for all 1 ≤ i ≤ n, and En = F .
(2) yxi ≤ F for all i.
(3) Ei = xi−1F and yEi = F for all 1 ≤ i ≤ n.
(4) d(xi, y) = d(xi, F ) = d(Ei+1, F ) = d(Ei+1, y) for all 0 ≤ i < n.
(5) d(xi, y) < d(xi−1, y) for all 0 < i < n.

Proof. Note that the construction of the xi is forced on us by properties
(1)–(5): We must have E1 = xF by (3), and then x1 must be the vertex
of E1 different from x = x0. If x1 = y, we are done; otherwise, we must
have E2 = x1F , and so on. The essential content of the lemma, then, is that
this process terminates and yields a sequence of vertices in Σ′ satisfying all
the stated properties. We now give the formal proof, arguing by induction
on d(x, y).

If d(x, y) = 0, then x and y are joinable in Σ. The edge joining them
is the product xy = yx (Exercise 3.116), and this is in Σ′ by convexity. So
F = {x, y} and we can take n = 1, x0 = x, and x1 = y. Properties (1)–(5)
hold trivially.

Suppose d(x, y) > 0. Set E1 := xF and note that this is an edge of Σ′.
Denote by x1 the vertex of E1 different from x = x0. We have yE1 = yxF = F ,
since yx ≤ F , and then yx1 ≤ yE1 = F . Thus (2) and (3) hold for i = 1. We
can now prove (4) for i = 0 by three applications of Exercise 3.117. Indeed,
the three equations
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d(x, y) = d(x, F ) = d(E1, F ) = d(E1, y)

follow, respectively, from the relations yx ≤ F , xF = E1, and yE1 = F . So
we will be set up to apply the induction hypothesis as soon as we verify that
d(x1, y) < d(x, y). (Note that x1 �= y, since d(x, y) > 0.)

Let C0, C1, . . . , Cm be a minimal gallery from x to y in Σ. We can take
C0 ≥ E1, since E1 = xF ≥ xy. Then minimality of the gallery implies that x
cannot be a vertex of C1, so x1 must be a vertex of C1. Thus d(x1, y) < m =
d(x, y), and we can apply the induction hypothesis to x1 and y to complete
the proof. 	


We can now prove Lemma 3.143. Recall the statement of the lemma: If x
is a vertex of the Coxeter complex Σ, then supp x is 0-dimensional and either
has x as its only vertex or else has exactly two vertices.

Proof. We already know the first assertion (Corollary 3.141), so we need only
show that suppx cannot have three vertices. We argue by induction on dimΣ,
which may be assumed > 0. Suppose y is a vertex different from x in suppx, so
that xy = x and yx = y. Let Σ′ be the support of an edge containing x. Then
Σ′ is a 1-dimensional convex subcomplex of Σ containing x and y. Applying
the induction hypothesis to links as in the proof of Proposition 3.136, we
conclude that Σ′ is a 1-dimensional chamber complex in which every panel
is a face of at most two chambers. In other words, Σ′ is either a circle or a
(possibly infinite) line segment.

Suppose now that there is a third vertex z ∈ suppx. If Σ′ is a line segment,
we may assume that z lies between x and y. Since there is no backtracking in
the path x = x0, x1, . . . , xn = y constructed in Lemma 3.159, this path must
be the unique geodesic between x and y in Σ′. We therefore have z = xi for
some 0 < i < n. Now d(Ei+1, y) = d(xi, y) < d(xi−1, y) = d(Ei, y). But Ei+1

and Ei are edges containing xi = z = zy, where the second equation comes
from the assumption that z ∈ supp x = supp y. So d(Ei+1, y) = d(z, y) =
d(Ei, y). This contradiction shows that z cannot exist if Σ′ is a line segment.
(Side remark: It also follows from this argument that x and y are endpoints
of Σ′.)

Now suppose that Σ′ is a circle. Then y is contained in precisely two edges
F and F ′ of Σ′. By Lemma 3.159, these two edges (which contain yx = y)
give rise to two paths P : E0, . . . , En−1 = F and P ′ : E′

0, . . . , E
′
n′−1 = F ′, both

starting at x and ending at y. Since there is no backtracking in these paths,
their union must be the full circle Σ′. By the same argument as in the previous
paragraph, no interior vertex of P or P ′ can be in supp y, again contradicting
the existence of z. 	


Remarks 3.160. (a) This combinatorial proof of Lemma 3.143 is an instruc-
tive illustration of the use of products, but it is considerably trickier than
the (almost trivial) proof using the Tits cone. This illustrates the power and
usefulness of the Tits cone.
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(b) Although we have succeeded, with some effort, in giving a combinatorial
proof of Lemma 3.143, we do not know how to prove combinatorially the
stronger result stated in Remark 3.144(a).

Exercise 3.161. Let x, y, and Σ′ be as in the proof. Thus either Σ′ is a circle
or else Σ′ is a line segment with x and y as endpoints. The first case occurs
whenever x and y are opposite vertices of a spherical Coxeter complex. Give
an example to show that the second case can occur also.

3.6.8 Links Revisited; Nested Roots

We continue to denote by Σ an arbitrary Coxeter complex. In this final sub-
section we use the theory of products and convexity as an aid in proving that,
as we stated before Lemma 3.53, Σ contains nested roots if it is infinite. The
proof will use some facts about links that will also be needed in Chapter 7,
so we begin with those.

Fix a simplex A of Σ, and set Σ′ := lkΣ A. Recall from Proposition 3.79
that we have a bijection H �→ H ′ := H ∩ Σ′ from the set of walls of Σ
containing A to the set of walls of Σ′. Similarly, there is a bijection α �→ α′ :=
α∩Σ′ from the set of roots α of Σ with A ∈ ∂α to the set of roots of Σ′. Using
products, one can describe the inverses of these bijections. The full result is
stated in Exercise 3.168 below. We will need only part of this result, which
we give in the following lemma:

Lemma 3.162. Let A and Σ′ be as above, let α be a root of Σ with A ∈ ∂α,
and let α′ := α ∩Σ′. Then

C(α) = {C ∈ C(Σ) | (AC � A) ∈ α′} .

Proof. Let C be a chamber of Σ. Using the convexity of roots and Remark
3.80, we have

C ∈ α =⇒ AC ∈ α ∩Σ≥A =⇒ (AC � A) ∈ α′ .

Similarly,

C ∈ −α =⇒ AC ∈ −α ∩Σ≥A =⇒ (AC � A) ∈ (−α)′ = −α′ .

The lemma follows at once. 	


This has the following immediate consequence. Note that the “if” part
would not be obvious without the lemma.

Corollary 3.163. Let α and β be roots of Σ with A ∈ ∂α ∩ ∂β, and let
α′ := α ∩Σ′ and β′ := β ∩Σ′. Then α ⊆ β if and only if α′ ⊆ β′. 	


We turn now to nested roots. We say that a pair of distinct roots {α, β}
is nested if α ⊆ β or β ⊆ α.
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Lemma 3.164. Let α and β be roots of Σ with α �= ±β. If the pairs {α, β}
and {−α, β} are both non-nested, then ∂α∩ ∂β is a chamber complex of codi-
mension 2 in Σ, and lkΣ A is spherical for every maximal simplex A ∈ ∂α∩∂β.

Proof. The hypothesis says that the intersection (±α)∩(±β) contains a cham-
ber for each of the four possible choices of sign. Considering a minimal gallery
from a chamber in α∩β to a chamber in α∩−β, we obtain a panel P ∈ α∩∂β.
Similarly, there is a panel Q ∈ (−α) ∩ ∂β. Recall now that ∂β is a chamber
complex (see Proposition 3.136) and that P and Q are maximal simplices in
it. We can therefore choose P and Q to be ∂β-adjacent [consider a ∂β-gallery
joining them]. Then P ∩ Q is in ∂α ∩ ∂β and has codimension 2 in Σ, so
codim(∂α∩∂β) ≤ 2. Equality must hold, since ∂α and ∂β cannot have a panel
of Σ in common. And ∂α ∩ ∂β is a chamber complex by Proposition 3.136
again. Finally, let A be a maximal simplex of ∂α ∩ ∂β. Then Σ′ := lkΣ A is
a rank-2 Coxeter complex, so either it is spherical or else it is a triangulated
line. Let α′ := α∩Σ′ and β′ := β ∩Σ′. Then the pairs {α′, β′} and {−α′, β′}
are both non-nested by Corollary 3.163, so Σ′ cannot be a line and is therefore
spherical. 	


For any root α, we denote by sα the reflection with respect to ∂α.

Proposition 3.165. Let α and β be roots of Σ with α �= ±β. Then the fol-
lowing conditions are equivalent:

(i) Either {α, β} is nested or {−α, β} is nested.
(ii) The product sαsβ has infinite order.
(iii) For every simplex A ∈ ∂α ∩ ∂β, the link lkΣ A is not spherical.

Proof. (i) =⇒ (ii): Suppose one of the pairs is nested, say α � β. Setting
w := sαsβ , we then have

wα � wβ = sα(−β) � sα(−α) = α .

There is therefore an infinite descending chain

α � wα � w2α � · · · ,

implying (ii).
(ii) =⇒ (iii): We may assume that Σ = Σ(W,S). The element sαsβ ∈ W

fixes every simplex A ∈ ∂α ∩ ∂β, so (ii) implies that the stabilizer WA of A
in Σ is infinite. Since lkΣ A is the Coxeter complex associated to the Coxeter
group WA, it follows that the link is not spherical.

(iii) =⇒ (i): This follows from Lemma 3.164. 	


Corollary 3.166. Σ has nested roots if and only if it is not spherical.

Proof. We already know that spherical Coxeter complexes do not have nested
roots (Lemma 3.53). If Σ is not spherical, on the other hand, then it has a
pair of reflections whose product has infinite order by Proposition 2.74, so it
has a pair of nested roots by Proposition 3.165. 	
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As a second corollary, we can give a new proof of a special case of Propo-
sition 2.87, and we can even give a sharper result in this case:

Corollary 3.167. If (W,S) is a Coxeter system and W ′ ≤ W is a finite
subgroup generated by two reflections, then W ′ is contained in a finite parabolic
subgroup of W of rank 2.

Proof. Let Σ := Σ(W,S). Combining the proposition with Lemma 3.164,
we see that W ′ stabilizes a codimension-2 simplex with spherical link. The
stabilizer of this link is a finite parabolic subgroup of W of rank 2. 	


Exercise 3.168. Let A and Σ′ be as in the beginning of this subsection.

(a) Let H be a wall of Σ containing A, and let H ′ := H ∩Σ′. Then

H = {B ∈ Σ | (AB � A) ∈ H ′} . (3.12)

(b) Let α be a root of Σ with A ∈ ∂α, and let α′ := α ∩Σ′. Then

α = {B ∈ Σ | (AB � A) ∈ α′} . (3.13)



4

Buildings as Chamber Complexes

As we stated in the introduction, there is more than one approach to buildings.
The point of view in this chapter is that buildings are simplicial complexes
satisfying certain axioms. These are quite easy to state, but not so easy to
motivate. We will not attempt to explain how Tits came up with them now,
but we will make some historical remarks in Chapter 6 that should make the
definition seem less mysterious.

The terminology used in this subject is attributed by Tits to Bourbaki
(see [248]). In order to understand where it comes from, one should inter-
pret the word “chamber” that we have been using as meaning “room.” Thus
Coxeter complexes are divided up into rooms by walls, and they are therefore
called “apartments.” Buildings, then, are complexes that are built by putting
apartments together. We now state the axioms, which specify the rules for
putting the apartments together.

4.1 Definition and First Properties

Definition 4.1. A building is a simplicial complex ∆ that can be expressed
as the union of subcomplexes Σ (called apartments) satisfying the following
axioms:

(B0) Each apartment Σ is a Coxeter complex.

(B1) For any two simplices A,B ∈ ∆, there is an apartment Σ containing
both of them.

(B2) If Σ and Σ′ are two apartments containing A and B, then there is an
isomorphism Σ → Σ′ fixing A and B pointwise.

(Recall that a map fixes a simplex A pointwise if it fixes every vertex of A.)

Note that we can take both A and B to be the empty simplex in (B2);
hence any two apartments are isomorphic. This implies, in particular, that



174 4 Buildings as Chamber Complexes

∆ is finite-dimensional, its dimension being the common dimension of its
apartments. Note also that ∆ is a chamber complex. For if C and C ′ are
maximal simplices, then they are also maximal simplices of some apartment Σ
by (B1), so they have the same dimension and are connected by a gallery.

Any collection A of subcomplexes Σ satisfying the axioms will be called
a system of apartments for ∆. Thus a building is a simplicial complex that
admits a system of apartments. Note that we do not require that a building be
equipped, as part of its structure, with a specific system of apartments. The
reason for this is that it turns out that a building always admits a canonical
system of apartments. And in the important special case that the apartments
are finite Coxeter complexes, it is even true that there is a unique system
of apartments. We will prove both of these assertions later in the chapter
(Sections 4.5 and 4.7, respectively).

Remark 4.2. The complexes we have called buildings are sometimes called
weak buildings in the literature, the term “building” being reserved for the
case in which ∆ is thick. This means, by definition, that every panel is a
face of at least three chambers. With our definition, by contrast, a building
can even be thin. Indeed, a Coxeter complex is a thin building with a single
apartment. If we confine ourselves to the thick case, then axiom (B0) can be
considerably weakened. Namely, we need only assume that the apartments Σ
are thin chamber complexes, and it then follows from (B1) and (B2) that they
are in fact Coxeter complexes. The proof of this will be given in Section 4.13.

Remark 4.3. Axiom (B2) can be replaced by the following weaker axiom,
which is simply the special case of (B2) in which one of the two simplices is a
chamber. Some care is needed in the precise formulation, since in the absence
of (B2), we do not yet know that all apartments have the same dimension;
thus we need to avoid ambiguity in our use of the word “chamber.”

(B2′) Let Σ and Σ′ be apartments containing simplices A,C, where C is
a chamber of Σ. Then there is an isomorphism Σ ∼−→ Σ′ fixing A and C
pointwise.

To see that this implies (B2) (in the presence of (B0) and (B1)), consider
an arbitrary pair of simplices A,B contained in two apartments Σ and Σ′.
Choose a chamber C ≥ A in Σ and a chamber D ≥ B in Σ′, and choose an
apartment Σ′′ containing C and D. Assuming (B2′), we have isomorphisms

Σ ∼−→ Σ′′ ∼−→ Σ′ ,

where the first isomorphism fixes C and B pointwise and the second iso-
morphism fixes A and D pointwise. The composite is then an isomorphism
Σ ∼−→ Σ′ fixing A and B pointwise, so (B2) holds.

Remark 4.4. Axiom (B2′), in turn, is equivalent to the following axiom,
which appears at first glance to be stronger:
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(B2′′) Let Σ and Σ′ be two apartments containing a simplex C that is a
chamber of Σ. Then there is an isomorphism Σ ∼−→ Σ′ fixing every simplex
in Σ ∩Σ′.

For suppose that (B2′) holds, and let Σ, Σ′, and C be as in (B2′′). Then
we have, for each A ∈ Σ ∩Σ′, an isomorphism φA : Σ ∼−→ Σ′ fixing A and C
pointwise. But our standard uniqueness argument (Section 3.4.1) shows that
there is at most one isomorphism from Σ to Σ′ fixing C pointwise. So all
the φA are equal to a single isomorphism φ, which therefore fixes the entire
intersection Σ ∩Σ′.

Remark 4.5. One can strengthen (B2′′) still further, by dropping the as-
sumption that the two apartments have a common chamber. In other words,
the isomorphisms in (B2) can always be taken to fix every simplex in the
intersection. We will be able to prove this later in the chapter; see Proposi-
tion 4.101 and Exercise 4.108.

Assume, for the remainder of this section, that ∆ is a building and that
A is a fixed system of apartments.

Proposition 4.6. ∆ is colorable. Moreover, the isomorphisms Σ ∼−→ Σ′ in
axiom (B2) can be taken to be type-preserving.

Proof. Fix an arbitrary chamber C, and assign types to its vertices arbitrarily.
If Σ is any apartment containing C, then [since Coxeter complexes are col-
orable] the assignment of types on C extends uniquely to a type function τΣ

of Σ. For any two such apartments Σ,Σ′, the type functions τΣ and τΣ′ agree
on Σ ∩ Σ′; this follows from the fact that τΣ′ can be constructed as τΣ ◦ φ,
where φ : Σ′ ∼−→ Σ is the isomorphism fixing Σ ∩Σ′ as in (B2′′). The various
τΣ therefore fit together to give a type function τ defined on the union of
the apartments containing C. But this union is all of ∆ by (B1), so the first
assertion of the proposition is proved.

To prove the second assertion, it suffices to consider the isomorphisms
that occur in axiom (B2′). But such an isomorphism is automatically type-
preserving, since it fixes a chamber pointwise. 	


Choose a fixed type function τ on ∆ with values in a set S. In view of
the essential uniqueness of type functions, nothing we do will depend in any
serious way on this choice. For any apartment Σ, the function τ yields a
Coxeter matrix M :=

(
m(s, t)

)
s,t∈S

, defined by

m(s, t) := diam(lkΣ A) ,

where A is any simplex in Σ of cotype {s, t} (see Section 3.2). Since any
two apartments are isomorphic in a type-preserving way, M does not depend
on Σ:

Proposition 4.7. All apartments have the same Coxeter matrix M . 	
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We will therefore call M the Coxeter matrix of ∆. Similarly, we can speak
of the Coxeter diagram of ∆; it is a graph with one vertex for each s ∈ S.
Strictly speaking, we should be talking about the Coxeter matrix and diagram
of the pair (∆,A); but we will show in Section 4.4 that the matrix and diagram
are really intrinsically associated to ∆ and do not depend on the system of
apartments A.

The importance of the Coxeter matrix, of course, is that it completely
determines the isomorphism type of the apartments. Let’s spell this out in
detail: Let WM be the Coxeter group associated to M , with generating set S
and relations (st)m(s,t) = 1. In the language of Section 3.5, WM is the Weyl
group of every apartment. Let ΣM be the Coxeter complex Σ(WM , S). It has
a canonical type function with values in S. We can now state the following
consequence of Propositions 4.7 and 3.85:

Corollary 4.8. For any apartment Σ, there is a type-preserving isomorphism
Σ ∼= ΣM . Thus Σ, endowed with the type function τ |Σ, is a Coxeter complex
of type M , or of type (WM , S), in the sense of Definition 3.86. 	


Finally, we record one more simple consequence of the axioms. Recall that
the study of local properties of Coxeter complexes consisted of a single result,
which said that the link of a simplex in a Coxeter complex is again a Coxeter
complex (Proposition 3.16). The situation for buildings is similar:

Proposition 4.9. If ∆ is a building, then so is lk A for any A ∈ ∆. In par-
ticular, the link is a chamber complex.

Proof. Choose a fixed system of apartments A for ∆. Given A ∈ ∆, let A′ be
the family of subcomplexes of lk∆ A of the form lkΣ A, where Σ is an element
of A containing A. Any such subcomplex is a Coxeter complex by the result
cited above. So it remains to verify (B1) and (B2). Given B,B′ ∈ lk∆ A, we
can join them with A to obtain simplices A ∪ B and A ∪ B′ in ∆. Since ∆
satisfies (B1), there is an apartment Σ containing both of these simplices.
Hence lkΣ A is an element of A′ containing B and B′. This proves that A′

satisfies (B1), and the proof of (B2) is similar. 	


Remark 4.10. The proof, together with the discussion in Section 3.2, tells
us how to get the Coxeter diagram of lkA from that of ∆: If A has cotype
J ⊆ S and D is the Coxeter diagram of ∆, then the Coxeter diagram of lkA
is the induced diagram DJ with vertex set J .

As in the case of Coxeter complexes, we can immediately apply the results
of Section A.1.4 involving residues:

Corollary 4.11. ∆ is completely determined by its underlying chamber sys-
tem. More precisely, the simplices of ∆ are in 1–1 correspondence with the
residues in C := C(∆), ordered by reverse inclusion. Here a simplex A corre-
sponds to the residue C≥A, consisting of the chambers having A as a face. 	
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Exercises

4.12. Show that every thin building is a Coxeter complex.

4.13. Let ∆ be a building. For any simplex A ∈ ∆, show that the residue
C(∆)≥A is a convex subset of C(∆) in the sense of Definition 3.92.

4.14. (a) Given a simplex A in a building ∆, one could try to define the
support of A by choosing an apartment Σ containing A and declaring
suppA to be suppΣ A, where the latter is the support of A in Σ (Defi-
nition 3.98). Show that this does not work. In other words, if Σ and Σ′

are two apartments containing A, suppΣ A need not equal suppΣ′ A.
(b) Show, on the other hand, that the relation “suppA = suppB” is a well-

defined relation on the simplices of ∆, i.e., if A and B have the same
support in one apartment containing them, then they have the same
support in every apartment containing them.

4.2 Examples

Almost all of the examples in this section will be defined as flag complexes,
so readers may need to consult Section A.1.2 for the terminology before pro-
ceeding.

Let P be a set with an “incidence” relation as in the section just
cited. Assume, in addition, that P is partitioned into nonempty subsets
P0, P1, . . . , Pn−1. Elements of Pi are said to have type i. Or, to use more intu-
itive language, elements of P0, P1, P2 . . . might be called points, lines, planes,
etc. If the incidence relation has the property that two elements of the same
type are never incident unless they are equal, then we will call P (together
with the partition and incidence relation) an incidence geometry of rank n.
(In some of the literature one requires, in addition, that every maximal flag
include an element from each of the sets P0, P1, . . . , Pn−1.)

If n = 1, then we just have a set of points, with no further structure; one
can think of it as a “line.” If n = 2, then P is a “plane” consisting of points
and lines, with some points declared to be incident to some lines. If n = 3,
there are points, lines, and planes. And so on.

In practice, of course, one is interested in incidence geometries that are
subject to certain axioms, such as the axioms for projective geometry or some
other kind of geometry. We will see below that different types of geometry
correspond to different types of buildings (where the type of a building is
determined by its Coxeter matrix).

We proceed now to the examples, starting with a case that is trivial but
nonetheless instructive.

Example 4.15. Suppose ∆ is a building of rank 1 (dimension 0). Then every
apartment must be a 0-sphere S0, since this is the only Coxeter complex of
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rank 1. In particular, ∆ must have at least two vertices. Conversely, a rank-1
simplicial complex with at least two vertices is a building (with every 2-vertex
subcomplex as an apartment). Thus the rank-1 buildings are precisely the flag
complexes of the rank-1 incidence geometries with at least 2 points. [It is, of
course, reasonable to demand that a 1-dimensional space, or “line,” have at
least 2 points. In fact, one often even demands that there be at least 3 points,
which is equivalent to requiring the flag complex ∆ to be thick.]

Example 4.16. Suppose ∆ is a building of rank 2 (dimension 1). Then an
apartment Σ must be a 2m-gon for some m (2 ≤ m ≤ ∞). We will draw the
Coxeter diagram as

m

which should be interpreted as

if m = 2 and as

if m = 3.
Let’s begin with the case m = 2. Then every apartment is a quadrilateral:

(As usual, the two colors, black and white, represent the two types of ver-
tices.) It follows easily from the building axioms that every vertex of type •
is connected by an edge to every vertex of type ◦, i.e., ∆ is a complete bi-
partite graph. In the language of incidence geometry, ∆ is the flag complex of
a “plane” in which every point is incident to every line. Conversely, the flag
complex of such a plane is always a rank-2 building (with m = 2), provided
that there are at least two points and at least two lines.

Note that we can also describe ∆ as the join of two rank-1 buildings. This
suggests a general fact:

Exercise 4.17. If ∆ is a building whose Coxeter diagram is disconnected,
show that ∆ is canonically the join of lower-dimensional buildings, one for
each connected component of the diagram.

Returning now to Example 4.16, suppose next that m = 3. Then every
apartment is a hexagon, which we may draw as the barycentric subdivision
of a triangle:
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This picture suggests a configuration of three lines in a plane (one line for
each ◦), whose pairwise intersections yield three points of the plane (one for
each •). The existence of many such apartments, as guaranteed by (B1), makes
it plausible that ∆ is the flag complex of a projective plane. Recall the defin-
ition of the latter:

Definition 4.18. A projective plane is a rank-2 incidence geometry satisfying
the following three axioms:

(1) Any two points are incident to a unique line.
(2) Any two lines are incident to a unique point.
(3) There exist three noncollinear points.

With this definition, it is indeed the case that our building ∆ is the flag
complex of a projective plane. You may find it instructive to try to prove
this as an exercise. [The exercise is not entirely routine; if you get stuck, you
will see it again in Exercise 4.46.] Conversely, the flag complex of a projective
plane is a building, with one apartment for every triangle in the projective
plane. This converse is a routine exercise.

The most familiar example of a projective plane is the projective plane
over a field k. By definition, the set P0 of “points” is the set of 1-dimensional
subspaces of the 3-dimensional vector space k3; the set P1 of “lines” is the set
of 2-dimensional subspaces of k3; and “incidence” is given by inclusion, i.e., a
point x ∈ P0 is incident to a line L ∈ P1 if x < L as subspaces of k3.

It is now easy to construct concrete examples of buildings. Let P be the
projective plane over F2, for instance, where F2 is the field with two elements.
This plane is also called the Fano projective plane. It has 7 points (each on
exactly 3 lines) and 7 lines (each containing exactly 3 points). The resulting
flag complex ∆ is a thick building with 14 vertices and 21 edges. We will see
in Exercise 4.23 below that the points of P can be put in 1–1 correspondence
with the 7th roots of unity ζj (ζ = e2πi/7, j = 0, . . . , 6) in such a way that
the lines of P are the triples

{
ζj , ζj+1, ζj+3

}
, j = 0, . . . , 6. This leads to the

picture of ∆ shown in Figure 4.1. The interested reader can locate some of
the apartments (there are 28 of them) and verify some cases of the building
axioms.

Remark 4.19. This picture is misleading in one respect; namely, it fails to
reveal how much symmetry ∆ has. One can see from the picture that ∆ admits
an action of the dihedral group D14, but in fact Aut∆ is of order 336. The
subgroup Aut0 ∆ of type-preserving automorphisms is GL3(F2), which is the
simple group of order 168.

Continuing with Example 4.16, one could analyze in a similar way the
buildings corresponding to m = 4, 5, 6, . . . . Each value of m corresponds to a
particular type of plane geometry.

Definition 4.20. An incidence plane P is called a generalized m-gon if its
flag complex is a building of type I2(m).
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Fig. 4.1. The incidence graph of the Fano plane.

The terminology comes from the fact that P has formal properties analo-
gous to those of the geometry consisting of the vertices and edges of an m-gon.
See Van Maldeghem [264] or Tits–Weiss [262] for more information. See also
Proposition 4.44 below, where we spell out precisely what it means for the
flag complex to be a building of type I2(m).

Generalized 3-gons are also called generalized triangles. Thus a generalized
triangle is the same thing as a projective plane. Generalized 4-gons are also
called generalized quadrangles or polar planes. A generalized quadrangle has
no triangles, but there do exist lots of quadrilaterals. Every quadrilateral
yields an apartment in the flag complex, this apartment being an octagon
(or barycentrically subdivided quadrilateral). See Exercise 4.24 below for a
concrete example of a generalized quadrangle.

Finally, in case m = ∞, buildings of type I2(∞) are simply trees with
no endpoints (where an endpoint of a tree is a vertex that is on only one
edge). To see that such a tree is a building, simply take the apartments to be
all possible subcomplexes that are lines (i.e., ∞-gons); the verification of the
building axioms is a routine matter. The converse, that every building of this
type is a tree, is more challenging. We will treat it in Proposition 4.44 below,
along with our characterization of generalized m-gons for m <∞.

The two remaining examples are intended to provide a brief glimpse of
some higher-dimensional buildings from the point of view of incidence geome-
try. Details (including definitions of some of the terms), will be omitted; these
can be found in Tits [247]. (See also Scharlau [207].) We will, however, give
many details for the most important case in the next section. And we will
show in Chapter 6 how to construct further examples of buildings via group
theory rather than incidence geometry.

Examples 4.21. (a) If P is an n-dimensional projective space, then its flag
complex is a rank-n building of type An, i.e., having Coxeter diagram
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. . . (n vertices).

Every apartment is isomorphic to the barycentric subdivision of the bound-
ary of an n-simplex, and there is one such apartment for every frame in the
projective space (where a frame is a set of n + 1 points in general position).
Conversely, every building of type An is the flag complex of a projective space.

When n = 2, this example reduces to the case m = 3 of Example 4.16.

(b) If P is an n-dimensional polar space, then its flag complex is a rank-n
building of type Cn, i.e., having Coxeter diagram

. . . 4 (n vertices).

Every apartment is isomorphic to the barycentric subdivision of the bound-
ary of an n-cube (or n-dimensional hyperoctahedron), and there is one such
apartment for every “polar frame” in the given polar space. Conversely, every
building of type Cn is the flag complex of a polar space.

When n = 2, this example reduces to the case m = 4 of Example 4.16.

Remark 4.22. It is no accident that all of the examples in this section (except
trees) have been defined as flag complexes. Indeed, we will see in Exercise 4.50
below that every building is a flag complex.

Exercises

4.23. (a) Let V be a 3-dimensional vector space over F2, and let P = P (V )
be the projective plane in which the points are the nonzero vectors in V
and the lines are the triples {u, v, w} with u + v + w = 0. Show that P is
isomorphic to the projective plane over F2.

(b) Let ∆(V ) be the flag complex of P (V ), with its canonical type func-
tion. If V ∗ is the dual of V , show that the correspondence between sub-
spaces of V and subspaces of V ∗ induces a type-reversing isomorphism
∆(V ) ∼= ∆(V ∗). Consequently, any isomorphism V ∼−→ V ∗ induces a
type-reversing automorphism of ∆(V ). If the isomorphism V ∼−→ V ∗

comes from a nondegenerate symmetric bilinear form on V , show that
the resulting automorphism of ∆(V ) is an involution.

(c) Let V be the field F8, viewed as a vector space over F2. Show that there
is a 7th root of unity ζ ∈ F8 such that the lines in P = P (V ) are the
triples Li =

{
ζi, ζi+1, ζi+3

}
, i ∈ Z/7Z.

(d) With V = F8 as in (c), recall that there is a nondegenerate symmetric
bilinear form on V given by 〈x, y〉 = tr(xy), where tr : F8 → F2 is the
trace. This induces a type-reversing involution σ of ∆ = ∆(V ) by (b).
Show that σ is given on vertices by ζi ↔ L6−i. Describe σ in terms of
the picture of ∆ in Figure 4.1.

4.24. In this exercise we will use some standard algebraic terminology con-
cerning bilinear forms. Readers not familiar with this terminology can look
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ahead at Section 6.6, where all the terms are defined. Let V be a 4-dimensional
vector space over the field F2, with basis e1, e2, f1, f2. There is a nondegenerate
alternating bilinear form 〈−,−〉 on V such that

〈ei, fi〉 = 〈fi, ei〉 = 1

for i = 1, 2 and all other “inner products” 〈u, v〉 of basis vectors are 0. The
purpose of this exercise is to construct a generalized quadrangle Q from V
and 〈−,−〉. The points of Q are defined to be the nonzero vectors in V , and
the lines of Q are the 2-dimensional totally isotropic subspaces of V . A point p
is incident to a line L if p ∈ L.

(a) Show that there are 15 points, each incident to 3 lines, and 15 lines, each
incident to 3 points. Thus the flag complex ∆ of Q has 30 vertices and
45 edges.

(b) Show how to use the four given basis vectors to construct a quadrilateral
in Q and hence an octagon in ∆. This octagon will be called the standard
apartment. More generally, any four vectors in V with inner products like
those of the basis vectors give rise to an octagon in ∆ called an apartment.
[Four vectors of this form are said to form a symplectic basis of V .]

(c) Show that ∆ is a building of type I2(4).
(d) Call two vertices of ∆ opposite if there is an apartment Σ containing

them and they are opposite in Σ in the obvious sense (recall that Σ is
an octagon). Show that two vertices are opposite if and only if (i) they
are noncollinear points of Q or (ii) they are nonintersecting lines of Q.

(e) Show that ∆ contains 5 vertices (but not 6) that are pairwise opposite.

4.3 The Building Associated to a Vector Space

Let V be a vector space of finite dimension n ≥ 2 over an arbitrary field k.

Definition 4.25. The projective space associated to V consists of the nonzero
proper subspaces of V , two such being called incident if one is contained in
the other. (This is an example of a projective space of rank (n − 1).) Let
∆ = ∆(V ) be the flag complex of this projective space; thus the simplices are
chains

V1 < V2 < · · · < Vk

of nonzero proper subspaces of V .

The maximal simplices of ∆ are the chains

V1 < V2 < · · · < Vn−1 (4.1)

with dim Vi = i. In what follows we will find it notationally convenient to
set V0 = 0 and Vn = V . We will call the maximal simplices chambers, even
though we do not yet know that ∆ is a chamber complex.
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The purpose of this section is to outline a proof that ∆ is a building,
as claimed in Example 4.21(a) above. By a frame in V we will mean a set
F = {L1, . . . , Ln} of 1-dimensional subspaces of V such that V = L1⊕· · ·⊕Ln.
Given such a frame, consider the set of subspaces V ′ of V such that V ′ is
spanned by a nonempty proper subset of F . Let Σ(F) be the subcomplex
of ∆ consisting of flags of such subspaces. Call a subcomplex of this form an
apartment. When n = 3, for example, every apartment is a hexagon, as shown
in Figure 4.2. We now proceed with an outline of a proof that ∆ is a building.

L1

L1 + L2 L1 + L3

L2 L3

L2 + L3

Fig. 4.2. An apartment when n = 3.

Let Σ0 be the flag complex of the poset of nonempty proper subsets of
{1, 2, . . . , n}. This is a Coxeter complex of type An−1, as we explained in
the solution to Exercise 1.112. To verify axiom (B0), one checks that every
apartment Σ(F) is isomorphic to Σ0. This is trivial to verify, but it will be
useful for us to make the isomorphism explicit.

Choose a chamber C in Σ(F) with vertices Vi as in (4.1). Then the
elements of F can be numbered L1, L2, . . . , Ln in such a way that Vi =
L1 + · · · + Li for all i (including i = 0 and i = n). We then have an
isomorphism φ = φF,C : Σ0 ∼−→ Σ(F) given on vertices by I �→

⊕
i∈I Li

for any nonempty proper subset I ⊂ {1, . . . , n}. The inverse of φ is the
map ψ = ψF,C : Σ(F) ∼−→ Σ0 defined as follows on vertices: Given a
nonzero proper subspace U of V that is a vertex of Σ(F), consider the filtra-
tion (U ∩ Vi)0≤i≤n of U induced by C. Then ψ records the indices at which
this filtration jumps; more precisely, ψ is given by

ψ(U) := {i ≥ 1 | U ∩ Vi > U ∩ Vi−1} .

Note that the definition of ψ makes no reference to F , only to C. In par-
ticular, if F ′ is a second frame whose apartment Σ(F ′) contains C, then ψF,C

and ψF ′,C agree on Σ(F)∩Σ(F ′). Axiom (B2′′) is now immediate: φF ′,C◦ψF,C

is an isomorphism Σ(F) ∼−→ Σ(F ′) fixing the intersection pointwise.
Turning now to (B1), consider two chambers C,C ′ of ∆, with vertex sets
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V1 < · · · < Vn−1 and V ′
1 < · · · < V ′

n−1 ,

respectively. View {Vi}0≤i≤n and {V ′
i }0≤i≤n as composition series for V . Ac-

cording to the Jordan–Hölder theorem, there is a permutation π of {1, . . . , n}
such that V ′

i /V ′
i−1

∼= Vj/Vj−1 if j = π(i). This is of course a triviality in
the present context of vector spaces; but we need to review how the proof of
the Jordan–Hölder theorem yields a canonical π and canonical isomorphisms
V ′

i /V ′
i−1

∼= Vj/Vj−1.
For each i ∈ {1, . . . , n}, the composition series {Vj}0≤j≤n induces a filtra-

tion of V ′
i /V ′

i−1. [First intersect with V ′
i ; then take images mod V ′

i−1.] Since
V ′

i /V ′
i−1 is 1-dimensional, this filtration must be trivial, i.e., only one of the

successive quotients is nontrivial. Define π(i) to be the index j such that
the jth quotient is nontrivial. Equivalently, j = π(i) is characterized by the
property that

V ′
i−1 + (V ′

i ∩ Vk) =

{
V ′

i−1 for k < j,

V ′
i for k ≥ j.

The resulting function π = π(C,C ′) : {1, . . . , n} → {1, . . . , n} is called the
Jordan–Hölder permutation associated to the pair C,C ′. To see that π is
indeed a permutation, one shows that π(C,C ′) and π(C ′, C) are inverses of
one another. More precisely, one shows that if π(i) = j there are isomorphisms

V ′
i

V ′
i−1

∼←−
V ′

i ∩ Vj

(V ′
i−1 ∩ Vj) + (V ′

i ∩ Vj−1)
∼−→

Vj

Vj−1

induced by inclusions.
All of this can be extracted from the proof of the Jordan–Hölder theorem

as given in many standard texts, such as Jacobson [139, Section 3.3]. But one
can also just prove it directly. To show, for instance, that V ′

i−1 ∩ Vj ≤ Vj−1,
suppose this is false; then Vj = Vj−1+(V ′

i−1∩Vj). Intersect both sides with V ′
i

to obtain V ′
i ∩Vj = (V ′

i ∩Vj−1)+(V ′
i−1∩Vj) ≤ V ′

i−1, contradicting the definition
of j.

It is now easy to verify (B1): Given maximal simplices C,C ′, one can find
a frame F such that Σ(F) contains C and C ′ by choosing, for each i, j as
above, a 1-dimensional subspace Lj ≤ V ′

i ∩ Vj whose image in both V ′
i /V ′

i−1

and Vj/Vj−1 is nontrivial.
This completes our sketch of the proof that ∆(V ) is a building. As a

byproduct of the proof, we have obtained a function C(∆) × C(∆) → W ,
where W = Sn, i.e., W is the Coxeter group of type An−1. The reader who
has read Section 3.5 may be able to guess the geometric meaning of this
function. Exercise 4.28 below provides a further clue. We will return to this
in Exercise 4.93.

Remark 4.26. Since a vector space is determined up to isomorphism by its
dimension, this section essentially contains one example for each n ≥ 2 and
each field k. But, as we have already seen in Exercise 4.23 and will see again
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in Exercises 4.31 and 4.32, it can be conceptually helpful to consider arbitrary
vector spaces that are not assumed to be given as kn.

Exercises

4.27. Show that ∆(V ) is thick.

4.28. What is π(C,C ′) if C and C ′ are i-adjacent, i.e., if Vj = V ′
j for j �= i

and Vi �= V ′
i ?

4.29. Let C and C ′ be chambers with vertices Vi and V ′
i as above. Call C

and C ′ opposite if there is a frame F = {L1, . . . , Ln} such that Vi = L1 +
L2 + · · · + Li and V ′

i = Ln + Ln−1 + · · · + Ln−i+1 for all i. Show that F
is then unique. In words, two opposite chambers are contained in a unique
apartment. See Theorem 4.70 below for a generalization.

4.30. As we noted above, the map ψF,C depends only on C, and not on F .
Show that we obtain in this way a well-defined chamber map ψC : ∆ → Σ0.
Deduce that every apartment Σ(F) is a retract of ∆.

4.31. Observe that the building ∆(V ) comes equipped with a canonical col-
oring, having values in {1, . . . , n− 1}, where the “color” of a vertex is its
dimension as a subspace of V . Show that there is a canonical type-reversing
isomorphism φ : ∆(V ) ∼−→ ∆(V ∗), where V ∗ is the vector space dual to V .
Here “type-reversing” means that a vertex of type i is sent to a vertex of
type n − i. In other words, φ induces the unique nontrivial automorphism
of the Coxeter diagram of type An−1 [assuming n ≥ 3]. Deduce, as in Ex-
ercise 4.23(b), that the buildings constructed in this section always admit
type-reversing automorphisms.

4.32. In this section we have assumed that V is a vector space over an arbi-
trary field k. Fields, by convention, are usually assumed to be commutative.
Suppose, however, that we allow k to be a division ring (also called a skew
field), i.e., a possibly noncommutative ring with 1 �= 0 in which every nonzero
element is invertible. Does anything change?

4.4 Retractions

Retractions, as we saw in Chapter 3, can be quite useful technical tools. In
this section we establish the existence and formal properties of retractions of
a building onto its apartments. Exercise 4.30 has already given us an example
of such a retraction.

Assume throughout this section that ∆ is a building and that A is an
arbitrary system of apartments.

Proposition 4.33. Every apartment is a retract of ∆.
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Proof. This is very similar to the construction of a type function. Fix a cham-
ber C of the given apartment Σ, and consider all the apartments Σ′ that
contain C. For any such Σ′ there is a unique isomorphism φΣ′ : Σ′ ∼−→ Σ
that fixes C pointwise, where the existence is given by axiom (B2) and the
uniqueness is proved by the standard argument. For any two such apartments
Σ′, Σ′′, the isomorphisms φΣ′ and φΣ′′ agree on Σ′ ∩ Σ′′. This follows from
the fact that we can construct φΣ′′ by composing φΣ′ with the isomorphism
Σ′′ ∼−→ Σ′ that fixes Σ′ ∩ Σ′′ pointwise [see (B2′′)]. The various isomor-
phisms φΣ′ therefore fit together to give a chamber map ρ : ∆ → Σ, and ρ is
a retraction since φΣ is the identity. 	


One useful consequence of this is that combinatorial distances between
chambers of ∆ can be computed in terms of the distance functions on apart-
ments, which we understand reasonably well in terms of separating walls or
reduced words:

Corollary 4.34. Let C and D be chambers of ∆, and let Σ be any apartment
containing C and D. Then d∆(C,D) = dΣ(C,D). Consequently, the diameter
of ∆ is equal to the diameter of any apartment.

Proof. Suppose Γ is a minimal gallery in Σ from C to D. Then Γ is also
minimal in ∆; for if there were a shorter gallery in ∆, then we could get a
shorter one in Σ by applying a retraction. This proves the first assertion. As
an immediate consequence, we have diam Σ ≤ diam ∆. To prove the oppo-
site inequality, let C ′ and D′ be arbitrary chambers of ∆ and let Σ′ be an
apartment containing them. Then we have

d∆(C ′,D′) = dΣ′(C ′,D′) ≤ diam Σ′ .

But Σ ∼= Σ′, so diam Σ′ = diam Σ and hence diam ∆ ≤ diam Σ. 	


Remark 4.35. The statement and proof of the corollary remain valid if C
and D are replaced by arbitrary simplices. (Recall from Section A.1.3 that
d(A,B) makes sense for any simplices A,B.)

Corollary 4.34 can be used to prove the important fact that the Coxeter
matrix M of ∆, as defined in Section 4.1, really is an invariant of ∆:

Corollary 4.36. The Coxeter matrix M depends only on ∆, not on the sys-
tem of apartments. It is given by

m(s, t) = diam(lk∆ A) ,

where A is any simplex of cotype {s, t}.

Proof. Suppose A has cotype {s, t}, and let Σ be any apartment containing A.
Then we have m(s, t) = diam(lkΣ A) by definition. But lkΣ A is an apartment
in the building lk∆ A, so it has the same diameter as the latter by Corollary
4.34. This proves the second assertion, and the first assertion follows at once.
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As an example, suppose that ∆ is 1-dimensional and that the apartments
are 2m-gons as in Example 4.16. Then every system of apartments in ∆ must
consist of 2m-gons (for the same m = diam ∆).

In view of Corollary 4.36, the building ∆ has a well-defined type and a well-
defined Weyl group W = WM . We have already used this language informally
in connection with some of the examples in Section 4.2. Let’s make this more
precise, as in Definition 3.86.

Definition 4.37. Let (W,S) be a Coxeter system with Coxeter matrix M .
We say that a building ∆ is of type (W,S) (or of type M) if ∆ comes equipped
with a type function having values in S such that the Coxeter matrix of ∆
is M . We then say that W is the Weyl group of ∆.

Returning now to the general study of retractions, note that the proof
of Proposition 4.33 actually yields, for any apartment Σ and any chamber
C ∈ Σ, a canonical retraction of ∆ onto Σ.

Definition 4.38. Given an apartment Σ and a chamber C ∈ Σ, there is a
canonical retraction ρ = ρΣ,C : ∆ → Σ. It is called the retraction onto Σ
centered at C. It can be characterized as the unique chamber map ∆ → Σ
that fixes C pointwise and maps every apartment containing C isomorphically
onto Σ.

This characterization makes it appear that ρ depends on the apartment
system A. But part (3) of the following proposition gives a different charac-
terization, which shows that ρ depends only on Σ and C, not on A.

Proposition 4.39. The retraction ρ = ρΣ,C has the following properties.

(1) For any face A ≤ C, ρ−1(A) = {A}.
(2) ρ preserves distances from C, i.e., d(C, ρ(D)) = d(C,D) for any chamber

D ∈ ∆. More generally, d(A, ρ(B)) = d(A,B) for any A ≤ C and any
B ∈ ∆.

(3) ρ is the unique chamber map ∆ → Σ that fixes C pointwise and preserves
distances from C.

Proof. (1) Suppose B ∈ ∆ is a simplex such that ρ(B) = A ≤ C. Choose an
apartment Σ′ containing both B and C. Then ρ|Σ′ is an isomorphism, and it
maps both A and B to A. Hence B = A.

(2) Given A ≤ C and any simplex B, choose an apartment Σ′ containing
C and B. Since ρ|Σ′ is an isomorphism, we have dΣ(A, ρ(B)) = dΣ′(A,B).
In view of Remark 4.35 above, we can delete the subscripts to obtain
d(A, ρ(B)) = d(A,B).

(3) Suppose φ : ∆ → Σ is another chamber map that fixes C pointwise and
preserves distances from C. Then φ and ρ must each take any minimal gallery
in ∆ starting at C to a pregallery of the same length in Σ. The pregallery
is therefore a gallery, and this is all that is needed to make the standard
uniqueness argument go through; hence φ = ρ. 	
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Property (2) above enables one, in practice, to figure out what ρ looks
like. Suppose, for example, that ∆ is a tree as in Example 4.16. Then Σ is
a triangulated line and C is an edge of Σ. Let v and w be the vertices of C.
Then it follows easily from (2) that ρ simply “flattens ∆ out” onto Σ, with
the part of ∆ closer to v than to w going to the corresponding part of Σ, and
similarly for the part closer to w. See Figure 4.3.

C

v w
Σ

Fig. 4.3. The retraction ρΣ,C .

As an application of retractions, we show that every apartment Σ is a
convex chamber subcomplex of ∆ in the sense of Definition 3.129.

Proposition 4.40. Every apartment Σ is a convex chamber subcomplex of ∆.
More precisely, given C,A ∈ Σ with C a chamber, every minimal gallery in ∆
between C and A is contained in Σ.

Proof. Let Γ : C0, . . . , Cd be a minimal gallery from C to A. If Γ is not con-
tained in Σ, then there is an index i ≥ 1 with Ci−1 ∈ Σ and Ci /∈ Σ. Let D
be the chamber of Σ distinct from Ci−1 and having Ci−1 ∩ Ci as a face, and
let ρ be the retraction ρΣ,D. Then ρ(Ci) = Ci−1 (see Figure 4.4), so the
pregallery ρ(Γ ) from C to A has a repetition, contradicting the minimality
of Γ . 	


Σ
D ACi−1C0

Ci

Fig. 4.4. ρ shortens Γ .

As a second application of retractions, we give a criterion for recognizing
minimal galleries in a building. Recall that we have a type function on ∆ with
values in a set S and that S can also be viewed as the set of generators of the
Weyl group W = WM of ∆.
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Proposition 4.41. Let Γ : C0, . . . , Cd be a gallery of type s = (s1, . . . , sd).
Then Γ is minimal if and only if s is a reduced word.

Proof. If Γ is minimal, then it is contained in an apartment by Proposi-
tion 4.40; s is then reduced by the connection between words in a Coxeter
group and galleries in the associated Coxeter complex. Conversely, suppose
s is reduced. We may assume by induction that the subgallery C1, . . . , Cd is
minimal and hence is contained in an apartment Σ. Then ρΣ,C1(Γ ) is a gallery
in Σ with the same type s as Γ , so it is minimal. It follows that Γ is minimal,
since its image under a chamber map is minimal. 	


Corollary 4.42. Let C and D be chambers, and let s be a reduced word. If
there is a gallery from C to D of type s, then there is a unique such gallery.

Proof. Choose an apartment Σ containing C and D. Any gallery from C to D
of type s is minimal and hence is contained in Σ. The result now follows from
the thinness of Σ. 	


We close this section by using retractions to complete the discussion of
rank-2 buildings that we began in Example 4.16. We need some terminology.

Definition 4.43. Let ∆ be a graph, i.e., a 1-dimensional simplicial complex.
The girth of ∆ is the smallest integer k ≥ 3 such that ∆ contains a k-gon,
provided such an integer k exists. Otherwise, ∆ is a tree, and we define its
girth to be ∞.

Proposition 4.44. Let ∆ be a connected bipartite graph in which every vertex
is a face of at least two edges. Then ∆ is a building if and only if ∆ has
diameter m and girth 2m for some m with 2 ≤ m ≤ ∞. In this case ∆ has
type I2(m).

(“Diameter” here means the supremum of the distances d(u, v) between ver-
tices u, v. Here d(−,−) denotes the usual distance between two vertices, not
the gallery distance defined in Section A.1.3. Note that when m = ∞, the
content of the proposition is that a building of type ∞ is the same thing
as a tree without endpoints, as claimed in Example 4.16.)

Proof. Suppose that ∆ has diameter m and girth 2m. Then one easily checks
the following properties for any two vertices u, v:

• If d(u, v) < m, then there is a unique path from u to v of length ≤ m with
no backtracking. [“No backtracking” means that any three consecutive
vertices are distinct.]

• If 0 < d(u, v) < m, then there is a unique vertex v′ adjacent to v such that
d(u, v′) = d(u, v) − 1. For all other vertices v′ adjacent to v, d(u, v′) =
d(u, v) + 1.

• If d(u, v) = m (and hence m < ∞), then d(u, v′) = m − 1 for all vertices
v′ adjacent to v.
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It is now a routine exercise to show that ∆ is a building of type I2(m), with
the apartments being all the 2m-gons in ∆.

Conversely, suppose that ∆ is a building of type I2(m). Since each apart-
ment is a 2m-gon and any two vertices are contained in an apartment, it
suffices to show that ∆ does not contain a k-gon for k < 2m. Let Z be a
k-gon in ∆ with 3 ≤ k < ∞. Let C be a chamber in Z, with vertices v and w,
let Σ be any apartment containing C, and let ρ be the retraction ρΣ,C . As we
traverse Z starting at C (thought of as oriented from v to w, say), the image
under ρ is a closed curve in Σ passing through the vertices v, w, . . . and never
traversing C again before returning to v [see part (1) of Proposition 4.39].
Since Σ is a 2m-gon, this is possible only if k ≥ 2m. 	


Remark 4.45. In view of Definition 4.20, the proposition can be viewed as
a characterization of generalized m-gons; this characterization is often taken
as the definition of a generalized m-gon.

Exercises

4.46. Deduce from Proposition 4.44 with m = 3 that every building of type A2

is the flag complex of a projective plane, as claimed in Example 4.16.

4.47. Give an alternative proof that a building of type I2(m) has girth 2m by
considering types of galleries.

4.48. Let ∆ be the incidence graph of a generalized m-gon (i.e., a building of
type m ). Given two vertices u, v of ∆, a path of minimal length from u
to v is called a geodesic. As we noted in the proof of Proposition 4.44, there
is a unique such geodesic if d(u, v) < m. If d(u, v) = m < ∞, however, there
are at least two geodesics from u to v.

(a) Let ∆′ be a convex chamber subcomplex of ∆. If u and v are vertices
of ∆′ such that d(u, v) < m in ∆, show that the (unique) geodesic joining
them is contained in ∆′.

(b) If d(u, v) = m <∞, show that there is a convex chamber subcomplex ∆′

containing u and v but only one of the geodesics joining them.

4.49. (a) Where in the proof of Proposition 4.40 did we use the assumption
that C is a chamber?

(b) Give an example to show that this assumption cannot be dropped.

4.50. Show that every building is a flag complex.

4.51. Given an apartment Σ, a chamber C ∈ Σ, and a chamber D ∈ ∆, show
that there is a unique type-preserving chamber map ρ : ∆ → Σ such that
ρ(D) = C and ρ maps every apartment containing D isomorphically onto Σ.
For lack of a better name, we will call ρ the canonical map ∆ → Σ such that
ρ(D) = C.
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4.52. (a) Let ∆ be a thick building, let C be a chamber, and let A′ be
the set of apartments containing C. Show that C is the only chamber
in
⋂

Σ∈A′ Σ. (In more intuitive language, every closed chamber is an
intersection of apartments. The interested reader can phrase this precisely
in terms of the geometric realization.)

(b) Give an example to show that the thickness assumption cannot be
dropped.

4.53. (a) Recall that the notions of elementary homotopy and homotopy were
defined for galleries in Coxeter complexes in Section 3.2. Generalize to
buildings.

(b) Given a nonminimal gallery, how can one modify it to obtain a minimal
gallery with the same extremities?

4.5 The Complete System of Apartments

We have seen several cases in which something that seemed a priori to depend
on a choice of apartment system A turned out to be independent of A. The
next theorem is the ultimate result of this type; it can be viewed as saying
that all systems of apartments in a given building are compatible with one
another. Although the statement of the result does not refer to colorings, we
will continue to assume that ∆ comes equipped with a fixed type function
having values in a set S. In particular, we have a Coxeter matrix M , which
will be used in the proof of the theorem.

Theorem 4.54. If ∆ is a building, then the union of any family of apartment
systems is again an apartment system. Consequently, ∆ admits a largest sys-
tem of apartments.

Proof. It is obvious that (B0) and (B1) hold for the union, so the only problem
is to prove (B2). We will work with the variant (B2′′). Suppose, then, that
Σ and Σ′ are apartments in different apartment systems and that Σ ∩ Σ′

contains at least one chamber. We must find an isomorphism Σ′ ∼−→ Σ that
fixes Σ ∩Σ′ pointwise.

Choose an arbitrary chamber C ∈ Σ ∩ Σ′. There are then two obvious
candidates for the desired isomorphism Σ′ ∼−→ Σ. On the one hand, we know
by Corollary 4.36 that Σ and Σ′ have the same Coxeter matrix M , so we
can find a type-preserving isomorphism φ : Σ′ ∼−→ Σ by Corollary 4.8. And
we can certainly choose φ such that φ(C) = C, since the group of type-
preserving automorphisms of Σ is transitive on the chambers. It then follows
that φ fixes C pointwise. Unfortunately, it is not obvious that φ fixes Σ ∩Σ′

pointwise.
The other candidate is provided by the theory of retractions. Namely, let ρ

be the retraction ρΣ,C and let ψ : Σ′ → Σ be the restriction of ρ to Σ′. Then
ψ obviously fixes Σ ∩Σ′ pointwise, simply because ρ is a retraction onto Σ.
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But it is not obvious that ψ is an isomorphism. [Readers who are tempted to
say that ψ is an isomorphism by the construction of ρ should recall that we
do not know that Σ′ is part of an apartment system containing Σ; indeed,
that is what we are trying to prove!]

To complete the proof, we will show by the standard uniqueness argument
that φ and ψ are in fact the same map, which therefore has all the required
properties. Since φ and ψ both fix C pointwise, the standard argument will
go through if we can show that if Γ is a minimal gallery in Σ′ starting at C,
then the pregalleries φ(Γ ) and ψ(Γ ) are galleries. This is clear for φ(Γ ) since
φ is an isomorphism. And it is true for ψ(Γ ) because of two facts proved in
the previous section: (a) Γ is still minimal when viewed as a gallery in ∆; and
(b) ρ preserves distances from C. 	


Definition 4.55. The maximal apartment system will be called the complete
system of apartments. It consists, then, of all subcomplexes Σ ⊆ ∆ such that
Σ is in some apartment system A.

Remark 4.56. This description of the complete apartment system is not very
informative. Here are two characterizations that are more useful. Let Σ be
a chamber subcomplex of ∆ (Definition A.12), and let A be the complete
system of apartments. Then:

(1) Σ is in A if and only if Σ is isomorphic to ΣM .
(2) Σ is in A if and only if Σ is a thin, convex chamber subcomplex of ∆.

We have already proved the necessity of each of the conditions. The suffi-
ciency of (2) will be proved in Section 4.8 using the Weyl distance function
(see Theorem 4.86). The sufficiency of (1) is easier and will be proved in
Proposition 4.59 below. The proof will use the following two lemmas. The
first is a simple combinatorial fact.

Lemma 4.57. Let m = (mi)i∈I and m′ = (m′
i)i∈I , where I is a finite index

set and the elements mi,m
′
i are in some totally ordered set. Suppose that m′

is a permutation of m in the sense that there is a bijection f : I → I such that
m′

i = mf(i) for all i ∈ I. If mi ≤ m′
i for all i, then mi = m′

i for all i.

(In our application of this, m and m′ will be Coxeter matrices, and the totally
ordered set will be N ∪ {∞}, where N is the set of natural numbers.)

Sketch of proof. Let m be the smallest element that occurs in m, and let
J := {i ∈ I | mi = m}. Then we have m′

i ≥ m for i ∈ J and m′
i > m for i /∈ J .

But m must occur in m′ as many times as it occurs in m, so m′
i = m = mi

for all i ∈ J . Now consider the second smallest element that occurs in m, and
so on. 	


We return now to our building ∆. Recall that we have a type function τ
on ∆ with values in a set S, which gives us a Coxeter matrix M and a Weyl
group W := WM . Suppose Σ is a chamber subcomplex of ∆ and is known to



4.5 The Complete System of Apartments 193

be a Coxeter complex. Then τ restricts to a type function on Σ, and it then
makes sense to talk about the Coxeter matrix M ′ =

(
m′(s, t)

)
s,t∈S

of Σ, with
m′(s, t) = diam lkΣ A for any simplex A ∈ Σ of cotype {s, t}. Easy examples
show that Σ need not be isomorphic to the apartments of ∆. In particular,
the matrix M ′ is not necessarily equal to the Coxeter matrix M of ∆. We will
prove in the next lemma, however, that M ′ = M if Σ is isomorphic to ΣM .
Note that this is not at all obvious, since we do not know, a priori, that there
is a type-preserving isomorphism between Σ and ΣM (with respect to the
type function τ |Σ on Σ and the canonical type function τM on ΣM ).

Lemma 4.58. Let Σ be a subcomplex of ∆ that is isomorphic to ΣM , and let
M ′ be its Coxeter matrix as above. Then M ′ = M . Consequently, there is a
type-preserving isomorphism between Σ and ΣM .

Proof. We know from Proposition 3.85 that there is a type-preserving iso-
morphism between Σ and ΣM ′ . So the second assertion follows from the
first. To prove the first assertion, let φ : Σ ∼−→ ΣM be an isomorphism,
and let f : S → S be the type-change map φ∗ (Proposition A.14). Thus
τM (φ(A)) = f(τ(A)) for every simplex A ∈ Σ. In view of the interpreta-
tion of Coxeter matrices in terms of links (Corollary 3.20), it follows that
m(f(s), f(t)) = m′(s, t) for all s, t ∈ S. On the other hand, we claim that
m(s, t) ≤ m′(s, t) for all s, t ∈ S. To see this, consider s �= t in S and let
A be a simplex in Σ of cotype {s, t}. Then lkΣ A is a 2m′(s, t)-gon and is
a chamber subcomplex of lk∆ A. The latter is a graph of girth 2m(s, t) by
Proposition 4.44, so m(s, t) ≤ m′(s, t), as claimed. Lemma 4.57 now implies
that M = M ′. 	


Proposition 4.59. If Σ is a subcomplex of ∆ that is isomorphic to ΣM , then
Σ is an apartment in the complete system of apartments.

Proof. It suffices to show that if Σ is adjoined to an apartment system A,
then axiom (B2′′) still holds. The proof is essentially the same as the proof
of Theorem 4.54. The given complex Σ plays the role of the complex Σ′ that
occurred in that proof, and the only extra ingredient required is that one needs
to appeal to Proposition 4.41 and Lemma 4.58 to show that every minimal
gallery in Σ is still minimal in ∆. 	


Remark 4.60. It follows from Proposition 4.59 that the intrinsic property
of a chamber subcomplex of a building that it is isomorphic to ΣM implies
the strong relative property of being convex in ∆. This is a remarkable fact
about buildings that is not at all obvious a priori.

Exercise 4.61. A subcomplex α of a building ∆ is called a root if there is an
apartment Σ (in the complete system of apartments) such that α ⊆ Σ and α
is a root in Σ.

(a) If α is a root in ∆, show that it is a root in every apartment containing
it.
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(b) If α is a root in ∆, show that it has a well-defined boundary ∂α, equal
to its boundary in every apartment containing it.

4.6 Subbuildings

Definition 4.62. Let ∆ be a building and ∆′ a chamber subcomplex of ∆.
We say that ∆′ is a subbuilding of ∆ if ∆′ is a building in its own right and
every apartment of ∆′ is an apartment of ∆. Here “apartment” refers to the
complete systems of apartments in ∆′ and ∆.

The condition on apartments in Definition 4.62 can be restated as a con-
dition on Coxeter matrices if we assume that ∆ comes equipped with a type
function. So suppose ∆ is a building of type M in the sense of Definition 4.37.
The given type function on ∆ restricts to a type function on any chamber sub-
complex ∆′ of ∆. So ∆′, if it is a building, has a Coxeter matrix M ′ indexed
by the same set S × S that indexes M . The following statement therefore
makes sense:

Proposition 4.63. Let ∆ be a building of type M . A chamber subcomplex ∆′

of ∆ is a subbuilding if and only if ∆′ is a building in its own right and its
Coxeter matrix is M .

Proof. The “only if” part follows immediately from the fact that the Coxeter
matrix of a building is the same as the Coxeter matrix of any of its apartments.
Conversely, suppose ∆′ is a chamber subcomplex of ∆ and is a building with
Coxeter matrix M . Then every apartment of ∆′ is isomorphic to ΣM , so it is
an apartment of ∆ by Proposition 4.59. Thus ∆′ is a subbuilding of ∆. 	


Example 4.64. Let ∆ = ∆(kn) be the building associated to an n-dimen-
sional vector space over a field k (Section 4.3). If k′ is a subfield of k, then there
is an obvious embedding of ∆′ := ∆

(
(k′)n

)
as a subcomplex of ∆, and this

subcomplex is a subbuilding. One can see this directly from Definition 4.62
and the construction of apartments in Section 4.3. Alternatively, it follows at
once from Proposition 4.63.

There is another characterization of subbuildings, for which we need some
terminology.

Definition 4.65. A chamber complex is said to be weak if every panel is a
face of at least two chambers.

This somewhat strange terminology is motivated by the concept of “weak
building” mentioned in Remark 4.2.

Theorem 4.66. Let ∆ be a building and ∆′ a chamber subcomplex of ∆. Then
∆′ is a subbuilding if and only if it is weak and is convex in ∆.
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In view of Proposition 4.63, we obtain the following nonobvious consequence:
Suppose a building ∆′ of the same type as ∆ is embedded in ∆ as a simplicial
subcomplex; then ∆′ is automatically convex in ∆ (cf. Remark 4.60).

The “if” part of the theorem requires tools that will be introduced in
the next chapter, so we defer its proof; see Proposition 5.94. (The hard part
is to use the hypothesis that ∆′ is weak and convex in order to produce
apartments.) The “only if” part is easier, however, and we can prove it now.

Proof of the “only if” part. Suppose ∆′ is a subbuilding of ∆. Then ∆′ is
trivially weak, since every panel is contained in an apartment. To prove that
∆′ is convex in ∆, let C and D be two chambers of ∆′, and let Σ be an
apartment of ∆′ containing them. Then Σ is an apartment of ∆ and hence
is convex in ∆. Consequently, every minimal gallery in ∆ from C to D is
contained in Σ and therefore in ∆′. 	


4.7 The Spherical Case

Our treatment of spherical buildings in this section will use the theory of
finite reflection groups whenever it is convenient to do so. The reader who
prefers a purely combinatorial approach will find one in the next chapter
(Section 5.7). Recall from Definitions 3.2 and 3.64 that a Coxeter complex Σ
is called spherical if it is finite or, equivalently, if it is isomorphic to the
complex Σ(W,V ) associated to a finite reflection group (Section 1.5). Another
equivalent condition is that Σ have finite diameter (see Exercise 3.11(b)).

Definition 4.67. A building is called spherical if its apartments are spherical
Coxeter complexes.

Since the diameter of a building is equal to the diameter of any apartment
(Corollary 4.34), a building is spherical if and only if it has finite diameter.
The next definition is motivated by Proposition 1.57.

Definition 4.68. We say that two chambers C,C ′ in a spherical building ∆
are opposite, and we write C op C ′, if d(C,C ′) = diam ∆.

We record, for ease of reference, the following result (Corollary 1.58):

Lemma 4.69. Let C and C ′ be opposite chambers in a spherical building, and
let Σ be any apartment containing C and C ′. Then every chamber of Σ occurs
in some minimal gallery from C to C ′. 	


[This is the combinatorial analogue of the following geometric fact: Given two
opposite points x, x′ of a sphere, the geodesics (great semicircles) from x to x′

cover the entire sphere.]

Since we know that any apartment Σ is convex, it follows from the lemma
that Σ is the convex hull of {C,C ′} for any pair of opposite chambers
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C,C ′ ∈ Σ, i.e., Σ is the smallest convex chamber subcomplex of ∆ containing
C and C ′. This simple observation leads to the following theorem, which shows
that the nature of apartment systems in a spherical building is considerably
simpler than in the general case:

Theorem 4.70. A spherical building ∆ admits a unique system of apart-
ments. The apartments are precisely the convex hulls of pairs C,C ′ of opposite
chambers.

Proof. Let A be an arbitrary system of apartments, and let A′ be the set of
convex hulls of pairs of opposite chambers. Every apartment Σ ∈ A contains
a pair of opposite chambers and is their convex hull, as we observed above; so
A ⊆ A′. For the opposite inclusion, consider a pair C,C ′ of opposite chambers
in ∆. There is an apartment Σ ∈ A containing them both, and Σ is equal to
their convex hull; hence this convex hull is indeed in A. 	


Remarks 4.71. (a) The theorem shows that the opposition relation contains
a lot of information about the building ∆. In the thick case, one can in fact
reconstruct ∆ as a simplicial complex from the set of chambers together
with the opposition relation on it. This is a result of Abramenko and Van
Maldeghem [15]. The key step is to characterize adjacency in terms of oppo-
sition.

(b) In nonspherical buildings there can definitely exist apartment systems
other than the complete one. We will see in Chapter 6 that such apartment
systems arise naturally from group theory. But there is an easy example avail-
able now, namely, the case that ∆ is a tree. The complete apartment system A
in this case consists of all lines in ∆, but it easy to see that one usually does
not need to take all of the lines as apartments in order to satisfy the build-
ing axioms. Readers familiar with ends of trees (see Serre [217, Sections I.2.2
and II.1.1]) can understand the situation as follows: The set A of lines is in
1–1 correspondence with the set of unordered pairs of distinct ends of ∆; in
particular, A has a natural topology. To get a system of apartments, one need
only take a dense subset of A.

For future reference, we remark that the concept of opposite chamber
extends to arbitrary simplices in a spherical building. Recall first that by
definition, any apartment Σ is isomorphic to the complex Σ(W,V ) associated
to a finite reflection group. It is not hard to check that this yields a well-
defined simplicial automorphism opΣ of Σ, called the opposition involution,
corresponding to the automorphism A �→ −A of Σ(W,V ). (See Section 1.6.2.)
We can characterize it without reference to reflection groups by the property
that A and opΣ(A) have opposite sign sequences, i.e., they are contained in
the same walls of Σ and are strictly separated by every wall of Σ that does
not contain them.
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Definition 4.72. We say that opΣ(A) is the simplex opposite to A in Σ.
We call two simplices A,B ∈ ∆ opposite, and we write A op B, if they are
opposite in some (or every) apartment containing them.

See Exercises 4.79 and 4.80 below for other characterizations of the opposition
relation.

The notion of “opposite chamber” has many uses. It arises, for instance,
if one attempts to analyze the homotopy type of a spherical building ∆ (i.e.,
the homotopy type of the geometric realization |∆|). Here is a sketch of how
that can be done, following [220].

Fix a chamber C of ∆ and let ∆′ be the subcomplex obtained by delet-
ing all chambers opposite to C. We claim that ∆′ is contractible. Now a
contractible subcomplex can be collapsed to a point without affecting the ho-
motopy type [129, p. 11; 224, 7.1.5 and 7.6.2]. So the claim yields the following
theorem of Solomon and Tits [220]:

Theorem 4.73. If ∆ is a spherical building of rank n, then |∆| has the ho-
motopy type of a bouquet of (n − 1)-spheres, where there is one sphere for
every apartment containing a fixed chamber C. 	


It remains to say something about the claim. Note first that every apart-
ment Σ containing C admits a canonical type-preserving isomorphism to ΣM ,
with C going to the fundamental chamber of ΣM . Now |ΣM | can be identified
with the unit sphere in the vector space V on which the reflection group WM

acts. Hence Σ admits a “spherical geometry”; in particular, the punctured
sphere |Σ ∩ ∆′| admits a canonical contracting homotopy that contracts it
to the barycenter of |C| along geodesics, i.e., arcs of great circles. One can
show that the various homotopies, one for each apartment containing C, are
compatible with one another; hence they fit together to give a well-defined
contracting homotopy on ∆′.

Remarks 4.74. (a) The idea of introducing geodesics (and other geometric
notions) into the study of buildings is extremely useful. We will return to
it in Chapters 11 and 12. In particular, the spherical case will be treated in
Section 12.2, Example 12.39.

(b) In Section 4.12 we give a purely combinatorial proof, also based on [220],
of the contractibility of ∆′. That proof, while not as close to the geometric
intuition as the proof sketched above, has the advantage that the method
extends to nonspherical buildings and enables one to analyze their homotopy
type as well. The result is that every nonspherical building is contractible.

(c) Readers familiar with Cohen–Macaulay complexes [36, Section 11] can
easily deduce from our study of the homotopy type of a building that every
building is a homotopy-Cohen–Macaulay complex. [The point here is that
links in buildings are again buildings, so we also understand the homotopy
type of any link.]
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Exercises

4.75. Show that a spherical building is finite if and only if every panel is a
face of only finitely many chambers.

4.76. Let ∆ be a spherical building, and let α be a root of ∆ as defined in
Exercise 4.61. If Σ and Σ′ are two distinct apartments containing α, show
that Σ ∩Σ′ = α.

4.77. Let ∆ be an arbitrary building, and let C and D be chambers. Show
that d(C,A) < d(C,D) for every panel A of D if and only if ∆ is spherical
and D is opposite C.

4.78. Let ∆ be the complex ∆(V ) associated to an n-dimensional vector
space V , as in Section 4.3. Let C and C ′ be chambers with vertex sets
V1 < · · · < Vn−1 and V ′

1 < · · · < V ′
n−1, respectively. Show that C and C ′

are opposite if and only if V = Vi ⊕ V ′
n−i for all i.

4.79. Prove the following characterization of opposite simplices, which does
not refer to apartments. Two simplices A,B in a spherical building ∆ are
opposite if and only they satisfy the following condition:

(Op) For every chamber C ≥ A in ∆ there is a chamber D ≥ B that is
opposite C, and for every chamber D ≥ B there is a chamber C ≥ A that is
opposite C.

4.80. Here is another characterization of the opposition relation that does
not refer to apartments. Given a simplex A in a spherical building ∆, show
that for any B ∈ ∆, A op B if and only if dimB ≤ dim A and d(A,B) =
max {d(A,B′) | B′ ∈ ∆}.

4.8 The Weyl Distance Function

We return to an arbitrary building ∆. As usual, we assume that ∆ has been
provided with a type function having values in a set S. Recall that ∆ then has
a Coxeter matrix M and a Weyl group W = WM , generated by S. In the ter-
minology of Definition 4.37, ∆ is a building of type (W,S). By Section 3.5, each
apartment Σ has a well-defined Weyl distance function δΣ : C(Σ)×C(Σ) →W ,
which contains information about types of galleries in Σ. Using the convexity
of apartments, we will extend these functions to a function δ = δ∆ defined on
C(∆)× C(∆).

Proposition 4.81. There is a function δ : C(∆) × C(∆) → W with the fol-
lowing properties:

(1) Given a minimal gallery Γ : C0, . . . , Cd of type s(Γ ) = (s1, . . . , sd),
δ(C0, Cd) is the element w = s1 · · · sd represented by s(Γ ).



4.8 The Weyl Distance Function 199

(2) Let C and D be chambers, and let w = δ(C,D). The function Γ �→ s(Γ )
gives a 1–1 correspondence between minimal galleries from C to D and
reduced decompositions of w.

Proof. Given chambers C,D, choose an apartment Σ containing them and set
δ(C,D) = δΣ(C,D). This is independent of the choice of Σ by Proposition 4.6.
Assertions (1) and (2) now follow from the convexity of apartments and the
corresponding facts about δΣ (Section 3.5). 	


Definition 4.82. Let ∆ be a building of type (W,S), and let C = C(∆). The
function δ : C×C →W of Proposition 4.81 is called the Weyl distance function
associated to ∆.

Recall from Proposition 4.41 that a gallery is minimal if and only if its
type is reduced. So we can characterize δ as follows:

Proposition 4.83. Let C and D be chambers, and suppose there is a gallery
from C to D whose type (s1, . . . , sd) is a reduced word; then δ(C,D) = s1 · · · sd.

	


Next we record some formal properties of δ.

Proposition 4.84. The Weyl distance function δ : C(∆)×C(∆) →W has the
following properties:

(1) δ(C,D) = 1 if and only if C = D.
(2) δ(D,C) = δ(C,D)−1.
(3) If δ(C ′, C) = s ∈ S and δ(C,D) = w, then δ(C ′,D) = sw or w. If, in

addition, l(sw) = l(w) + 1, then δ(C ′,D) = sw.
(4) If δ(C,D) = w, then for any s ∈ S there is a chamber C ′ such that

δ(C ′, C) = s and δ(C ′,D) = sw. If l(sw) = l(w) − 1, then there is a
unique such C ′.

Proof. (1) and (2) are immediate. To prove (3) and (4), let δ(C,D) = w,
let s = (s1, . . . , sd) be a reduced decomposition of w, and choose a gallery
C = C0, . . . , Cd = D of type s. If l(sw) = l(w) + 1, then for any C ′ with
δ(C ′, C) = s, the gallery C ′, C0, . . . , Cd has reduced type (s, s1, . . . , sd), so
δ(C ′,D) = sw by Proposition 4.83. Both (3) and (4) follow in this case. Now
suppose l(sw) = s(w) − 1. Then we can choose s such that s1 = s. We then
have δ(C,C1) = s and δ(C1,D) = sw. If C ′ is any chamber distinct from
C1 with δ(C ′, C) = s, then the three chambers C ′, C, C1 are all s-adjacent to
one another, and we have a gallery C ′, C1, . . . , Cd of reduced type s. Hence
δ(C ′,D) = w and the proof of (3) and (4) is complete. 	


Properties (1) and (2) are analogues of properties of the distance function d
on a metric space [d(x, y) = 0 if and only if x = y, and d(y, x) = d(x, y)].
Similarly, the first sentence of property (3) is similar to the triangle inequality
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[if d(x′, x) = 1 and d(x, y) = l, then l − 1 ≤ d(x′, y) ≤ l + 1]. We will often
draw a triangle such as

C ′

s
{sw,w}

C w D

as a schematic illustration of this “triangle inequality.” Property (4) and the
second sentence of (3) are more special, but one can get some intuition about
them by thinking about trees. Indeed, they are reminiscent of the following
property of a tree: If x and y are distinct vertices of a tree, then there is a
unique vertex x′ adjacent to x such that d(x′, y) = d(x, y) − 1; for all other
vertices x′ adjacent to x, d(x′, y) = d(x, y) + 1. [Think of y as the root of the
tree; there are many ways to move away from the root, but only one way to
move closer.]

Remarks 4.85. (a) We could equally well have formulated and proved ana-
logues of (3) and (4) with the s-adjacency on the right instead of the left, i.e.,
for the situation

C
w

{ws,w}

D

s

D′

but there is no need to do so. Indeed, the two versions are formally equivalent
in the presence of (2).

(b) Recall that one can compute δ in an apartment using arbitrary galleries,
not just minimal ones. As a result, one has a very strong version of the triangle
inequality for three chambers in an apartment (see Exercise 3.88): δ(C1, C3) =
δ(C1, C2)δ(C2, C3). For three chambers in a building, however, (4) shows that
this need not hold. In fact, we will see in Chapter 5 that this equality holds
for three chambers in ∆ if and only if they are contained in an apartment of
the complete apartment system. (See Exercise 5.77.)

We can now complete the circle of ideas begun in Remark 4.56:

Theorem 4.86. Let Σ be a thin, convex chamber subcomplex of ∆. Then Σ
is an apartment in the complete apartment system.

Proof. By Proposition 4.59, it suffices to show that Σ ∼= Σ(W,S). Note that
both Σ and Σ(W,S) are determined by their underlying chamber system,
as in Section A.1.4. For Σ(W,S), we already observed this in Section 3.2.
For Σ, the assertion follows from convexity. Indeed, for any simplex A ∈ Σ,
C(Σ)≥A = C(Σ) ∩ C(∆)≥A, which is convex by Exercise 4.13 and hence is
gallery connected. It therefore suffices to show that Σ and Σ(W,S) have
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isomorphic chamber systems. This is where the Weyl distance function is
useful.

Fix an arbitrary “fundamental chamber” C0 ∈ C(Σ), and define φ : C(Σ)→
W by φ(C) := δ(C0, C) for C ∈ C(Σ). We show first that φ is surjective: Given
w ∈ W , choose a reduced decomposition s of w and consider the gallery of
type s in Σ starting at C0. It ends at a chamber C such that δ(C0, C) = w,
so φ(C) = w.

Next, we claim that φ preserves s-adjacency for each s ∈ S; in other
words, if C and C ′ are s-adjacent chambers of Σ, then φ(C ′) = φ(C)s. Let
w = φ(C) = δ(C0, C). If l(ws) = l(w)+1, our claim follows from property (3)
of δ (and Remark 4.85(a)). If l(ws) = l(w)−1, then there is a minimal gallery
from C0 to C in ∆ ending with an s-adjacency. The second-to-last chamber
of this gallery is in Σ by convexity; hence it is equal to C ′ by thinness. Thus
δ(C0, C

′) = ws, and the claim is proved.
By repeated applications of the claim, we obtain

φ(C ′) = φ(C)δ(C,C ′) (4.2)

for any C,C ′ ∈ C(Σ). In particular, φ is injective and hence bijective. More-
over, it follows from (4.2) that if φ(C) is s-adjacent to φ(C ′), then C is s-
adjacent to C ′. Thus φ is an isomorphism of chamber systems, and the proof
is complete. 	


Remark 4.87. Equation (4.2) can also be written as

φ(C)−1φ(C ′) = δ(C,C ′)

or, equivalently,
δ(φ(C), φ(C ′)) = δ(C,C ′) , (4.3)

where the δ on the left denotes Weyl distance in Σ(W,S). Thus φ is an
“isometry” with respect to Weyl distance. Such isometries play a central role
in the approach to buildings that we will take in Chapter 5.

Finally, we return to the general theory and observe that, as in Section 3.5,
we can extend the Weyl distance function to arbitrary pairs of simplices.

Proposition 4.88. Given two simplices A,B ∈ ∆, there is an element
δ(A,B) ∈W such that

δ(A,B) = δ(C0, Cd) (4.4)

for any minimal gallery C0, . . . , Cd from A to B.

Proof. Choose an apartment Σ containing A and B, and set δ(A,B) =
δΣ(A,B). This is independent of the choice of Σ by Proposition 4.6. Equa-
tion (4.4) follows from Proposition 3.87, since the given gallery is a minimal
gallery from C0 to Cd and hence is contained in an apartment. 	
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Exercises

4.89. Let ∆ be a building of type (W,S) and let ∆′ be a subbuilding (Def-
inition 4.62). Show that the Weyl distance function on ∆′ is the restriction
to C(∆′)× C(∆′) of the Weyl distance function on ∆.

4.90. Let ∆ be a spherical building. Given a chamber C and an apartment Σ
of ∆, show that Σ contains a chamber D that is opposite to C.

4.91. For any apartment Σ and chamber C ∈ Σ, show that the retraction
ρ = ρΣ,C preserves Weyl distances from C, i.e., δ(C, ρ(D)) = δ(C,D) for any
chamber D ∈ ∆.

4.92. Let WJ be a standard subgroup of W , where J ⊆ S. Show that two
chambers C,D are in the same J-residue if and only if δ(C,D) ∈ WJ .

4.93. Suppose ∆ = ∆(V ) as in Section 4.3. Show that W can be identified
with the symmetric group on n letters and that δ associates to any pair C,C ′

of chambers the Jordan–Hölder permutation π(C,C ′).

4.94. Given a chamber C ∈ C := C(∆), let φ = φC : C → W be the
map δ(C,−).

(a) Show that φ preserves s-equivalence for all s ∈ S and hence extends to a
type-preserving chamber map φ : ∆ → Σ(W,S).

(b) Show that the chamber map φ maps every apartment Σ containing C
isomorphically onto Σ(W,S).

(c) Given an apartment Σ containing C, how is φ related to the retrac-
tion ρΣ,C?

(d) How can we reconstruct the canonical maps ρ of Exercise 4.51 from maps
of the form φC?

4.9 Projections (Products)

We continue to assume that ∆ is a building of type (W,S). Our goal here
is to define, for any simplices A,B ∈ ∆, a product AB ∈ ∆, also called the
projection of B onto A and denoted by projA B. This will extend the product
that is already known to exist in any apartment (Section 3.6.4). The reader is
warned that the product is generally not associative, although its restriction
to any apartment is associative. For this reason, the term “projection” is
much more common than “product” in the literature. On the other hand, the
product notation has the advantage of leading to simpler-looking formulas.
We begin with the important case in which the second factor B is a chamber.
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Proposition 4.95. Given a simplex A and a chamber C, let AC be the prod-
uct of A and C in any apartment containing A and C. Then AC is indepen-
dent of the choice of apartment, and every minimal gallery from A to C starts
with AC. Moreover, the gate property

d(C,D) = d(C,AC) + d(AC,D) (4.5)

holds for any chamber D ≥ A.

Proof. Choose a minimal gallery Γ : C0, . . . , Cd from A to C. If Σ is any
apartment containing A and C, then Γ is contained in Σ by Proposition 4.40;
hence C0 is equal to the product AC defined in Σ (Section 3.6.4). This proves
the first assertion of the proposition. To prove the gate property (4.5), choose
Σ to contain D and C (hence also A), and use the fact that the gate property
is known to hold in Σ (Section 3.6.4, equation (3.11)). 	


We turn now to the general case, in which B is arbitrary, beginning with
the generalization to buildings of Proposition 3.106. Let C = C(∆). As in Sec-
tion 3.6.4, we set CA := C≥A, and we denote by CA,B the set of chambers in CA

that can start a minimal gallery in ∆ from A to B. And, as in Section 3.6.4, we
know that the sets of the form CA are precisely the residues (Corollary 4.11).

Proposition 4.96.

(1) CA,B is the image of the projection map CB → CA given by D �→ AD.
(2) The projection maps CA,B � CB,A, given by C �→ BC and D �→ AD

(C ∈ CA,B, D ∈ CB,A), define mutually inverse bijections.
(3) Given any minimal gallery C0, . . . , Cd from A to B, we have C0 = ACd

and Cd = BC0. In other words, C0 and Cd correspond to one another
under the bijections in (2).

Proof. A minimal gallery C0, . . . , Cd from A to B is also minimal from A to Cd,
so C0 = ACd by Proposition 4.95. Similarly, Cd = BC0. This proves (3) and
shows that CA,B is contained in the image of the projection map CB → CA,
which is part of (1). To prove the opposite inclusion, consider any D ∈ CB,
and choose an apartment Σ containing A and D. By Proposition 3.106, there
is a minimal gallery from A to B in Σ starting with AD, and this is still
minimal in ∆ by Remark 4.35. This proves (1). It follows from (1) that the
projection maps do define maps CA,B � CB,A, and it is easy to check (using
the corresponding fact about Coxeter complexes) that these maps are inverse
to one another, whence (2). 	


We can now prove the main result of this section.

Theorem 4.97. Let A be a simplex of cotype J , let B be a simplex of co-
type K, and let w be the Weyl distance δ(A,B). Then CA,B is a residue of
type J1 := J ∩ wKw−1. In other words, there is a simplex AB of cotype J1

such that CA,B = CAB, i.e., the chambers that can start a minimal gallery from
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A to B are precisely those having AB as a face. Moreover, the product AB
so defined agrees with the product computed in any apartment containing A
and B.

Proof. Given C1, C2 ∈ CA,B , let Di = BCi for i = 1, 2. Then C1 = AD1 by
Proposition 4.96, so any apartment Σ containing C2 and D1 also contains C1

[because it contains A]. Similarly, Σ contains B and hence it contains D2.
Recalling that d(C1,D1) = d(A,B) = d(C2,D2), we see that C1 and C2

are chambers in Σ that start minimal galleries from A to B in Σ. We can
therefore apply Theorem 3.108 to Σ to conclude that they are J1-equivalent.
Thus CA,B is contained in a residue of type J1, so there is a unique simplex AB
of cotype J1 such that CA,B ⊆ CAB .

It is obvious that the product AB so defined can be computed in any
apartment containing A and B. It remains only to show that every chamber
C ≥ AB can start a minimal gallery from A to B. But this follows again from
Theorem 3.108, applied to any apartment containing C and B. 	


Exercises

4.98. Give an example to show that the product of simplices is not associative
in general.

4.99. In Exercise 4.14 we saw that the relation “suppA = suppB” makes
sense in a building even though the support of a simplex is not well defined.
Reformulate that relation using projections.

4.100. If suppA = suppB, show that left multiplication by B and A define
mutually inverse bijections ∆≥A � ∆≥B . In particular, this holds if ∆ is
spherical and A and B are opposite.

4.10 Applications of Projections

It will become more and more clear as we proceed that projections are a
fundamental tool in the theory of buildings. Here we just give a few sample
applications, the first of which is a proof of the result stated in Remark 4.5:

Proposition 4.101. For any two apartments Σ,Σ′ there is a type-preserving
isomorphism φ : Σ ∼−→ Σ′ fixing Σ ∩Σ′ pointwise.

Proof. The proof is similar in spirit to the proof of (B2′′) in Section 4.1. Let M
be a maximal simplex in Σ∩Σ′. Choose chambers C ∈ Σ and C ′ ∈ Σ′ having
M as a face. For each simplex A ∈ Σ∩Σ′, we will construct a type-preserving
isomorphism φA : Σ ∼−→ Σ′ such that φA fixes M and A and φA(C) = C ′.
By the standard uniqueness argument, all of these φA are equal and provide
the desired φ. [Note that the standard uniqueness argument works because
all φA, being type-preserving, agree pointwise on C.]
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To construct φA, start with any type-preserving isomorphism ψ : Σ ∼−→ Σ′

fixing M and A (Proposition 4.6). Now let φA be the composite w ◦ψ, where
w is the unique type-preserving automorphism of Σ′ taking ψ(C) to C ′. Note
that w, hence also φA, necessarily fixes M , since M is a face of both ψ(C)
and C ′. What is less obvious is that w (hence also φA) fixes A. This is where
projections are useful.

Since Σ and Σ′ are both closed under products in ∆, the same is true
of K := Σ ∩ Σ′. In particular, K is a convex subcomplex of Σ′ in the sense
of Section 3.6.6. Hence K ⊆ suppΣ′ M , the latter being the support of M
in Σ′ (Lemma 3.140). Proposition 3.100 now implies that the stabilizer of M
in the group of type-preserving automorphisms of Σ′ fixes K pointwise, so
wA = A. 	


Remark 4.102. See Exercise 4.108 below for a variant of this proof, which
is conceptually clearer but requires slightly more from the theory of convex
subcomplexes of Coxeter complexes.

Here is a second application of projections, which requires only the “easy”
case given in Proposition 4.95. Recall from Section 4.7 that two simplices in
a spherical building are said to be opposite if they are opposite in some (and
hence every) apartment containing them.

Proposition 4.103. Let C be a chamber of a spherical building ∆ and let P
be a panel in ∆ that is opposite some panel of C. Among the chambers D > P ,
there is a unique one that is not opposite C, namely, the chamber D = PC.

Proof. Note first that PC is not opposite C, since in any apartment containing
C and P , the wall suppP containing P does not separate C from PC. Now
consider any chamber D > P other than PC. Any apartment Σ containing
C and D also contains PC, and the sign sequences of C and PC in Σ are
opposite with respect to all walls except supp P . Since D is adjacent to PC
along that wall, it follows that the sign sequence of D is opposite to that of C
with respect to all walls of Σ. 	


Finally, we use projections to prove one more result along the same lines.

Proposition 4.104. Let ∆ be a thick spherical building. For any two cham-
bers of ∆, there is a chamber that is opposite both of them.

Remark 4.105. This is a simple application of Proposition 4.103 if the two
given chambers C,D are adjacent. To see this, let P be the common panel
C ∩ D, and choose, by thickness, a chamber E > P different from C,D.
Choose an apartment Σ containing C and E, and let C ′ be the chamber of Σ
opposite C; see Figure 4.5. Then E is not opposite C ′, so, by Proposition 4.103,
E is the unique chamber > P that is not opposite C ′. In particular, D is
opposite C ′, and hence C ′ is the desired chamber opposite both C and D.
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C ′

C

EP

D

Fig. 4.5. A chamber opposite both C and D.

In the general case we will give a different argument, which is based on
the following two lemmas.

Lemma 4.106. Let C and D be chambers in a spherical building. If C and D
are not opposite, then there is a panel P < C such that C = PD.

Proof. This is actually a special case of Exercise 4.77 (see also part (b) of
Exercise 1.59), but we will give an independent proof. Let D′ be the chamber
opposite D in an apartment containing C and D, and choose a minimal gallery
from D′ to D passing through C (Lemma 4.69). Since C �= D′, there is a
chamber E preceding C in this gallery, and d(E,D) = d(C,D)+1. If P is the
panel E ∩ C, it follows easily from the gate property (see Proposition 4.95)
that PD = C. Indeed, all chambers > P other than PD are at the same
distance d(PD,D) + 1 from D; so if we encounter two chambers > P at
different distances from D, the closer one must be PD. 	

Lemma 4.107. Let C, D, and E be chambers in a thick spherical building.
If E is not opposite D, then there is a chamber E′ adjacent to E such that
d(E′,D) > d(E,D) and d(E′, C) ≥ d(E,C).

Proof. By Lemma 4.106, there is a panel P < E such that E = PD. By
thickness, there is chamber E′ > P different from both PC and PD = E.
Using the gate property, we find that

d(E′,D) = d(PD,D) + 1 = d(E,D) + 1

and
d(E′, C) = d(PC,C) + 1 ≥ d(E,C) . 	


Proof of Proposition 4.104. Let C and D be the two given chambers, and
choose, among the chambers E opposite C, one that is at maximal distance
from D. It follows from Lemma 4.107 that E is opposite D, since otherwise we
could find a chamber E′ that is still opposite C but further away from D. 	
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Exercises

4.108. This exercise gives an alternative proof of Proposition 4.101. Let Σ
and Σ′ be apartments in a building, and let K := Σ ∩ Σ′. It is a convex
subcomplex of both Σ and Σ′; in particular, it is a chamber complex in which
every panel is a face of at most two chambers (Proposition 3.136). Let M be
a K-chamber, and let φ : Σ → Σ′ be an isomorphism fixing M pointwise. The
following steps outline a proof that φ fixes K pointwise. Fill in the details.

(a) Set Λ := suppΣ M and Λ′ := suppΣ′ M . Then Λ and Λ′ are chamber
complexes, of the same dimension as K, in which every panel is a face of
at most two chambers. Moreover, K = Λ ∩ Λ′. See Figure 4.6.

Λ′

φ

Λ

M

Fig. 4.6. The intersection of two apartments.

(b) φ maps Λ isomorphically onto Λ′.
(c) Since φ fixes a K-chamber pointwise, φ is the identity on K by the stan-

dard uniqueness argument.

4.109. Let α and α′ be roots in a building ∆ (see Exercise 4.61). If α ∩ α′ =
∂α = ∂α′, show that α∪α′ is an apartment in the complete apartment system
of ∆.

4.110. Show that the conclusion of Proposition 4.104 is false if ∆ is not thick.

4.111. What happens in Lemma 4.107 if the building is not spherical?

4.112. Let ∆ be a thick spherical building. For any panel A, show that the
cardinality of CA depends only on the type of A. Give an example to show
that one cannot drop the sphericity assumption.

4.113. Let ∆ be a spherical building. Suppose ∆ has one chamber C such
that every panel of C is a face of at least 3 chambers. Show that ∆ is thick.
Give an example to show that one cannot drop the sphericity assumption.

4.114. Let ∆ be the flag complex of a generalized quadrangle Q (see Defini-
tion 4.20 and the discussion following it). Suppose Q has a thick line (i.e., a
line with at least 3 points) and a thick point (i.e., a point that is on at least
3 lines). Show that ∆ is thick.

4.11 Convex Subcomplexes

Throughout this section, ∆ denotes an arbitrary building.
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4.11.1 Chamber Subcomplexes

The theory of convex chamber subcomplexes of ∆ (see Definition 3.129) is
similar to the corresponding theory for Coxeter complexes, except that there
is no longer a characterization of convex subcomplexes as intersections of
roots:

Proposition 4.115. If ∆′ is a subcomplex of ∆ that contains at least one
chamber, then the following conditions are equivalent:

(i) ∆′ is a convex chamber subcomplex of ∆.
(ii) ∆′ is closed under products, i.e., for any A,B ∈ ∆′, the projection

projA B = AB is in ∆′.
(iii) Given A,C ∈ ∆′ with C a chamber of ∆, every minimal gallery from A

to C in ∆ is contained in ∆′.

Moreover, an intersection of convex chamber subcomplexes of ∆ is again a
convex chamber subcomplex if it contains at least one chamber.

Proof. The arguments given in Section 3.6.6 for Coxeter complexes (see
Lemma 3.130 and Theorem 3.131) extend to buildings, with no essential
change. 	


In view of the last assertion of the proposition, we can construct convex
hulls in the usual way:

Definition 4.116. Given an arbitrary collection of simplices containing at
least one chamber, their convex hull is the intersection of all convex chamber
subcomplexes containing them.

The convex hull is itself a convex chamber subcomplex containing the
given simplices, so it is the smallest one. We will also call the convex hull the
combinatorial convex hull in any context where the term “convex hull” might
be ambiguous.

An important example is the convex hull Γ (A,C) of a simplex A and a
chamber C. Since apartments are convex, Γ (A,C) is contained in any apart-
ment Σ containing A and C; hence Γ (A,C) coincides with the convex hull of
A and C in Σ. In particular, the convex hull Γ (C,D) of two chambers C,D
is a convex chamber subcomplex whose chambers are precisely the chambers
that can occur in a minimal gallery between C and D (see Example 3.133(a)).
A special case of this played an important role in Section 4.7.

The following example gives another interesting special case, involving
roots. Here a root of ∆ is a subcomplex that is contained in some apart-
ment Σ and is a root in Σ. It then follows easily from the building axioms
that α is a root in every apartment containing it and that α has a well-defined
boundary ∂α, equal to its boundary in any apartment containing it; see Ex-
ercise 4.61.
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Example 4.117. Suppose α is a root of a spherical building ∆. Let P be a
panel in ∂α, let P ′ be the panel in ∂α opposite P , and let C ′ be the chamber
of α having P ′ as a face. Then Γ (P,C ′) = α. To see this, choose an apartment
Σ containing α. As we noted above, Γ (P,C ′) coincides with the convex hull
of P and C ′ in Σ. Our assertion now follows from Example 3.133(d).

As another illustration of convex hulls, we give a characterization of the
set of apartments containing a given root of a spherical building. This result
will be used in Chapter 7. We need some notation. Given a root α of ∆ and
a panel P ∈ ∂α, set

C(P, α) := CP � {C} ,

where CP = C(∆)≥P and C is the unique chamber in α having P as a face.
One can visualize C(P, α) as the set of chambers of ∆ that are “attached to α
along P .” We denote by A(α) the set of apartments of ∆ containing α.

Lemma 4.118. Let α be a root in a spherical building ∆, and let P be a panel
in ∂α. Then there is a canonical bijection from C(P, α) to A(α). It associates
to any chamber D ∈ C(P, α) the convex hull of D and α.

Proof. Let C be the chamber in α having P as a face, let P ′ be the panel
opposite P in α, and let C ′ be the chamber in α having P ′ as a face. By
Proposition 4.103, C is the unique chamber in CP that is not opposite C ′.
In particular, every chamber D ∈ C(P, α) is opposite C ′; hence the convex
hull Γ (D,C ′) is an apartment Σ′. Now α = Γ (P,C ′) by Example 4.117, so
Σ′ contains α and hence is the convex hull of D and α. We therefore have a
map C(P, α) → A(α) that sends a chamber D ∈ C(P, α) to the convex hull Σ′

of D and α. It is easily seen to be a bijection; the inverse associates to an
apartment Σ′ ∈ A(α) the unique chamber D ∈ Σ′ opposite C ′. 	

Exercise 4.119. Let ∆ be a spherical building of diameter d. Show that the
roots of ∆ are precisely the convex hulls Γ (C,D), where C and D are chambers
such that d(C,D) = d− 1.

*4.11.2 General Subcomplexes

The results of this optional subsection will not be needed later, so we will be
brief. As in Section 3.6.6, we can extend the notion of convexity to arbitrary
subcomplexes:

Definition 4.120. Let ∆′ be a subcomplex of ∆. We say that ∆′ is a convex
subcomplex if it is closed under products.

See Remark 3.132 for the intuition behind this definition. Exercise 4.124 below
provides further motivation.

There is a smallest convex subcomplex containing any given collection of
simplices, called their convex hull. As above, the convex hull Γ (A,B) of two
simplices A,B is the same as their convex hull in any apartment containing
them. We record the one useful fact about general convex subcomplexes:
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Proposition 4.121. Every convex subcomplex ∆′ of ∆ is a chamber complex.

Proof. Let A and B be maximal simplices of ∆′, choose an apartment Σ
containing them, and let Σ′ := Σ ∩ ∆′. Then Σ′ is a convex subcomplex
of Σ; hence it is a chamber complex by Proposition 3.136. Since A and B are
maximal in Σ′, they have the same dimension and are connected by a gallery
in Σ′; this is also a gallery in ∆′. 	


Remark 4.122. Our definition of convexity seems to us to be the most useful
and intuitive one, for reasons mentioned above. But the reader should be aware
that there is a different definition in the literature, due to Tits [247, 1.5],
according to which a subcomplex is called convex if it is an intersection of
convex chamber subcomplexes. In view of Proposition 4.115, convexity in the
sense of Tits (or “T-convexity” for short) implies convexity in our sense. And
Proposition 3.137 says that T-convexity is equivalent to convexity if ∆ consists
of a single apartment. But convexity in our sense does not imply T-convexity
in general. [The point is that we have no tools in general for constructing
“enough” convex chamber subcomplexes. In the case of a single apartment,
however, we can use roots.] If fact, H. Van Maldeghem has pointed out to us
that there are infinitely many counterexamples. The remainder of this section
is devoted to a detailed description of the smallest of these.

In Exercise 4.24 we constructed a generalized quadrangle Q whose associ-
ated building ∆ of type C2 has the following properties:

(a) Every vertex is a face of exactly 3 edges.
(b) ∆ contains 5 pairwise opposite vertices.

Clearly any set X of pairwise opposite vertices forms a 0-dimensional convex
subcomplex of ∆, since uv = u if u and v are opposite (see part (3) of Propo-
sition 3.112). But the following proposition shows that X is not T-convex if
|X| is at least 4.

Proposition 4.123. With ∆ as above, let X be a set of 4 pairwise opposite
vertices. Then the only convex chamber subcomplex of ∆ containing X is ∆
itself.

Proof. Let ∆′ be a convex chamber subcomplex containing X. We will show
that ∆′ is a thick subbuilding of ∆, from which it follows (by (a) above) that
∆′ = ∆. The first step is to show that ∆′ contains an apartment of ∆, so that
∆′ is a subbuilding by Exercise 4.125 below. The reader is advised to draw a
picture as we proceed; the final result is in Figure 4.7.

Assume for definiteness that the elements of X are points of the quadrangle
Q, and let x, x′ be two of these points. It follows easily from the convexity
assumption that ∆′ contains a geodesic from x to x′, i.e., a path of length 4
(see Exercise 4.48). Denote the vertices along this path by (x,L, p,M, x′). The
vertex p is at distance 2 from at most 3 elements of X, since each of the 3
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lines of Q containing p can be incident with at most one element of X. So,
since |X| = 4, there is a y ∈ X that is opposite p.

Using d(−,−) to denote the graph distance between two vertices, we have
d(y,M) = 3 and hence, by the exercise just cited, ∆′ contains the geodesic
(y, L′, q,M) from y to M . Note that q is different from p and x′ because p
and x′ are both opposite y; in the case of x′, we are using here the assumption
that any two elements of X are opposite. For the same reason, L′ �= M .
It follows that the path (L′, q,M, p, L) of length 4 is a geodesic, so that L′

and L are opposite [use the fact that ∆ has girth 8 by Proposition 4.44.]
Hence d(x,L′) = 3, and ∆′ contains the geodesic (x,M ′, p′, L′) from x to L′.
Combining this geodesic with the path (x,L, p,M, q, L′) of length 5, and using
again the fact that ∆ has girth 8, we obtain an octagon in ∆′ as shown in
Figure 4.7. This octagon is an apartment of ∆ by Proposition 4.59, and we

x′q

p′

p

M

L′

x

y

L

M ′

Fig. 4.7. An apartment in ∆′.

are done with step 1 of the proof.
The second and final step is to show that ∆′ is thick. By Exercise 4.114

it suffices to show that ∆′ contains a thick point and a thick line. Now we
already saw, as a byproduct of step 1, that ∆′ has thick lines (M and L′ in
the notation above). So it suffices to find a thick point. Choose x ∈ X and
a line L ∈ ∆′ incident to x. Denote the points of X � {x} by y1, y2, y3, and
note that since x is opposite yi, we have d(L, yi) = 3 for i = 1, 2, 3. Hence ∆′

contains the geodesic (L, pi,Mi, yi) from L to yi for each i. Now the line L
is incident to exactly 3 points, one of which is x (which is different from all
the pi), so at least two of the pi have to coincide, say p1 = p2 =: p. We have
M1 �= M2 since y1 and y2 are opposite, so p is the desired thick point, as
illustrated in Figure 4.8. 	
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M2

M1

x L

y2

p

y1

Fig. 4.8. A thick point in ∆′.

Exercises

4.124. Let ∆ be an arbitrary building and let ∆′ be a subcomplex. Show
that ∆′ is convex if and only if ∆′ ∩Σ is a convex subcomplex of Σ for every
apartment Σ.

4.125. Let ∆ be a spherical building and ∆′ a convex chamber subcomplex.
If ∆′ contains an apartment of ∆, show that ∆′ is a subbuilding of ∆.

4.126. This exercise generalizes Proposition 4.123. Let ∆ be the incidence
graph of a thick generalized quadrangle. By Exercise 4.112, there are numbers
m,n such that every point is incident to exactly m lines and every line is
incident to exactly n points. In our example above, for instance, we had m =
n = 3. Assume (without loss of generality) that m ≥ n, and let X be a set
consisting of m+1 pairwise opposite points. Show that every convex chamber
subcomplex of ∆ containing X is a thick subbuilding.

*4.12 The Homotopy Type of a Building

The purpose of this section, as stated in Remark 4.74(b), is to outline
Solomon’s combinatorial method for analyzing the homotopy type of a build-
ing. For ease of reference, we restate the result. Fix a chamber C ∈ ∆.

Theorem 4.127. If ∆ is a spherical building of rank n, then |∆| has the
homotopy type of a bouquet of (n − 1)-spheres, where there is one sphere for
every apartment containing C. If ∆ is a nonspherical building, then |∆| is
contractible.

Our outline of the proof will be complete as far as the theory of buildings
is concerned, but we will omit some homotopy-theoretic details. The idea is
to start with C and then keep track of the homotopy type as one successively
adjoins the chambers adjacent to C, then the chambers at distance 2 from C,
and so on. The lemma below enables one to figure out what happens each time
a new chamber is adjoined (along with its faces). Recall that if A is a simplex
in an abstract simplicial complex ∆, then A denotes the subcomplex ∆≤A,
whose geometric realization is the closed simplex in |∆| corresponding to A.
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Lemma 4.128. Let ∆ be an arbitrary building. Fix a chamber C and an in-
teger d ≥ 1, and let D be a set of chambers with the following two properties:

(1) d(C,D) ≤ d for every D ∈ D.
(2) D contains every chamber D ∈ ∆ with d(C,D) < d.

Let ∆′ be the subcomplex of ∆ generated by D, and let D be a chamber of ∆
such that D /∈ D and d(C,D) = d. Then

D ∩∆′ =
⋃

A∈P
A ,

where P is the set of panels A of D such that d(C,A) < d. The set P contains
all the panels of D if and only if ∆ is spherical and of diameter d.

Readers familiar with homotopy theory will find it a routine matter to
use this lemma to complete the proof of Theorem 4.127. We proceed now to
the proof of the lemma, which is a fairly easy consequence of the theory of
projections. In fact, we need only the case given by Proposition 4.95, where
the second factor is a chamber.

Proof of Lemma 4.128. The first claim is that

D ∩∆′ = {B < D | d(C,B) < d} .

The right side is trivially contained in the left side by hypothesis (2). To prove
the opposite inclusion, suppose B ∈ D ∩∆′. Then there is a chamber D′ ∈ D
with B < D′, and we have

d(C,B) ≤ d(C,D′) ≤ d = d(C,D)

by hypothesis (1). We cannot have d(C,B) = d, since that would imply
d(C,B) = d(C,D′) = d(C,D) and hence that D′ = BC = D. So d(C,B) < d,
as required.

We claim next that if B < D with d(C,B) < d, then there is a panel A
of D such that B ≤ A and d(C,A) < d. To see this, recall that

d = d(C,D) = d(C,BC) + d(BC,D)

by the gate property. In view of the convexity of C(∆)≥B (Exercise 4.13), it
follows that there is a minimal gallery Γ : C = C0, . . . , Cd = D with B < Cd−1.
Setting A := Cd−1 ∩ D, we then have B ≤ A and d(C,A) < d, proving the
claim.

Combining the two claims, we have

D ∩∆′ =
⋃

A∈P
A ,

where P is the set of panels A of D such that d(C,A) < d. Exercise 4.77 says
that P contains every panel of D if and only if ∆ is spherical and d = diam ∆.
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Remark 4.129. Our approach to the Solomon–Tits theorem is closely related
to the theory of shellability. See Björner [35,36].

Exercise 4.130. Let ∆ be a building, and let ∆′ be a chamber subcomplex
of ∆ that is starlike from some chamber C ∈ ∆′, in the sense that every
minimal gallery from C to a chamber of ∆′ is contained in ∆′. Determine the
homotopy type of |∆′|.

*4.13 The Axioms for a Thick Building

The purpose of this final section of the chapter is to show that axiom (B0) can
essentially be eliminated if ∆ is thick. We will not actually need this result in
what follows, since it will always be clear in our examples that the purported
apartments are in fact Coxeter complexes. But the proof is very instructive,
being based on a clever use of retractions and the standard uniqueness argu-
ment. In addition, it makes (B0) seem much less artificial.

Theorem 4.131. Let ∆ be a thick chamber complex with a family A of thin
chamber subcomplexes Σ satisfying axioms (B1) and (B2). Then every Σ ∈ A
is a Coxeter complex, so ∆ is a building and A is a system of apartments.

Proof. Note first that much of the theory of retractions developed in Sec-
tion 4.4 did not use axiom (B0), but only the fact that the apartments Σ are
thin chamber complexes. In particular, 4.33, 4.34, and 4.39 remain valid.

We now show that every Σ ∈ A is a Coxeter complex by constructing
foldings (Section 3.4.2). Given adjacent chambers C,C ′ ∈ Σ, we must find a
folding φ : Σ → Σ such that φ(C ′) = C. Let A be the common panel C ∩ C ′,
let C ′′ be a third chamber of ∆ having A as a face, and let Σ′ be an apartment
containing C and C ′′. Let φ : Σ → Σ be the restriction to Σ of ρΣ,C′ ◦ ρΣ′,C .
Then φ fixes C pointwise and satisfies φ(C ′) = C. We will prove that φ is a
folding. [Draw a picture of the tree case to see why this is plausible.]

In view of Proposition 4.39, φ preserves distances from A, i.e., d(A,φ(D)) =
d(A,D) for any chamber D ∈ Σ. [Distances here may be computed either in Σ
or in ∆, but we will be thinking about Σ-distances when we apply this.] In
other words, if Γ is a minimal gallery in Σ from A to D, then φ(Γ ) is a min-
imal gallery from A to φ(D). In particular, φ(Γ ) really is a gallery, not just a
pregallery, and this will enable us to apply the standard uniqueness argument.

A first such application shows that if D is a chamber of Σ with d(A,D) =
d(C,D) (i.e., if there is a minimal gallery from A to D that starts with C),
then φ fixes D pointwise. Thus φ is the identity on the subcomplex α generated
by {D ∈ C(Σ) | d(A,D) = d(C,D)}. And this subcomplex α is precisely the
image of φ. For suppose D is any chamber of Σ and Γ is a minimal gallery
from A to D; then φ(Γ ) is minimal from A to φ(D) and starts with C, so
φ(D) ∈ α. Thus φ is a retraction of Σ onto α.
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Everything we have done so far can also be done with the roles of C
and C ′ reversed. Hence there is an endomorphism φ′ of Σ with φ′(C) = C ′

such that φ′ preserves distances from A and retracts Σ onto the subcomplex α′

generated by {D ∈ C(Σ) | d(A,D) = d(C ′,D)}.
We show next that α and α′ have no chamber in common. Suppose D is

a chamber in α ∩ α′. Then D is fixed pointwise by both φ and φ′. If Γ is a
minimal gallery from D to A, it follows by the standard uniqueness argument
that φ and φ′ fix every chamber in Γ pointwise. But this is absurd, since Γ
ends with either C or C ′.

We now have C(Σ) = C(α) � C(α′). The proof that φ is a folding will
be complete if we can show that φ maps C(α′) bijectively to C(α). To this
end, consider the composites φφ′ and φ′φ. The first takes C to C and fixes
A pointwise, so it fixes C pointwise; it is therefore the identity on α by the
standard uniqueness argument. Similarly, the other composite is the identity
on α′. Hence φ induces an isomorphism α′ ∼−→ α, with inverse induced by φ′.

	




5

Buildings as W-Metric Spaces

We now present our second approach to buildings, which we called the “com-
binatorial approach” in the introduction. From a purely logical point of view,
the only prerequisite for this chapter is a knowledge of the basic facts about
Coxeter groups (Chapter 2). We will, however, make motivational remarks
that refer to Chapter 4 (which in turn depends on Chapter 3). And, of course,
we will have to use results of Chapter 4 when we prove that the two approaches
to buildings are equivalent.

For most of this chapter we do not need our standing assumption that the
set S of generators of a Coxeter group is finite. We will explicitly state this
assumption in the few places where it is needed.

5.1 Buildings of Type (W, S)

In Section 4.8 we introduced a Weyl distance function δ : C(∆)× C(∆) → W
for a building ∆ of type (W,S), and we derived some basic properties of it. In
modern building theory, it is important that buildings can be characterized by
the properties of δ. So we start with a new definition of “building” here as an
abstract system (C, δ) subject to axioms motivated by Proposition 4.84. We
will show in Section 5.6 below that the new definition is equivalent to the one
in Chapter 4. The properties of the function δ collected in Proposition 4.84
are redundant, so our definition gives a more economical system of axioms
due to Tits [261].

An interesting feature that distinguishes the Weyl distance approach from
the simplicial approach is that there is no reference to apartments. These
appear only later, as a consequence of a theorem asserting their existence. On
the other hand, we need the Weyl group from the beginning, whereas in the
simplicial approach this appears only after one chooses a type function. We
proceed now to the details.
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5.1.1 Definition and Basic Facts

We fix a Coxeter system (W,S) and denote by l = lS the length function
on W with respect to S (see Section 1.5.1).

Definition 5.1. A building of type (W,S) is a pair (C, δ) consisting of a
nonempty set C, whose elements are called chambers, together with a map
δ : C × C → W , called the Weyl distance function, such that for all C,D ∈ C,
the following three conditions hold:

(WD1) δ(C,D) = 1 if and only if C = D.

(WD2) If δ(C,D) = w and C ′ ∈ C satisfies δ(C ′, C) = s ∈ S, then δ(C ′,D) =
sw or w. If, in addition, l(sw) = l(w) + 1, then δ(C ′,D) = sw.

(WD3) If δ(C,D) = w, then for any s ∈ S there is a chamber C ′ ∈ C such
that δ(C ′, C) = s and δ(C ′,D) = sw.

As we remarked following Proposition 4.84, the properties of δ that we are
now taking as axioms vaguely resemble the axioms for a metric space. We will
therefore sometimes call (C, δ) a W-metric space.

When we use the word “building” from now on, it will usually be clear
from the context whether we are talking about a building in the sense of
Chapter 4 or a building in the sense of our new definition. But if we need to
distinguish between the two concepts, we will use the term simplicial building
for our original definition and the term W-metric building for the new one. We
can then express the main result of Section 4.8 by saying that every simplicial
building of type (W,S) gives rise to a W-metric building of type (W,S). We
will prove that the two concepts are equivalent in Section 5.6.

As in Section 4.8, we will often illustrate (WD2) and (WD3) schematically
by drawing triangles, such as

C ′

s
{sw,w}

C w D

for (WD2).
We now reintroduce some terminology from previous chapters in the

present context.

Definition 5.2. Given s ∈ S, we say that two chambers C,D ∈ C are s-ad-
jacent if δ(C,D) = s. We say that they are s-equivalent, and we write

C ∼s D ,

if δ(C,D) ∈ {1, s}.
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The following lemma shows that, as the terminology suggests, s-adjacency
is symmetric and s-equivalence is an equivalence relation.

Lemma 5.3. Let (C, δ) be a building of type (W,S).

(1) If C,D ∈ C satisfy δ(C,D) = s ∈ S, then also δ(D,C) = s.
(2) If C,D,E ∈ C satisfy δ(C,D) = δ(D,E) = s ∈ S, then δ(C,E) ∈ {1, s}.

Proof. (1) Method 1: Set w := δ(D,C). By (WD1), w �= 1 and 1 = δ(C,C).
By (WD2), we have 1 = δ(C,C) ∈ {sw,w}:

C

s
{sw,w}

D w C

Since w �= 1, we must have sw = 1 and hence δ(D,C) = w = s. Method 2:
By (WD3), there is a chamber C ′ such that δ(C ′, C) = s and δ(C ′,D) = s2 =
1. Then C ′ = D by (WD1), so δ(D,C) = δ(C ′, C) = s.

(2) This is immediate from (WD2), since
{
s2, s
}

= {1, s}:

C

s

{
s2, s
}

D s E

	


In view of the symmetry of s-adjacency, we will sometimes eliminate the
arrowhead between s-adjacent chambers in our diagrams. For example, the
triangle illustrating (WD2) can now be drawn as

C ′

s
{sw,w}

C w D

Definition 5.4. The equivalence classes in C under s-equivalence are called
s-panels. A panel is by definition an s-panel for some s ∈ S.

The motivation for this terminology comes from Corollary 4.11; we can think
intuitively of an s-panel as the set of chambers having a given codimension-1
face of cotype s.

Next, we prove a refinement of (WD3), which is to be expected in view of
Proposition 4.84(4).
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Lemma 5.5. The chamber C ′ in (WD3) is uniquely determined if l(sw) =
l(w)− 1.

Proof. Let P be the s-panel containing C, and choose a chamber C ′ as
in (WD3). Then C ′ ∈ P, and we are trying to prove that it is the unique
chamber in P such that δ(C ′,D) = w′ := sw. This is immediate from (WD2).
For if C ′′ is a chamber in P distinct from C ′, then we have δ(C ′′, C ′) = s and
δ(C ′,D) = w′ with l(sw′) > l(w′), so δ(C ′′,D) = sw′ �= w′. 	


Remark 5.6. The proof of Lemma 5.5 implies that for any s-panel P and
any chamber D there is a unique chamber C ′ ∈ P that is “closest” to D
in the following sense: For any C �= C ′ in P, we have δ(C,D) = sδ(C ′,D)
and l

(
δ(C,D)

)
= l
(
δ(C ′,D)

)
+ 1. (See Exercise 5.13.) So the WD axioms are

formulated in a way that quickly gives the existence of projections of chambers
onto panels. We will see later (Section 5.3) that the axioms are in fact strong
enough to yield projections of chambers onto arbitrary “residues.”

By (WD3), every panel contains at least two chambers. The building (C, δ)
is called thick (resp. thin) if every panel contains at least three (resp. precisely
two) chambers. The natural example of a thin building of type (W,S) is the
following.

Example 5.7. If we define δW : W ×W →W by δW (w1, w2) = w−1
1 w2, then

(W, δW ) is a thin building of type (W,S) (cf. Section 3.5). So here the chambers
are elements of W , and each x ∈ W is s-adjacent to precisely one chamber,
namely xs. It is obvious that the axioms (WD1)–(WD3) are satisfied in this
example; in addition one always has δW (C ′,D) = sw in (WD2), whether
l(sw) = l(w)+1 or not. More generally, for any three chambers C,D,E ∈W ,
we have

δW (C,E) = δW (C,D)δW (D,E) .

We call (W, δW ) the standard thin building of type (W,S). We will see later
(Proposition 5.65) that it is the unique thin building of type (W,S), up to
isomorphism.

Exercises

5.8. Spell out explicitly what a building of type (W,S) is if |S| = 0 or 1.

5.9. Show that one gets an equivalent set of axioms for buildings of type
(W,S) if one replaces (WD3) by the following two axioms:

(WD3a) For any C ∈ C and any s ∈ S, there exists C ′ ∈ C with δ(C ′, C) = s.

(WD3b) If δ(C,D) = w, then for any s ∈ S satisfying l(sw) = l(w)−1 there
is a chamber C ′ ∈ C such that δ(C ′, C) = s and δ(C ′,D) = sw.

5.10. Show that one gets an equivalent set of axioms for buildings of type
(W,S) if one replaces (WD2) by the following two axioms:
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(WD2a) The relation of s-equivalence (Definition 5.2) is transitive for each
s ∈ S.

(WD2b) If δ(C ′, C) = s ∈ S, δ(C,D) = w, and l(sw) = l(w) + 1, then
δ(C ′,D) = sw.

5.11. Show that one gets an equivalent set of axioms for buildings of type
(W,S) if one deletes the second sentence in (WD2) and adds the following
sentence to (WD3):

If, in addition, l(sw) = l(w)− 1, then C ′ is uniquely determined.

5.12. In this exercise the reader is assumed to be familiar with the Bruhat
order (Exercise 3.59). Show that one gets an equivalent set of axioms for
buildings of type (W,S) if one replaces (WD2) by the following axiom:

(WD2c) If δ(C ′, C) = s ∈ S and δ(C,D) = w, then δ(C ′,D) ≥ sw in the
Bruhat order.

(If the direction of the inequality sign seems surprising in (WD2c), keep in
mind that sw might be shorter than w, so it would not be reasonable to expect
the opposite inequality to hold. Of course sw might also be longer than w,
but in this case neither inequality is surprising.)

5.13. Prove the claim made in Remark 5.6.

5.14. Let T be a tree with no endpoints. Verify directly, without using the
fact that T is a simplicial building, that T gives rise to a building of type(
D∞, {s1, s2}

)
, where C is the set of edges of T and D∞ is the infinite dihedral

group
〈
s1, s2 ; s2

1 = s2
2 = 1

〉
.

5.1.2 Galleries and Words

As explained in Section 4.8, each simplicial building ∆ gives rise to a W-metric
building. There the Weyl distance δ is defined using galleries in ∆. We now
reverse the process. We define galleries using the given δ (and the associated
adjacency relations), and we prove that δ can be computed in the expected
way in terms of galleries. Assume throughout this subsection that (C, δ) is a
building of type (W,S).

Definition 5.15. We call two chambers C,D ∈ C adjacent if they are s-ad-
jacent for some s ∈ S. A sequence Γ : C0, . . . , Cn of n + 1 chambers such that
Ci−1 and Ci are adjacent for all 1 ≤ i ≤ n is called a gallery of length n.
We say that C0 and Cn are connected by Γ . If there is no gallery of length
< n connecting C0 and Cn, then we say that the gallery distance between
C0 and Cn is n and write d(C0, Cn) = n. The gallery Γ is called minimal if
d(C0, Cn) = n. If si = δ(Ci−1, Ci) for 1 ≤ i ≤ n, then s(Γ ) := (s1, . . . , sn) is
called the type of the gallery Γ .
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We can now derive some basic properties of galleries from the WD axioms.

Lemma 5.16. Let C and D be chambers and let w := δ(C,D).

(1) If Γ is a gallery of type s = (s1, . . . , sn) connecting C and D, then there
exists a subword (si1 , . . . , sim

) of s such that w = si1 · · · sim
, where 0 ≤

m ≤ n and 1 ≤ i1 < · · · < im ≤ n. If, in addition, s is reduced in the
sense of Section 2.3.1, then w = s1 · · · sn, and Γ is minimal.

(2) If w = s1 · · · sn with s1, . . . , sn ∈ S, then there exists a gallery Γ of type
s = (s1, . . . , sn) connecting C and D. If, in addition, s is reduced, then
this gallery Γ is uniquely determined and minimal.

Proof. In both parts of the lemma, we proceed by induction on n.
(1) Let Γ : C = C0, C1, . . . , Cn = D be the given gallery. Let w′ =

δ(C1,D), and apply (WD2) to the triangle

C

s1
w

C1
w′ D

to deduce that w ∈ {s1w
′, w′}. By induction, we may assume that w′ is the

product of the elements occurring in a subword of (s2, . . . , sn). This immedi-
ately yields our first claim about w. Note that this part of the proof already
implies d(C,D) ≥ l(w), since l(w) ≤ m ≤ n, where n is the length of an
arbitrary gallery connecting C and D.

Now assume that in addition, s is reduced. Then also s′ := (s2, . . . , sn) is
reduced. So the induction hypothesis yields w′ = δ(C1,D) = s2 · · · sn in this
case. Hence l(s1w

′) = l(s1 · · · sn) = n = l(w′) + 1. The application of (WD2)
to the triangle above therefore yields w = s1w

′ = s1 · · · sn. In particular,
n = l(w), and by the previous paragraph there is no gallery of length < l(w)
connecting C and D. Hence Γ is minimal.

(2) Assume w = s1 · · · sn with n > 0. Applying (WD3), we obtain a
chamber C1 that is s1-adjacent to C with δ(C1,D) = s1w = s2 · · · sn:

C1

s1
s2 · · · sn

C w D

By the induction hypothesis there exists a gallery Γ ′ : C1, . . . , Cn = D of type
s′ := (s2, . . . , sn) connecting C1 and D. Hence Γ : C = C0, C1, . . . , Cn = D is
a gallery of type s connecting C and D.

Now assume additionally that s is reduced. Then Γ is minimal by part (1).
We want to show that Γ is the only gallery of type s connecting C and D. Note
that the chamber C1 following C = C0 in Γ has to satisfy δ(C,C1) = s1 as well
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as (by part (1)) δ(C1,D) = s2 · · · sn = s1w. Since l(s1w) = n− 1 = l(w)− 1,
Lemma 5.5 implies that C1 is uniquely determined. Then by induction the
gallery Γ ′ of reduced type s′ connecting C1 and D is also uniquely determined.
Hence Γ is unique. 	


Corollary 5.17. For any two chambers C,D ∈ C, we have:

(1) d(C,D) = l
(
δ(C,D)

)
.

(2) δ(D,C) = δ(C,D)−1.

Proof. Set w := δ(C,D) and choose a reduced decomposition w = s1 · · · sn

of w. By Lemma 5.16(2), there exists a gallery Γ : C = C0, . . . , Cn = D of
type s = (s1, . . . , sn) connecting C and D. It is minimal since s is reduced, so
d(C,D) = n = l(w). This proves (1). Now D = Cn, . . . , C0 = C is a gallery
of reduced type (sn, . . . , s1) connecting D and C, so Lemma 5.16(1) implies
δ(D,C) = sn · · · s1 = w−1 = δ(C,D)−1, proving (2). 	


Remark 5.18. Using Corollary 5.17(2), we can deduce the following ana-
logues of (WD2) and (WD3), thereby removing the asymmetry in those ax-
ioms:

(WD2′) If D′ ∈ C satisfies δ(D,D′) = s ∈ S and δ(C,D) = w, then
δ(C,D′) = ws or w. If, in addition, l(ws) = l(w) + 1, then δ(C,D′) = ws.

(WD3′) If δ(C,D) = w, then for any s ∈ S there is a chamber D′ ∈ C such
that δ(D,D′) = s and δ(C,D′) = ws.

We also have, as in Lemma 5.5, that the D′ in (WD3′) is uniquely determined
if l(ws) = l(w)− 1. And, as in Remark 5.6, one can interpret this unique D′

as the chamber closest to C in the s-panel containing D.

Exercises

5.19. Prove Remark 5.18.

5.20. (a) If Γ is a gallery of type s in a building of type (W,S), show that
Γ is minimal if and only if s is reduced.

(b) Given C,D ∈ C, show that there is a 1–1 correspondence between minimal
galleries from C to D and reduced decompositions of w := δ(C,D).

5.2 Buildings as Chamber Systems

The central idea of our new approach to buildings is to encode properties
of galleries in a Weyl-group-valued distance function δ. In Definition 5.1 we
did this by requiring certain algebraic properties of δ, which enabled us to
define adjacency and galleries. There is a slightly different but closely related
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way of achieving the same goal using “chamber systems.” This approach was
introduced by Tits [255], and a slight variant of it was taken as the definition
of “building” in the books by Ronan [200] and Weiss [281]. In this section we
will show that the definition of Ronan and Weiss is equivalent to the one we
gave in Section 5.1.

First of all we have to define the notion of a chamber system. This is
done in Section A.1.4 in the context of chamber complexes. Here we do not
presuppose any simplicial structure, so we just consider a chamber system as
a set together with a family of equivalence relations.

Definition 5.21. A chamber system over a set S is a nonempty set C (whose
elements are called chambers) together with a family of equivalence relations
(∼s)s∈S on C indexed by S. The equivalence classes with respect to ∼s are
called s-panels. A panel is an s-panel for some s ∈ S. Two distinct chambers
C and D are called s-adjacent if they are contained in the same s-panel
and adjacent if they are s-adjacent for some s ∈ S. A gallery of length n
connecting C0 and Cn is a sequence Γ : C0, . . . , Cn of n + 1 chambers such
that Ci−1 and Ci are adjacent for all 1 ≤ i ≤ n. If Ci−1 and Ci are si-adjacent
with si ∈ S for all i, then we say that Γ is a gallery of type (s1, . . . , sn).

A chamber system can be viewed as a graph with colored edges; the vertices
are the chambers, and s-adjacent chambers are connected by an edge of color s.
See Exercise 5.25 for more details concerning this point of view.

Example 5.22. Let (C, δ) be a building of type (W,S). Then C, with the
s-equivalence relations ∼s defined in Section 5.1.1, is a chamber system over S.
In this situation the notions of panel, adjacency, gallery and so on as intro-
duced in Definition 5.21 agree with the notions defined in the previous section
for buildings of type (W,S).

We are not interested in the notion of chamber system for its own sake,
so we immediately introduce the property that turns chamber systems into
buildings. To this end, S is not an arbitrary set but is the set of distinguished
generators of a Coxeter group W as in the example. Thus we fix a Coxeter
system (W,S) for the rest of this section. Then types of galleries are words
in S, and we can talk as before of reduced types. The main building axiom in
this setup requires the existence of a map δ : C × C → W that is related to
galleries by the following property:

(G) For any C,D ∈ C and any reduced S-word s = (s1, . . . , sn) there exists a
gallery of type s connecting C and D if and only if δ(C,D) = s1 · · · sn.

Here by definition the empty word is considered to be reduced, and the cor-
responding product is the identity element 1 ∈ W . The link with buildings of
type (W,S) is now provided by the following result.

Proposition 5.23. Let
(
C, (∼s)s∈S

)
be a chamber system over S such that

each panel contains at least two chambers. Then a map δ : C×C →W satisfies
(G) if and only if it satisfies (WD1)–(WD3).
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Proof. It is shown in Lemma 5.16 that the WD axioms imply (G). So we
assume that δ satisfies (G) and deduce the WD axioms, which we may take
in the form (WD1), (WD2a), (WD2b), and (WD3) (see Exercise 5.10).

(WD1) By (G) applied to the empty word, two chambers C,D satisfy
δ(C,D) = 1 if and only if there is gallery of empty type connecting them, i.e.,
if and only if C = D.

(WD2a) Note first that (G) applied to words of length 1 says that two
chambers C ′ and C are s-adjacent in the sense of Definition 5.21 if and only
if δ(C ′, C) = s. Hence the relation of s-equivalence in Definition 5.2 coincides
with the given relation ∼s, which proves (WD2a).

(WD2b) Assume that C ′, C,D ∈ C satisfy δ(C ′, C) = s ∈ S and δ(C,D) =
w ∈ W . We must show that δ(C ′,D) = sw if l(sw) = l(w) + 1. Choose a
reduced decomposition w = s1 · · · sn of w (so n = l(w)) and, by (G), a gallery
Γ : C = C0, . . . , Cn = D of type s = (s1, . . . , sn) connecting C and D. Then
(s, s1, . . . , sn) is reduced and is the type of the gallery

C ′ s
C

Γ
D .

Hence (G) implies that δ(C ′,D) = sw.
(WD3) Given C,D ∈ C and s ∈ S, let w = δ(C,D). If l(sw) = l(w)+1, we

choose an arbitrary chamber C ′ with δ(C ′, C) = s (here we use the assumption
that all panels contain at least two chambers). We can then apply (WD2b),
which we have already proved, to obtain δ(C ′,D) = sw, and we are done.
If l(sw) = l(w) − 1, we choose a reduced decomposition w = s1 · · · sn of w
with s1 = s and a gallery C = C0, . . . , Cn = D of reduced type (s1, . . . , sn)
connecting C and D. Then C1 satisfies δ(C1, C) = s1 = s and (by (G))
δ(C1,D) = s2 · · · sn = s1w = sw. So we may take C ′ = C1 in order to
satisfy (WD3). 	


In view of the proposition, it is a matter of taste whether one introduces
buildings of type (W,S) by requiring the properties (WD1)–(WD3) for δ or by
first introducing chamber systems and then assuming (G) (provided all panels
contain at least two chambers). In this book we will stick with the approach
via (WD1)–(WD3) except in two optional sections (5.12 and 8.7) where it is
more convenient to use chamber systems in the sense of Definition 5.21.

Exercises

5.24. Give examples of chamber systems over S that satisfy (G) but also have
panels with only one chamber.

5.25. Interpret Definition 5.21 in the language of graph theory.
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5.3 Residues and Projections

In this section, we fix a Coxeter system (W,S) and a building (C, δ) of
type (W,S). We first want to generalize the notion of panel and introduce
residues. The latter substitute, in the context of W-metric spaces, for the
links that occurred in the theory of simplicial buildings. Residues will later
be identified with the simplices of a simplicial building that we will construct
from (C, δ). They generalize panels in the sense that we now allow J-equiva-
lences for any J ⊆ S instead of just s-equivalences. In the following, we use
the notation WJ := 〈J〉 ≤ W for any J ⊆ S.

5.3.1 J-Residues

Definition 5.26. Given J ⊆ S, we say that two chambers C,D ∈ C are
J-equivalent, and we write C ∼J D, if δ(C,D) ∈ WJ . By Lemma 5.16 we
have C ∼J D if and only if there is a gallery of type (s1, . . . , sn) connecting
C and D with si ∈ J for all 1 ≤ i ≤ n. This implies that J-equivalence is
an equivalence relation. The equivalence classes are called J-residues, and the
J-residue containing a given chamber C is denoted by RJ(C). Thus

RJ(C) := {C ′ ∈ C | δ(C,C ′) ∈ WJ} .

A subset R ⊆ C is called a residue if it is a J-residue for some J ⊆ S. The
set J is called the type of the residue, and the cardinality |J | is called its rank.

Note, for example, that panels are residues (of rank 1 and of type {s} for
some s ∈ S), and single chambers are residues (of rank 0 and type ∅). At the
other extreme, C itself is the unique residue of type S.

Remark 5.27. Given a J-residue R, we can recover the standard sub-
group WJ from R by

WJ = δ(R,R) := {δ(D,E) | D,E ∈ R} ;

we will prove this in Lemma 5.29 below. Since J is uniquely determined by WJ ,
it follows that each residue R has a well-defined type J (and hence also a well-
defined rank).

Before proceeding with the study of residues, we state and prove an ap-
propriate version of the “triangle inequality” for our W-metric space C.

Lemma 5.28. Given C,D,E ∈ C, set u := δ(C,D) and v := δ(D,E). Then
the following hold:

(1) If u = s1 · · · sm with si ∈ S for all i, then δ(C,E) = si1 · · · sik
v for some

0 ≤ k ≤ m and 1 ≤ i1 < · · · < ik ≤ m.
(2) If v = t1 · · · tn with tj ∈ S for all j, then δ(C,E) = utj1 · · · tjl

for some
0 ≤ l ≤ n and 1 ≤ j1 < · · · < jl ≤ n.
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(3) If l(uv) = l(u) + l(v), then δ(C,E) = uv.

Proof. (1) The argument is essentially the same as in Lemma 5.16(1): Choose
a gallery Γ : C = C0, . . . , Cm = D of type s = (s1, . . . , sm) connecting C
and D (this is possible by Lemma 5.16(2)). Then δ(Cm−1, E) = smv or v
by (WD2). Proceeding inductively we see that δ(C,E) = u′v, where u′ is the
product of the elements of a subword of s.

(2) The proof is symmetric to that of part (1) (recall that we can use
Corollary 5.17(2) and Remark 5.18).

(3) Here we choose u = s1 · · · sm to be a reduced decomposition of u, i.e.,
m = l(u). Then l(uv) = l(u) + l(v) implies that l(si+1si+2 · · · smv) = m− i +
l(v) for all 0 ≤ i ≤ m and so in particular l(si · · · smv) = l(si+1 · · · smv) + 1.
Hence if we again choose a gallery Γ : C = C0, . . . , Cm = D of type s =
(s1, . . . , sm) connecting C and D, then by induction and (WD2) we obtain
δ(C,D) = s1 · · · smv = uv. [Alternatively, concatenate minimal galleries and
apply the results of Section 5.1.1.] 	


We will use a diagram of the form

C

u
u′v

D v E

(5.1)

as an aid in remembering the statement of part (1) of the lemma, and similarly
for the other parts. Here u′, as in the proof, is obtained from a decomposition
of u by deleting zero or more letters.

As a first application of our triangle inequality we can evaluate the func-
tion δ on pairs of residues. In this context we set

δ(M,N ) := {δ(X,Y ) | X ∈M and Y ∈ N}

for any two subsets M,N ⊆ C. If one of the two subsets, say N , is a single-
ton {D}, then we will sometimes write δ(M,D) instead of δ(M, {D}).

Lemma 5.29. Let R be a J-residue and S a K-residue with J,K ⊆ S. Then
δ(R,S) is a double coset of the form WJwWK . In particular, δ(R,R) = WJ .

Proof. The second assertion follows from the first since 1 ∈ δ(R,R). To prove
the first assertion, choose C ∈ R and D ∈ S and set w = δ(C,D). Given
C ′ ∈ R and D′ ∈ S, set u = δ(C ′, C) ∈ WJ and v = δ(D,D′) ∈ WK . Then
Lemma 5.28 first implies δ(C ′,D) = u′w with u′ ∈ WJ and then δ(C ′,D′) =
u′wv′ with v′ ∈ WK , as illustrated in the following diagrams:

C ′

u
u′w

C w D

C ′

u′w
(u′w)v′

D v D′
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Hence δ(R,S) ⊆WJwWK .
In order to establish equality, it suffices to show that δ(R,S) is closed under

left multiplication by elements of J and right multiplication by elements of K.
But this is immediate from (WD3) and (WD3′). 	


Note that if K is empty, then S consists of a single chamber D, and the
assertion is that δ(R,D) is a right coset WJw. A similar remark applies if J
is empty.

Corollary 5.30. If J ⊆ S and R is a J-residue, then (R, δ|R×R) is a building
of type (WJ , J).

(This is the analogue of the statement in the simplicial theory that the link
of a simplex in a building is again a building.)

Proof. We have δ(R,R) = WJ by the lemma, so the restricted function δ|R×R
does indeed take values in WJ . The verification of (WD1)–(WD3) for R is
now straightforward and is left to the reader. [In verifying the second sentence
in (WD2), recall that the restriction of the length function l to WJ is equal
to the length function of WJ with respect to J by Proposition 2.14. In verify-
ing (WD3), note that if C ′ is s-adjacent to C ∈ R with s ∈ J , then C ′ ∼J C
and so C ′ ∈ R.] 	


Exercises

5.31. Let R be a residue of type J and S a residue of type K (J,K ⊆ S).
Show that R ⊆ S if and only if R∩ S is nonempty and J ⊆ K.

5.32. Show that the set of all residues, together with the empty set, is closed
under intersection. More precisely, suppose Ri is a Ji-residue for all i in some
index set I. Then R :=

⋂
i∈I Ri is a residue of type J :=

⋂
i∈I Ji if it is

nonempty.

5.33. This exercise assumes familiarity with the Bruhat order.

(a) For any three chambers C,D,E ∈ C, deduce from Lemma 5.28 that

δ(C,D) ≥ δ(C,E)δ(E,D) . (5.2)

Thus the lemma really is a triangle inequality, though the direction of
the inequality sign may seem surprising at first.

(b) Take lengths on both sides of (5.2) to deduce the ordinary triangle in-
equality

d(C,E) ≤ d(C,D) + d(D,E) .



5.3 Residues and Projections 229

5.3.2 Projections and the Gate Property

Next we want to define projections onto residues and deduce, in our present
setup, their main properties (cf. Section 4.9). The only tools required here are
Lemmas 5.28 and 5.29 together with some basic properties of Coxeter groups
that are collected in Section 2.3.2. There is no need in the W-metric approach
to first define projections in apartments as we did in the simplicial theory.

Recall that a double coset WJwWK (J,K ⊆ S, w ∈ W ) has a unique
element of minimal length, which we denote by min(WJwWK); thus

w1 = min(WJwWK) : ⇐⇒ w1 has minimal length in WJwWK .

In particular, we have a well-defined minimal element w1 = min
(
δ(R,S)

)
∈ W

for any two residues R,S. Note that in view of Corollary 5.17(1), we can
characterize this element w1 ∈ δ(R,S) by the property that

w1 = δ(C,D)

for any C ∈ R and D ∈ S such that

d(C,D) = d(R,S) ,

where
d(R,S) := min {d(C,D) | C ∈ R, D ∈ S} .

We start by studying projections of chambers onto residues. The “gate prop-
erty” that we studied earlier in the simplicial setting reads as follows in the
present context:

Proposition 5.34. Let R be a residue and D a chamber. Then there exists
a unique C1 ∈ R such that d(C1,D) = d(R,D). This chamber C1 has the
following properties:

(1) δ(C1,D) = min
(
δ(R,D)

)
.

(2) δ(C,D) = δ(C,C1)δ(C1,D) for all C ∈ R.
(3) d(C,D) = d(C,C1) + d(C1,D) for all C ∈ R.

Proof. Choose C1 ∈ R at minimal distance from D. Then C1 satisfies (i) by
the discussion above, with S = {D}. Now let J be the type of R, and let
w1 = min

(
δ(R,D)

)
= δ(C1,D). We then have (see Proposition 2.20)

l(wJw1) = l(wJ ) + l(w1)

for all wJ ∈ WJ . Since δ(C,C1) ∈ WJ for any C ∈ R, it follows that
l(δ(C,C1)w1) = l(δ(C,C1)) + l(w1), i.e.,

l
(
δ(C,C1)δ(C1,D)

)
= l
(
δ(C,C1)

)
+ l
(
δ(C1,D)

)

for all C ∈ R. So by Lemma 5.28(3), δ(C,D) = δ(C,C1)δ(C1,D), proving
that C1 satisfies (ii). Applying Corollary 5.17(1) once more, we also obtain
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d(C,D) = l
(
δ(C,C1)δ(C1,D)

)

= l
(
δ(C,C1)

)
+ l
(
δ(C1,D)

)

= d(C,C1) + d(C1,D)

for all C ∈ R, which is statement (iii). It follows from (iii) that d(C,D) >
d(C1,D) for all C ∈ R� {C1}; this proves the uniqueness of C1. 	


Definition 5.35. Let R be a residue in C.
(a) Given D ∈ C, the unique chamber C1 ∈ R at minimal distance from D is
called the projection of D onto R and is denoted by projR D. It can also be
described as the unique chamber in R satisfying

δ(C1,D) = min
(
δ(R,D)

)
.

(b) If S is another residue, we set

projR S := {projR D | D ∈ S}

and call it the projection of S onto R. Thus projR S is a subset of R; we will
prove in the next lemma that it is a residue in its own right.

We now derive some important properties of projections, which are similar
to those formulated in Section 4.9 for projections in simplicial buildings.

Lemma 5.36. Let R and S be residues of types J and K, respectively, where
J,K ⊆ S. Let w1 := min

(
δ(R,S)

)
.

(1) The projection P := projR S is given by

P = {C ∈ R | w1 ∈ δ(C,S)} .

In other words, if C ∈ R, then

C ∈ P ⇐⇒ there exists D ∈ S with δ(C,D) = w1

⇐⇒ there exists D ∈ S with d(C,D) = d(R,S) .

Moreover, if C ∈ R and D ∈ S satisfy δ(C,D) = w1, then C = projR D.
(2) P = projR S is a residue of type J1 := J ∩ w1Kw−1

1 .
(3) Given C,C ′ ∈ R and D,D′ ∈ S with δ(C,D) = δ(C ′,D′) = w1, we have

δ(C,C ′) = w1δ(D,D′)w−1
1 (5.3)

and d(C,C ′) = d(D,D′).

Proof. (1) Set P ′ = {C ∈ R | w1 ∈ δ(C,S)}. Suppose C ∈ R and D ∈ S
satisfy δ(C,D) = w1 or, equivalently, d(C,D) = d(R,S). Then certainly
d(C,D) = d(R,D), so C = projR D ∈ P by definition of the projection.
This proves the inclusion P ′ ⊆ P and the last assertion of (1).
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To prove P ⊆ P ′, let C = projR D′ for some D′ ∈ S, and set w :=
δ(C,D′) = min

(
δ(R,D′)

)
. Since

δ(R,D′) ⊆ δ(R,S) = WJw1WK ,

Proposition 2.23 implies that w can be written in the form w = wJw1wK with
wJ ∈ WJ , wK ∈ WK , and l(wJw1wK) = l(wJ ) + l(w1) + l(wK). And since w
is minimal in δ(R,D′) = WJw, we must have wJ = 1, i.e., w = w1wK . Hence
w1 ∈ wWK = δ(C,S), so C ∈ P ′.

(2) Fix C1 ∈ P and (using (1)) D1 ∈ S with δ(C1,D1) = w1. We will
reinterpret (1) and see that that P is the residue RJ1(C1). Let C ∈ C be
arbitrary, and set u := δ(C,C1). If C ∈ R, then, since C1 = projR D1 by (1),
Proposition 5.34 implies that δ(C,D1) = δ(C,C1)δ(C1,D1) = uw1:

C

u
uw1

C1 w1
D1

(5.4)

[Note also, for future reference, that d(C,D1) = d(C,C1) + l(w1), again by
Proposition 5.34.] In order for our arbitrary chamber C to be in P, then, we
need first that u ∈ WJ (so that C ∈ R) and then that

w1 ∈ δ(C,S) = δ(C,D1)WK = uw1WK .

This last condition is equivalent to u ∈ w1WKw−1
1 , so we have proven

C ∈ P ⇐⇒ u ∈WJ ∩ w1WKw−1
1 .

Now by Lemma 2.25, WJ ∩ w1WKw−1
1 = WJ1 , so C ∈ P if and only if

δ(C,C1) ∈WJ1 . But this just means that P = RJ1(C1).
(3) Consider the diagram

C
w1

u

D

v

C ′
w1

D′

(5.5)

where u = δ(C,C ′) ∈ WJ and v = δ(D,D′) ∈ WK . We will use this square
to compute δ(C,D′) and d(C,D′) in two ways. First, as we noted above
(see (5.4)), we have δ(C,D′) = uw1 and d(C,D′) = d(C,C ′)+l(w1). Similarly,
reversing the roles of R and S, and noting that w−1

1 = min
(
δ(S,R)

)
, we find

that δ(C,D′) = w1v and d(C,D′) = l(w1) + d(D,D′). Hence uw1 = w1v and
d(C,C ′)+ l(w1) = l(w1)+d(D,D′). Part (3) of the lemma follows at once. 	


Lemma 5.36 leads quickly to a basic result that can be viewed as a refined
version of Proposition 4.96(2).
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Proposition 5.37. Let R be a residue of type J and S a residue of type K
in C (J,K ⊆ S). Set R1 = projR S and S1 = projS R.

(1) R1 is a residue of type J1 := J ∩ w1Kw−1
1 , and S1 is a residue of type

K1 := K ∩ w−1
1 Jw1.

(2) Define maps f : R1 → S1 and g : S1 → R1 by f(C) = projS C and
g(D) = projR D. Then f and g are mutually inverse bijections.

(3) Two chambers C ∈ R1 and D ∈ S1 correspond under the bijections in (2)
if and only if δ(C,D) = w1 := min

(
δ(R,S)

)
or, equivalently, if and only

if d(C,D) = d(R,S).
(4) We have

δ(f(C), f(C ′)) = w−1
1 δ(C,C ′)w1

for all C,C ′ ∈ R1 and

δ(g(D), g(D′)) = w1δ(D,D′)w−1
1

for all D,D′ ∈ S1. The maps f and g preserve adjacency and gallery
distance (but not necessarily types of adjacency).

Proof. The first assertion of (1) is already contained in Lemma 5.36, and the
second follows by reversing the roles of R and S. Now consider any C ∈ R1.
Then, by the lemma, there exists D ∈ S with d(C,D) = d(R,S), and we have
C = projR D. Reversing the roles of R and S, we can also conclude from the
lemma that D = projS C ∈ S1. Thus g(f(C)) = C for all C ∈ R1 and, by
symmetry, f(g(D)) = D for all D ∈ S1. This proves (2), and (3) follows as
a byproduct of the proof. Finally, (4) has already been proved as part (3) of
the lemma. 	


Remark 5.38. Recall that R1 and S1, being residues, are buildings in their
own right (Corollary 5.30). What the proposition essentially says is that these
two buildings are isomorphic, provided we take account of the type-change
given by conjugation by w1. We will introduce the appropriate language for
expressing this in Section 5.5; see Example 5.60(b). In the simplicial setting
of Section 4.9, the corresponding result is that AB and BA have isomorphic
links (Exercise 4.100).

By way of illustration, we consider Proposition 5.37 in the simplest non-
trivial case, in which K = {s} for some s ∈ S, i.e., where S is a panel. [If
K = ∅, then S is a single chamber and the proposition is vacuous.] Set w :=
min(δ(R,S)). Then R1 := projR S is a J1-residue, where J1 := J ∩ wKw−1.
Now J1 is either empty or a singleton. If J1 = ∅ the conclusion is that the
projection R1 is a single chamber; in other words, projR D1 = projR D2

for any two chambers D1,D2 ∈ S. Otherwise, R1 is an s′-panel, where
s′ = wsw−1 ∈ J ⊆ S. We then have K1 = K = {s} and S1 = S. Con-
sider now two distinct chambers D1,D2 ∈ S, and set Ci = projR Di ∈ P for
i = 1, 2. Then the proposition implies that δ(Ci,Di) = w for i = 1, 2 and that
C1 and C2 are s′-adjacent. In particular, we have the following situation:



5.4 Convexity and Subbuildings 233

C1
w

s′

D1

s

C2 w D2

We summarize our discussion of this case in the following corollary, which
can be stated without reference to the panel S. Indeed, we can just start
with two adjacent chambers and apply the results above with S equal to the
(unique) panel containing them.

Corollary 5.39. Let R be a residue in C, let D1,D2 be adjacent chambers
in C, and let Ci = projR Di for i = 1, 2. Then C1 and C2 are either equal or
adjacent. In the latter case, the adjacency type is given by δ(C1, C2) = s′ =
wsw−1, where w = δ(C1,D1) = δ(C2,D2) and s = δ(D1,D2). 	


Exercises

5.40. (a) Let C1 and C2 be adjacent chambers, and let D be a chamber such
that d(C1,D) < d(C2,D). If P is the panel containing C1 and C2, show
that C1 = projP D.

(b) Use (a) or some other argument to show that the unique C ′ in Lemma 5.5
is the projection of D onto the s-panel containing C.

5.41. Let R be a residue and D a chamber. Suppose C1 ∈ R locally minimizes
distance to D in the sense that d(C1,D) ≤ d(C,D) for every C ∈ R adjacent
to C1. Show that C1 = projR D.

5.42. If R and S are any two residues in C, show that the residues projR S
and projS R have the same rank.

5.4 Convexity and Subbuildings

As in the chamber complex approach to buildings, the existence of galleries
enables one to introduce a notion of convexity. It will turn out to be closely
related to projections on the one hand and to subbuildings (which we will
introduce here) on the other hand. Throughout this section, (C, δ) denotes a
building of type (W,S).

5.4.1 Convex Sets

Definition 5.43. A nonempty subset M ⊆ C is called (gallery) connected if
for any two chambers C,D ∈M, there is a gallery C = C0, . . . , Cn = D such
that Ci ∈M for all 0 ≤ i ≤ n. AndM is called convex if for any two chambers
C,D ∈M, every minimal gallery connecting C and D in C is contained inM.
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Examples 5.44. (a) C is connected by Lemma 5.16. This implies that every
convex subset of C is connected. Of course C is also convex.

(b) Every residue R ⊆ C is convex. To see this, denote by J the type of R,
consider two chambers C,D ∈ R, and set w := δ(C,D) ∈ WJ . If Γ is a
minimal gallery from C to D, its type (s1, . . . , sn) is a reduced decomposition
of w (see Lemma 5.16 and Exercise 5.20). We must therefore have si ∈ J for
all 1 ≤ i ≤ n by Propositions 2.14 and 2.16, so Γ is contained in R.

(c) If (Mi)i∈I is a family of convex subsets of C, then
⋂

i∈I Mi, if nonempty,
is also convex. There is therefore a smallest convex set containing a given
nonempty subset M ⊆ C, called the convex hull of M. It is the intersection
of all convex subsets of C containing M.

We remark in passing that the intersection of connected subsets Mi ⊆ C
may well be nonempty and nonconnected. This is the case, for instance, if
C,D ∈ C can be connected by more than one minimal gallery, and we set
Mi := {C | C occurs in Γi}, where (Γi)i∈I is the family of all these minimal
galleries.

It turns out that convex subsets of C are closed under taking projections
and that they are characterized by this property (cf. Proposition 4.115).

Lemma 5.45. Let M be a convex subset of C, and let R be a residue in C
that meets M. Then for any chamber D ∈M, we have projR D ∈M.

Proof. Choose C ∈ R ∩ M and set C ′ = projR D. By the gate property
(Proposition 5.34), d(C,D) = d(C,C ′) + d(C ′,D). This says precisely that
there is a minimal gallery from C to D passing through C ′; hence C ′ ∈M by
convexity. 	


Proposition 5.46. The following conditions on a nonempty subset M ⊆ C
are equivalent.

(i) M is convex.
(ii) projP D ∈ M for every chamber D ∈ M and every panel P in C that

meets M.

Proof. (i) =⇒ (ii) by Lemma 5.45. For the converse, suppose (ii) holds.
Given a minimal gallery Γ : C0, . . . , Cn with C0, Cn ∈ M, we have to show
that all Ci are in M. Since Γ is minimal, d(Ci, Cn) = n − i for all i. This
implies that Ci = projPi

Cn for 1 ≤ i ≤ n, where Pi is the panel containing
Ci−1 and Ci (see Exercise 5.40). Since C0, Cn ∈M, it follows inductively that
Ci ∈M for all i. 	


Our next observation is that convexity for a subset M ⊂ C is an intrin-
sic property of the pair (M, δM), where δM is the restriction δ|M×M. This
may seem surprising, initially, but it follows easily from the close connection
between galleries and reduced words (Lemma 5.16 and Exercise 5.20):
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Proposition 5.47. A nonempty subset M ⊆ C is convex if and only if
(M, δM) has the following property: Given C,D ∈ M and a reduced decom-
position s of δ(C,D), there is a gallery from C to D in M of type s.

Proof. SupposeM is convex. Given C,D inM and a reduced decomposition s
of w := δ(C,D), there is a minimal gallery from C to D in C of type s by
Lemma 5.16. This gallery is contained in M by convexity, so the condition
of the proposition is satisfied. Conversely, suppose this condition holds, and
consider an arbitrary minimal gallery Γ : C = C0, . . . , Cn = D in C with
C,D ∈ M. The type s of this gallery is reduced by Exercise 5.20, so by
assumption there is a gallery Γ ′ from C to D in M of type s. But there is
a unique gallery from C to D of this type in C (by Lemma 5.16 again), so
Γ ′ = Γ and M is convex. 	


Exercise 5.48. Generalize Lemma 5.45 as follows. If M is a convex subset
of C, and if R,S are residues in C satisfying R∩M �= ∅ and S ∩M �= ∅, then
projR S ∩M �= ∅.

5.4.2 Subbuildings

We now specialize to the case that M is a subbuilding in the sense of the
following definition.

Definition 5.49. Let M be a nonempty subset M of C, and let δM be the
restriction of δ to M×M. If (M, δM) is a building of type (W,S), then it
is called a subbuilding of (C, δ). We will also say, more briefly, that M is a
subbuilding of C.

The notion of a subbuilding is not treated uniformly in the literature. Some
authors allow M and C to have different types. In that case residues would
also be considered subbuildings, whereas in our definition the only residue
that is a subbuilding is R = C. Our convention is chosen so that embeddings
of subbuildings will be isometries (these are the natural morphisms in the
category of buildings of type (W,S) and will be discussed in the next section).
Our convention is also chosen so that it is consistent with the one given in
the simplicial context (Section 4.6); this is the content of Exercise 5.97 below,
but a preliminary indication can already be found in Exercise 4.89.

By (WD3), each chamber C in a subbuilding M of C is, for any given
s ∈ S, s-adjacent to at least one other element ofM. We will show below that
this, together with convexity, characterizes subbuildings. Let us first introduce
some terminology.

Definition 5.50. A nonempty subset M of C is called thin (resp. thick) if
P ∩M has cardinality 2 (resp. > 2) for every panel P of C with P ∩M �= ∅.
There is an intermediate notion for which the terminology is less standard:
M is called weak if P ∩M has cardinality ≥ 2 for every P as above.
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Remarks 5.51. (a) Although these properties are stated in terms of panels P
of C, they are actually intrinsic properties of (M, δM) since a nonempty inter-
section P∩M, where P is an s-panel, can also be described as an s-equivalence
class in M.

(b) The term “weak” is motivated by the fact that buildings as we have de-
fined them are sometimes called “weak buildings” in the literature, the term
“building” being reserved for thick buildings.

In view of Remark 5.6, Exercise 5.9, and Lemma 5.45, the reader will
not be surprised to see the following characterization of subbuildings. This
shows that the property of being a subbuilding, like convexity, is an intrinsic
property of (M, δM).

Proposition 5.52. A nonempty subset M⊆ C is a subbuilding if and only if
it is weak and convex.

Proof. Method 1: If M is a subbuilding, then it is weak by (WD3) and it is
convex by Proposition 5.47 (and Lemma 5.16). Conversely, if M is weak and
convex, we must show that it satisfies (WD3). Given C,D ∈ M and s ∈ S,
set w := δ(C,D). If l(sw) = l(w) + 1, we choose (using the fact that M is
weak) a chamber C ′ ∈M with δ(C ′, C) = s. Then δ(C ′,D) = sw by (WD2). If
l(sw) = l(w)−1, we know there is a (unique) C ′ ∈ C such that δ(C ′, C) = s and
δ(C ′,D) = sw. We have to show that C ′ ∈ M. Now d(C ′,D) = d(C,D)− 1,
so there is a minimal gallery in C of the form C,C ′, . . . , D. Hence C ′ ∈M by
convexity.

Method 2 (sketch): M is a subbuilding if and only if it satisfies conditions
(WD3a) and (WD3b) of Exercise 5.9. The first condition says thatM is weak,
and the second says that it satisfies the convexity criterion of Proposition 5.46.

	


We now introduce one of the central notions of building theory in our
present setup.

Definition 5.53. A thin subbuilding of C is called an apartment of C.

We note the following important consequence of Proposition 5.52, which
should be compared with Theorem 4.86 in Section 4.8.

Corollary 5.54. A nonempty subset A ⊆ C is an apartment of C if and only
if it is thin and convex. 	


We now show that the “triangle inequality” of Lemma 5.28 always becomes
an equality in a thin building and hence, in particular, in an apartment. We
will use this in the next section to show that, up to isomorphism, the standard
thin building of type (W,S) is the only thin building of type (W,S).

Lemma 5.55. If A is a thin building, then for all C,D,E ∈ A, we have
δ(C,E) = δ(C,D)δ(D,E).
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Proof. Consider first the case δ(C,D) = s ∈ S, as in axiom (WD2). Since
A is thin, C is the only chamber in A that is s-adjacent to D. Now
(WD3) implies that some chamber D′ ∈ A must satisfy δ(D′,D) = s and
δ(D′, E) = sδ(D,E), so this D′ can only be C. Hence δ(C,E) = sδ(D,E) =
δ(C,D)δ(D,E).

In the general case, choose a minimal gallery Γ : C = C0, . . . , Cn = D,
and let (s1, . . . , sn) be its type. Then we have δ(Ci−1, E) = siδ(Ci, E) for
all n ≥ i ≥ 1 by the previous paragraph. An obvious induction now yields
δ(C,E) = s1 · · · snδ(D,E) = δ(C,D)δ(D,E). 	


Exercise 5.56. Give an example of two buildings C′, C of type (W,S), with
connected Coxeter diagram of rank |S| ≥ 3, such that C′ is a proper thick
subbuilding of C. (For |S| = 2, trees provide trivial examples of proper thick
subbuildings; see Exercise 5.14.)

*5.4.3 2-Convexity

The importance of the notion of convexity should be clear from the previous
subsection. It is therefore of interest to minimize what one has to check in
order to establish that a set is convex. We present here a result of Abramenko
and Van Maldeghem [17], showing that surprisingly little has to be checked.
Our discussion will use the concepts of homotopy and elementary homotopy
of galleries, which the reader may need to review before proceeding. These
concepts were introduced in Definition 3.23 for Coxeter complexes, and they
generalize to buildings in the obvious way.

Definition 5.57. A set of chambersM⊆ C is called 2-convex if it has the fol-
lowing property: SupposeM contains a gallery of alternating type (s, t, s, . . . )
and of length m(s, t) for some s �= t in S with m(s, t) <∞; then M also con-
tains the gallery of type (t, s, t, . . . ) with the same length and extremities.

Note that this property says precisely thatM is closed under homotopy of
galleries, i.e., if two galleries are homotopic and one is contained inM, then so
is the other. Note also that M is 2-convex if the intersection M∩R is convex
(if nonempty) for every spherical rank-2 residue R. Here a residue of type J
is called spherical if WJ is finite. This explains the terminology “2-convex.”

Proposition 5.58. A set of chambers is convex if and only if it is 2-convex
and gallery connected.

Proof. The “only if” part is trivial. To prove the “if” part, suppose that M
is gallery connected and 2-convex (hence closed under homotopy). Suppose
we are given two chambers C,D ∈M. To prove that M is convex, it suffices
to show that M contains one minimal gallery from C to D. For then it will
contain all such minimal galleries, since they all lie in one apartment and
hence are all homotopic by Proposition 3.24.
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To find a minimal gallery from C to D in M, start with an arbitrary
gallery Γ in M from C to D. If it is not minimal, then its type is not reduced.
The solution to the word problem (Section 2.3.3) therefore implies that Γ is
homotopic to a gallery (still in M) whose type has a repetition. This means
that there are three consecutive chambers that are all s-equivalent to one
another for some s ∈ S. If the first and third of these are equal, we can delete
the second and third; otherwise, we can delete the second. Continuing in this
way, we reach a minimal gallery in M after finitely many steps. 	


5.5 Isometries and Apartments

Corollary 5.54 provides us with one important characterization of apartments
in buildings. In this section we will give a second characterization, similar
to Proposition 4.59 in Section 4.5. We first need to introduce the concept
of isometry, which is the appropriate notion of “isomorphism” in the present
setup. We will allow our isometries to involve a change of Coxeter system, just
as isomorphisms of simplicial buildings are not required to be type-preserving.

5.5.1 Isometries and σ-Isometries

By an isomorphism of Coxeter systems σ : (W,S) → (W ′, S′) we mean a
group isomorphism σ : W ∼−→ W ′ satisfying σ(S) = S′. Equivalently, we have
a bijection σ : S → S′ such that the order of σ(s)σ(t) is equal to the order
of st for all s, t ∈ S, in which case this map σ uniquely extends to a group
isomorphism between W and W ′ in view of the standard presentation of Cox-
eter groups (see Section 2.4). So σ may be considered as a relabeling of types.
Isomorphisms between Coxeter systems can be identified with isomorphisms
between their Coxeter diagrams.

Definition 5.59. Let (C, δ) be a building of type (W,S), let (C′, δ′) be a
building of type (W ′, S′), and let σ : (W,S) → (W ′, S′) be an isomorphism of
Coxeter systems. A σ-isometry from C to C′ is a map φ : C → C′ satisfying

δ′(φ(C), φ(D)) = σ(δ(C,D))

for all C,D ∈ C. If (W,S) = (W ′, S′) and σ = idW , we simply call φ an
isometry. For general σ, we will sometimes call φ an almost isometry if we do
not need to specify σ. We can also talk about isometries, σ-isometries, and
almost isometries in case φ is defined only on a subset M ⊆ C. The same
definitions apply without change.

Some of the most important properties of buildings can be phrased in terms
of extensions of isometries. For example, we will prove below (Theorem 5.73)
that isometries defined on subsets of the standard thin building can always be
extended, and this result turns out to encode the fundamental properties of
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apartments. And a fundamental classification theorem for spherical buildings
(to be discussed in Chapter 9) is based on an extension theorem for isometries
between spherical buildings that we will describe in Section 5.10.

In view of axiom (WD1), an almost isometry φ : C → C′ is obviously in-
jective. However, φ need not be surjective. If there exists a surjective almost
isometry φ : C → C′, the buildings C and C′ are called almost isometric. They
are called isometric if in addition, σ = idW . Similar notions apply to subsets
of buildings. Note that the inverse of a surjective σ-isometry is a σ−1-isometry,
so the relation of being “almost isometric” is symmetric. It will become clear
as we proceed that “almost isometry” is often the most appropriate notion
of “isomorphism” in the W-metric category. Example 5.60(c) below gives a
first indication of this. We denote by Aut(C, δ) (or simply Aut C) the group
of almost isometries from (C, δ) to itself, and we denote by Aut0(C, δ) (or
simply Aut0 C) the group of isometries from (C, δ) to itself.

Examples 5.60. (a) If M is a subbuilding of C, then the inclusion M ↪→ C
is an isometry.

(b) IfR and S are residues in C, then by Proposition 5.37, the residues projR S
and projS R are almost-isometric buildings. Indeed, using the notation of that
proposition, the map f : projR S → projS R is a surjective σ-isometry, where
σ : (WJ1 , J1) → (WK1 ,K1) is given by σ(w) = w−1

1 ww1 for all w ∈WJ1 .

(c) Suppose C and C′ arise as in Section 4.8 from simplicial buildings ∆ and ∆′

of types (W,S) and (W ′, S′), respectively. Then any simplicial isomorphism
φ : ∆ ∼−→ ∆′ induces a surjective σ-isometry C → C′, where σ : S → S′

is the type-change map φ∗ (Proposition A.14). Thus isomorphic simplicial
buildings yield almost-isometric W-metric buildings. We can delete the word
“almost” if (W,S) = (W ′, S′) and φ is type-preserving. In particular, there
are homomorphisms Aut∆ → Aut C and Aut0 ∆ → Aut0 C; here Aut∆ is the
group of simplicial automorphisms of ∆, and Aut0 ∆ is the subgroup consisting
of type-preserving automorphisms. After we have proved that the W-metric
approach to buildings is equivalent to the simplicial approach, it will be easy
to prove that these homomorphisms are isomorphisms (see Exercise 5.101).

The following lemma can be viewed as reinterpreting the notion of σ-isom-
etry from the point of view of buildings as chamber systems (Section 5.2).

Lemma 5.61. Let (C, δ) be a building of type (W,S), let (C′, δ′) be a building
of type (W ′, S′), and let σ : (W,S) → (W ′, S′) be an isomorphism of Cox-
eter systems. Then a map φ : C → C′ is a σ-isometry if and only if it takes
s-adjacent chambers to σ(s)-adjacent chambers for all s ∈ S.

Proof. The “only if” part is trivial. To prove the “if” part, suppose φ takes
s-adjacent chambers to σ(s)-adjacent chambers for all s ∈ S. Then φ takes
any gallery in C of reduced type s to a gallery in C′ of reduced type σ(s). So
δ′(φ(C), φ(D)) = σ(δ(C,D)) for all C,D ∈ C by Lemma 5.16. 	
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The next lemma will be extremely useful as we proceed.

Lemma 5.62. Let C be a building of type (W,S), C′ a building of type
(W ′, S′), and σ : (W,S) → (W ′, S′) an isomorphism of Coxeter systems.

(1) If M is a convex subset of C and φ : M→ C′ is a σ-isometry, then φ(M)
is convex in C′.

(2) If φ : C → C′ is a σ-isometry, then φ(C) is a subbuilding of C′.

Proof. (1) This is an easy consequence of the convexity criterion given in
Proposition 5.47. In detail, suppose we are given two chambers C,D ∈ M
and a reduced decomposition s′ of w′ := δ(φ(C), φ(D)). We must show that
there is a gallery from φ(C) to φ(D) of type s′ in φ(M). By the definition of
“σ-isometry,” we have w′ = φ(w), where w := δ(C,D). So s′ = σ(s) for some
reduced decomposition s of w. There is therefore a gallery of type s from C
to D in M, and we can apply φ to get the desired gallery from φ(C) to φ(D)
in φ(M).

(2) By (1), φ(C) is convex, and it is easy to see that φ(C) is weak since C
is weak. So φ(C) is a subbuilding of C′ by Proposition 5.52. 	


Exercises

5.63. Let (W, δW ) be the standard thin building of type (W,S). Show that
the set Iso(W ) of isometries W → W is a group (under composition), which
is isomorphic to W and acts simply transitively on W . (Part of what is to be
proved is that isometries are automatically surjective in this case.)

5.64. Let σ : (W,S) ∼−→ (W ′, S′) be an isomorphism of Coxeter systems.

(a) Let (C, δ) be a building of type (W,S), and let δσ : C × C → W ′ be the
composite σ ◦ δ. Show that (C, δσ) is a building of type (W ′, S′) that is
almost isometric to (C, δ).

(b) Interpret the construction in (a) from the simplicial point of view.

5.5.2 Characterizations of Apartments

We begin by proving our earlier claim that the standard thin building (Ex-
ample 5.7) is essentially the only thin building.

Proposition 5.65. If (C, δ) is a thin building of type (W,S), then C is iso-
metric to W , where the latter is viewed as the set of chambers of the standard
thin building (W, δW ).

Proof. Fix a chamber C0 ∈ C and define ψ : A → W by ψ(C) := δ(C0, C)
for C ∈ C. Applying Corollary 5.17(2) and Lemma 5.55, we obtain, for all
C,D ∈ C,
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δW (ψ(C), ψ(D)) = δ(C0, C)−1δ(C0,D)
= δ(C,C0)δ(C0,D)
= δ(C,D) .

Hence ψ is an isometry. Using (WD3) (or rather (WD3′)) for the building C,
one immediately checks that ψ is surjective. Thus A is isometric to W . 	


The fact that the map ψ in the proof is bijective can be restated as follows:

Corollary 5.66. Let (C, δ) be a thin building of type (W,S), and fix a chamber
C0 ∈ C. Then for any w ∈ W , there is a unique chamber C ∈ C such that
δ(C0, C) = w. 	


The corollary is trivially true in the standard thin building (most obviously
with C0 = 1, since δW (1, w) = w), and this is what motivated the definition
of ψ in the proof of the proposition.

We can now give the following important characterization of apartments:

Corollary 5.67. Let (C, δ) be a building of type (W,S) and let (W, δW ) be the
standard thin building. Then a subset A ⊆ C is an apartment of C if and only
if it is isometric to W .

Proof. If A is an apartment, then it is a thin building and hence is isometric
to W by Proposition 5.65. Conversely, if there exists an isometry φ : W → C
with φ(W ) = A, then A is a subbuilding of C by Lemma 5.62, and it is
obviously thin. Hence, according to Definition 5.53, A is an apartment. 	

Corollary 5.68. Any two apartments A1,A2 of C are isometric. Further-
more, we can always find a surjective isometry φ : A1 → A2 with φ(C) = C
for all C ∈ A1 ∩ A2.

Proof. By Corollary 5.67, there exist surjective isometries φ1 : W → A1 and
φ2 : W → A2, so φ := φ2◦φ−1

1 : A1 → A2 is a surjective isometry. If A1∩A2 =
∅, there is nothing more to show. If A1 ∩ A2 contains a chamber C0, we
can choose φ1 and φ2 such that φ1(1) = φ2(1) = C0. (This follows from
the fact that the group of all isometries of W acts transitively on W by
Exercise 5.63. Alternatively, it follows from the proof of Proposition 5.65.)
So we have φ(C0) = C0. If C ∈ A1 ∩ A2 is now arbitrary, then we have
δ(C0, C) = δ(φ(C0), φ(C)) = δ(C0, φ(C)). Since C0, C, and φ(C) are all in A2,
Corollary 5.66 implies that φ(C) = C. 	


We remark in passing that the last part of the proof above can be viewed
as a version of the standard uniqueness argument that we used several times
in Chapter 3. [The earlier uses involved galleries, but here Weyl distances play
the same role.]

We now have three characterizations of apartments: Given A ⊆ C,
A is an apartment ⇐⇒ A is a thin subbuilding

⇐⇒ A is thin and convex
⇐⇒ A is isometric to W .
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Exercises

5.69. If A1 and A2 are thin buildings, show that every isometry A1 → A2 is
surjective.

5.70. In this exercise we introduce retractions in our present setup (cf. Sec-
tion 4.4). Let C be a building of type (W,S). Given an apartment A and a
chamber C ∈ A, there is a unique isometry φ : W → A with φ(1) = C (check
this). Now define ρ = ρA,C : C → A by ρ(D) = φ(δ(C,D)) for all D ∈ C.
Prove that ρ has the following properties:

(a) ρ preserves s-equivalence for all s ∈ S.
(b) δ(C, ρ(D)) = δ(C,D) for all D ∈ C.
(c) If A′ is an apartment of C with C ∈ A′, then ρ maps A′ isometrically

onto A.

5.5.3 Existence of Apartments

A serious gap in our knowledge about apartments is that we do not yet know
that buildings in the sense of the present chapter contain even a single apart-
ment. We now fill this gap by proving the main result of this section (The-
orem 5.73 below), which says that isometries defined on subsets of W can
always be extended to isometries defined on all of W . The key step in the
argument is provided by the following lemma.

Lemma 5.71. Let C be a building of type (W,S), let C,D1,D2 be chambers
in C, and let s ∈ S satisfy l

(
sδ(C,Di)

)
< l
(
δ(C,Di)

)
for i = 1, 2. Suppose

that
δ(D1,D2) = δ(D1, C)δ(C,D2) . (5.6)

Then projP D1 = projP D2, where P denotes the s-panel containing C.

Remark 5.72. Before beginning the proof, we recall that the hypothesis (5.6)
always holds in the standard thin building (W, δW ). Consequently, it holds if
the set {C,D1,D2} is isometric to a subset of the standard thin building. This
is the context in which we will apply the lemma. Note also, for motivation,
that the lemma gives us the following plausible diagram:

D1

v−1
1 v2C

s
C ′

v1

v2
D2

Here C ′ = projP D1 = projP D2, vi = sδ(C,Di) (for i = 1, 2), and the
equation δ(D1,D2) = v−1

1 v2 is a restatement of (5.6).
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Proof of the lemma. Set wi = δ(C,Di), vi = swi, and Ci = projP Di for
i = 1, 2. Since l(vi) < l(wi), we have vi = δ(Ci,Di), Ci �= C, and δ(Ci, C) =
s. We must show that C1 = C2. If this is false, then δ(C1, C2) = s and
hence, by (WD2), δ(C2,D1) = sδ(C1,D1) = sv1, as illustrated in the following
diagram:

C1
v1

s

D1

v−1
1 v2C

s

s
C2 v2

sv1

D2

We will now apply the triangle inequality (Lemma 5.28) to the lower triangle
and get a contradiction.

Choose a reduced decomposition v2 = s1 · · · sm. Then Lemma 5.28 gives
us an element v′

2 = si1 · · · sik
(for some indices 1 ≤ i1 < · · · < ik ≤ m) such

that
δ(D1,D2) = δ(D1, C2)v′

2 = v−1
1 sv′

2 .

Since δ(D1,D2) = v−1
1 v2, we can cancel v−1

1 to get sv′
2 = v2; hence v′

2 = sv2,
contradicting the assumption that l(sv2) > l(v2) ≥ l(v′

2). 	


Theorem 5.73. Let (C, δ) be a building of type (W,S), and let V ⊆ W be an
arbitrary subset. Then any isometry φ : V → C can be extended to an isometry
φ̃ : W → C. Consequently, any subset of C that is isometric to a subset of W
is contained in an apartment.

Proof. The second assertion follows from the first, since the image of W under
an isometry is an apartment by Corollary 5.67. To prove the first assertion, we
may assume that V �= ∅ and V �= W . Then there exist v0 ∈ V and s ∈ S with
v0s /∈ V . We will show first that φ can be extended to an isometry φ′ : V ′ → C,
where V ′ = V ∪ {v0s}. Since the group of isometries of W acts transitively
on W (see Exercise 5.63), we may assume (by changing (V, φ) appropriately)
that v0 = 1. Set C = φ(1). We want to find a chamber C ′ ∈ C that satisfies

δ(C ′, φ(w)) = δW (s, w) = sw (5.7)

for all w ∈ V . For it is then clear that the map φ′ : V ′ → C defined by
φ′(s) = C ′ and φ′(w) = φ(w) for all w ∈ V is an isometry. Note that the
desired C ′ will have to be s-adjacent to C [set w = 1 in (5.7)] and hence must
fit into a diagram like the following for each w ∈ V :

s

s
sw

1 w
w

φ′
C ′

s
sw

C w φ(w)
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Here δ(C, φ(w)) = w, as indicated in the diagram, since φ is an isometry.
For any w ∈ V such that l(sw) > l(w), equation (5.7) will hold for any C ′

that is s-adjacent to C by (WD2). In particular, we can choose an arbitrary
such C ′ if l(sw) > l(w) for all w ∈ V . If, on the other hand, there is an
element w ∈ V with l(sw) < l(w), then there is a unique C ′ that will work
for that w (see Lemma 5.5); in fact, we must have C ′ = projP φ(w), where P
is the s-panel in C containing C (see Exercise 5.40).

The crucial observation, now, is that C ′ = projP φ(w) does not depend
on the choice of w. Indeed, suppose w1, w2 ∈ V satisfy l(sw1) < l(w1) and
l(sw2) < l(w2). Set Di := φ(wi) for i = 1, 2. Then projP D2 = projP D1

by Lemma 5.71. Note that we can apply this lemma by Remark 5.72, since
{C,D1,D2} is isometric via φ to the subset {1, w1, w2} of W :

w1

w−1
1 w21

w1

w2 w2

φ

D1

w−1
1 w2C

w1

w2
D2

Thus we have found the desired C ′ satisfying (5.7) for all w ∈ V .
If S is countable, we complete the proof as follows. We may still assume

that 1 ∈ V . Then we arrange the elements of W � V in a finite or infinite
sequence (w1, w2, . . .) such that for each n ≥ 0, wn+1 is adjacent to an element
of Vn := V ∪{w1, . . . , wn}. Since S is countable, it is easy to achieve this (see
Exercise 5.75 below). Using the first part of our proof and a straightforward
induction, we obtain a sequence of isometries φn : Vn → C, each extending
the previous one, with φ0 = φ. These fit together to give the desired isometry
φ̃ : W → C.

Since we often even assume that S is finite, this induction covers the most
interesting cases. However, it is easy to complete the proof in the general case
using Zorn’s lemma (see Exercise 5.76 below). 	


Theorem 5.73 has many applications, including the following:

Corollary 5.74. For any two chambers C,D ∈ C, there exists an apartment
A of C with C,D ∈ A.

Proof. This follows from the second assertion of the theorem, since {C,D} is
isometric to {1, w}, where w = δ(C,D). 	


Exercises

5.75. Let (W,S) be a Coxeter system with countable generating set S =
{s1, s2, . . .}. Set Sm := {s1, . . . , sm} and

Wm := {w ∈ W | l(w) ≤ m and S(w) ⊆ Sm} .

(See Proposition 2.16 for the definition of S(w).)
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(a) Show that there is a total order on W such that w′ < w if w′ ∈Wm and
w /∈Wm or if w and w′ are both in Wm � Wm−1 and l(w′) < l(w).

(b) Show that for each w ∈ W � {1}, there exist w′ ∈ W and s ∈ S with
w = w′s and w′ < w.

(c) Given V ⊂ W , modify the total order so that v < w for all v ∈ V and
w ∈ W � V , and deduce that there exists a sequence (w1, w2, . . .) as in
the last part of the proof of Theorem 5.73.

5.76. Let V , W , C, and φ be as in Theorem 5.73. Consider the set P of all
pairs (V ′, φ′), where V ⊆ V ′ ⊆W and φ′ : V ′ → C is an isometry extending φ.
Define a partial order on this set by declaring (V ′, φ′) ≤ (V ′′, φ′′) if and only
if V ′ ⊆ V ′′ and φ′′|V ′ = φ′. Show that P has a maximal element (Ṽ , φ̃) and
that necessarily Ṽ = W .

5.77. (a) Let C,D,E be chambers in a building C. Show that they are con-
tained in a common apartment if and only if δ(C,E) = δ(C,D)δ(D,E).

(b) More generally, if B is an arbitrary set of chambers, show that B is con-
tained in an apartment if and only if δ(C,E) = δ(C,D)δ(D,E) for all
C,D,E ∈ B.

5.78. We finished the proof of Lemma 5.71 by appealing to the “triangle
inequality.” Give an alternative proof based on the version of the triangle
inequality given in Exercise 5.33 (see equation (5.2)).

5.5.4 Roots

Isometries provide a way of defining roots in a building of type (W,S). We
begin by adapting the notion of a root in a Coxeter complex, as given infor-
mally in Chapter 2 and formally in Chapter 3, to our present way of thinking
about thin buildings.

Definition 5.79. Let (W, δW ) be the standard thin building of type (W,S).
For s ∈ S, we set

αs := {w ∈ W | l(sw) > l(w)}
and call it the simple root of W corresponding to s.

The motivation for this definition can be found in Sections 3.3.3 and 3.4.
To review this briefly, recall that l(sw) = d(s, w) and l(w) = d(1, w). So αs is
the set of all chambers in W that are closer to 1 than to s. By Lemma 3.45,
this is the set of chambers of φs(Σ(W,S)), where φs denotes the folding of
the standard Coxeter complex Σ(W,S) with φs(s) = 1. Thus αs is indeed the
set of chambers of a root in the sense of our earlier treatment. We now use
isometries to define roots in arbitrary buildings.

Definition 5.80. Let C be a building of type (W,S). A subset α ⊆ C is called
a root of C if it is isometric to a simple root αs ⊆W for some s ∈ S.
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Proposition 5.81. Let α be a root of C. Then we have:

(1) α is a convex subset of C.
(2) α is contained in an apartment of C.
(3) If C is the standard thin building of type (W,S), then α = vαs for some

s ∈ S and v ∈ W .

Proof. By definition, there is an isometry φ : αs → C for some s ∈ S, with
image α. Since αs is a convex subset of W by Lemma 3.44, it follows from
Lemma 5.62(1) that α is a convex subset of C. This proves (1). Now use
Theorem 5.73 to extend φ to an isometry (still called φ) from W to C. The
image is an apartment by Corollary 5.67, whence (2). In case C is the standard
thin building, φ : W → W is given by left-translation by some v ∈ W (see
Exercise 5.63 and its solution); so α = vαs, proving (3). 	


Remark 5.82. It follows from part (3) of the proposition that Definition 5.80
is consistent with the definition of a root in a Coxeter complex given in Chap-
ter 3 if one identifies a Coxeter complex with its set of chambers. Indeed, if
φ is an arbitrary folding of Σ(W,S), then there exist adjacent chambers v, vs
(v ∈ W , s ∈ S) such that φ(vs) = v. In view of the uniqueness of foldings
(see Lemma 3.46), we must have φ = λv ◦ φs ◦ λv−1 , where λu (for u ∈ W )
denotes the automorphism of Σ(W,S) given by left multiplication by u, and
φs, as before, is the folding such that φs(s) = 1. Hence the set of chambers
of φ(Σ(W,S)) is λv(αs) = vαs.

Exercises

5.83. (a) Let α be a root of a building C of type (W,S). Let P be a panel
of C that intersects α in a single chamber C. Given D ∈ P � {C}, show
that there exists an apartment A of C containing α and D.

(b) If, furthermore, D′ ∈ P � {C,D} and A′ is an apartment containing
α ∪ {D′}, prove that A ∩A′ = α.

(c) Deduce that if C is thick, any convex subset of C that is contained in
some apartment of C is an intersection of apartments of C.

5.84. Part (c) of the previous exercise can be sharpened as follows: If C is a
thick building of type (W,S), A is an apartment of C, and M⊆ A is convex,
then there exists an apartment A′ of C with A∩A′ = M. Prove this stronger
statement. To get started, look at Exercise 3.97.

5.6 W-Metric Spaces Versus Chamber Complexes

Now that we have apartments at our disposal, we can show that our W-metric
spaces give rise to buildings in the sense of Chapter 4. The first step is to as-
sociate a simplicial complex to a W-metric building. As we already remarked,
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it is the residues that will be identified with the simplices of this complex. We
begin by collecting a few easy facts about residues.

In this section, C will again denote a building of type (W,S). Recall from
Proposition 2.16 that for each w ∈ W , there exists a subset S(w) ⊆ S such
that S(w) = {s1, . . . , sn} for any reduced decomposition w = s1 · · · sn.

Lemma 5.85. Let R and S be two residues in C of respective types J and K.

(1) There is an inclusion-preserving bijection from the set of residues of C
containing R to the set of subsets of S containing J . It associates to any
residue R′ ⊇ R its type J ′.

(2) There is a smallest element M in the set of all residues of C that contain
R and S. The type of M is J ∪K ∪ S(w), where w = δ(C,D) for some
arbitrarily chosen C ∈ R and D ∈ S.

Proof. (1) If we fix C ∈ R, then J ′ �→ RJ ′(C) defines an inclusion-preserving
map from {J ′ | J ⊆ J ′ ⊆ S} to the set of residues of C containing R. It is easy
to check that this is inverse to the (inclusion-preserving) map that associates
to any residue R′ ⊇ R its type J ′.

(2) Choose C ∈ R and D ∈ S and set w := δ(C,D) and L := J∪K∪S(w).
Note first that the definition of L does not depend on the choices of C and D.
In fact, since δ(R,S) = WJwWK by Lemma 5.29, we have S(w′) ⊆ L for
any w′ ∈ δ(R,S) and also, by symmetry, S(w) ⊆ J ∪ K ∪ S(w′), so that
L = J ∪K ∪S(w′) for all w′ ∈ δ(R,S). Now let R′ be any residue containing
R and S, and let L′ be its type. By (1), we have J∪K ⊆ L′. But also w ∈WL′

(since C,D ∈ R′) and hence S(w) ⊆ L′. This implies L ⊆ L′. On the other
hand, we clearly have R∪ S ⊆ RL(C) = RL(D). So L is the minimal type of
any residue containing R and S. By (1) again, this implies that RL(C) is the
smallest residue containing R and S. 	


Lemma 5.86. If C′ is a subbuilding of C, then each residue R′ of C′ is con-
tained in a smallest residue R of C. The map R′ �→ R is an inclusion-
preserving bijection from the set of all residues of C′ to the set of all residues
of C meeting C′.

Proof. Denote the type of R′ by J and choose C ∈ R′. Then each residue
of C containing R′ must also contain R := RJ(C), which is therefore the
smallest residue of C containing R′. Define a map f : {residues of C′} →
{residues of C meeting C′} by f(R′) := R. Then one checks immediately that
the inverse of f is given by R �→ R ∩ C′. 	


For the rest of this section we will assume that S is finite in order to be con-
sistent with the convention that simplices in simplicial complexes are always
assumed to have finite rank. The simplicial complex that we will construct
is essentially the set of residues of C, ordered by reverse inclusion. But, for
reasons to be explained below, we will make a notational distinction between
a residue R and the corresponding simplex, which will be denoted by FR.
Formally, FR is just another name for R.
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Definition 5.87. We associate a poset to C by setting

∆(C) := {FR | R is a residue of C} ,

with partial order
FR ≤ FS : ⇐⇒ R ⊇ S .

We refer to the elements of ∆(C) as simplices or faces. If J is the type of R,
we set

τ(FR) = S � J (5.8)

and say that S � J is the type of FR or that FR is of cotype J . If R is a
singleton {C}, we identify F{C} with C. The simplices of this form are again
called the chambers of ∆(C); thus the set of chambers of ∆(C) is identified
with C. If FR ≤ FS , we also say that FR is a face of FS or that FS contains FR
(though S ⊆ R as a subset of C).

There are two reasons why we introduce the new notation FR instead of
just talking about the poset of all residues of C. First of all, it makes it clearer
that we think of FR as a new object now, namely a simplex in a simplicial
complex. Secondly, we still want to consider sets of chambers in ∆(C), and a
statement like “R is the set of all chambers in ∆(C) containing R” is more
confusing than “R is the set of all chambers in ∆(C) containing FR.”

Let us now formally establish that ∆(C) is indeed a simplicial complex. See
Appendix A.1 for the relevant definitions concerning simplicial and chamber
complexes.

Lemma 5.88. ∆(C) is a colorable chamber complex of rank equal to |S|. Its
set of chambers C

(
∆(C)

)
is equal to C, and the function τ defined in (5.8) is a

type function. If C′ is a subbuilding of C, then ∆(C′) is canonically isomorphic
to a convex chamber subcomplex of ∆(C).

Proof. We first check that the poset ∆ := ∆(C) has the properties (a)
and (b) that characterize simplicial complexes (Definition A.1). By defini-
tion of ∆, two simplices A = FR and B = FS have a greatest lower bound
A ∩ B in ∆ if and only if the residues R and S have a least upper bound
in the poset of all residues of C ordered by inclusion. So (a) follows from
Lemma 5.85(2). Likewise, Lemma 5.85(1) implies that ∆≤A is isomorphic to
the poset {J ′ | J ⊆ J ′ ⊆ S}, ordered by reverse inclusion (where J is the type
of R), and hence is also isomorphic to the set of subsets of S � J . Therefore,
condition (b) is also satisfied. At the same time we have shown that the rank
of a simplex A ∈ ∆ of cotype J is equal to |S � J |.

The maximal simplices correspond to the residues of type ∅, i.e., the ele-
ments of C. (And the empty simplex is given by the unique residue of type S,
which is C itself.) Codimension-1 simplices correspond to rank-1 residues, i.e.,
to panels. Hence galleries in C in the sense of Definition 5.15 also yield galleries
in ∆, which is thus shown to be a chamber complex. It is immediate from the
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first paragraph of the proof that the function τ defined in (5.8) is a chamber
map to the complex consisting of subsets of S, so it is a type function (see
Section A.1.3). Thus ∆ is colorable.

Now assume that C′ is a subbuilding of C. By Lemma 5.86, the poset ∆(C′)
is isomorphic to the poset P := {R | R is a residue of C with R∩ C′ �= ∅}, or-
dered by reverse inclusion. The set of maximal elements of P can be identified
with C′, and P is canonically isomorphic to the simplicial subcomplex ∆′ of ∆
given by

∆′ := {FR | R ∈ P} .

This is a chamber complex in its own right (being isomorphic to ∆(C′)), and
its set of chambers is C′, which is a convex subset of C by Proposition 5.52.
Hence ∆′ is a convex chamber subcomplex of ∆. 	


In the following, we will identify ∆(C′) with the chamber subcomplex ∆′

of ∆(C) that occurred in the proof, i.e., with

{FR | R is a residue of C with R∩ C′ �= ∅} .

Example 5.89. If (W, δW ) is the standard thin building of type (W,S), then
∆(W ) is equal to the standard Coxeter complex Σ(W,S) introduced in Chap-
ter 3. Indeed, the J-residues in W are the standard cosets wWJ ; hence, up
to notation, ∆(W ) is the set of standard cosets, ordered by reverse inclusion,
and that was precisely our definition of Σ(W,S).

So the standard thin buildings correspond to Coxeter complexes. In order
to verify that ∆(C) satisfies the building axioms of Chapter 4, the only prepa-
ration still needed is to see how isometries translate into chamber maps. This
is in fact easy and requires only the following remark.

Remark 5.90. Let (C′, δ′) be of type (W ′, S′), let σ : (W ′, S′) ∼−→ (W,S)
be an isomorphism of Coxeter systems, and let φ : C′ → C be a σ-isome-
try. Assume first that φ is surjective. Then the inverse φ−1 : C → C′ is a
σ−1-isometry. It follows easily that J ′-equivalence in C′ corresponds under φ
to σ(J ′)-equivalence in C for all subsets J ′ ⊆ S′. So φ takes residues to
residues and induces a simplicial isomorphism ∆(φ) : ∆(C′) ∼−→ ∆(C), de-
fined by ∆(φ)(FR′) = Fφ(R′) for any residue R′ of C′. The inverse of this
isomorphism is ∆(φ−1) : ∆(C) ∼−→ ∆(C′).

In the general case, where φ is not necessarily surjective, recall that B :=
φ(C′) is a subbuilding of C by Lemma 5.62. In view of Lemma 5.88, we can
identify ∆(B) with a chamber subcomplex of ∆(C). In this case, we define
the chamber map ∆(φ) : ∆(C′) → ∆(C) as the composite of the isomorphism
∆(C′) ∼−→ ∆(B) with the canonical embedding ∆(B) ↪→ ∆(C). Concretely, we
have ∆(φ)(FR′) = FR, where R is the smallest residue of C containing φ(R′).
Note that the type-change map associated to ∆(φ) is σ.

We can now easily prove the main result of this section.
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Theorem 5.91. If (C, δ) is a building of type (W,S), then ∆(C) is a simplicial
building of type (W,S) in the sense of Definition 4.37.

Proof. We already verified in Lemma 5.88 that ∆(C) is a chamber complex,
and we have given it a type function with values in S. Set

Ω := {∆(A) | A is an apartment of C} .

Recall that we can consider ∆(A) as a chamber subcomplex of ∆(C) by
Lemma 5.88. We now check the conditions (B0), (B1), and (B2′′) for ∆ :=
∆(C) with respect to the family Ω of subcomplexes (which will turn out to
be the complete system of apartments).

(B0) By Corollary 5.67, any apartment A of C is an isometric image of the
standard thin building (W, δW ). Hence, by Remark 5.90 and Example 5.89,
∆(A) is isomorphic, as a chamber complex, to ∆(W ) = Σ(W,S). Note that
one in fact gets a type-preserving isomorphism ∆(A) ∼−→ Σ(W,S), so the fact
that ∆ is a building of type (W,S) will follow as soon as we finish proving
that ∆ is a building.

(B1) Since we already know that ∆ is a chamber complex, it suffices to
show that any two chambers are contained in an element of Ω. This is precisely
the content of Corollary 5.74.

(B2′′) Consider two elements Σ = ∆(A) and Σ′ = ∆(A′) of Ω, and assume
that A∩A′ contains a chamber C. By Corollary 5.68, there exists a surjective
isometry φ : A → A′ with φ(D) = D for all D ∈ A ∩ A′. Remark 5.90 yields
a type-preserving simplicial isomorphism ∆(φ) : Σ ∼−→ Σ′. We have to show
that ∆(φ)(A) = A for any A = FR ∈ Σ ∩ Σ′, where R is a residue of C
that meets A and A′. Since ∆(φ) is type-preserving and fixes the chambers in
Σ ∩Σ′, it suffices to show that A is a face of such a chamber. In other words,
we have to show that R contains a chamber D ∈ A ∩A′. To this end we can
take D = projR C, which is in A ∩A′ by Lemma 5.45. 	


Remarks 5.92. (a) As indicated, Ω := {∆(A) | A is an apartment of C} is
the complete system of apartments of the building ∆ = ∆(C). To see this, let
Σ be any apartment of ∆ and set A := C(Σ). By Proposition 4.40, Σ is a
thin convex chamber subcomplex of ∆, so A is a thin and convex subset of C.
It is therefore an apartment of C in the sense of Section 5.4 by Corollary 5.54;
hence Σ = ∆(A) ∈ Ω.

In the W-metric approach to buildings, it is quite natural to work with
the complete system of apartments from the beginning. However, there are
situations in which incomplete systems arise naturally, e.g., if C is part of a
twin building (see Section 5.8). And we will see in Chapter 6 that incomplete
systems also arise in connection with group actions on buildings

(b) IfR is a J-residue of C then it can be considered a building of type (WJ , J)
as we saw in Corollary 5.30. By definition, the associated simplicial com-
plex ∆(R) is equal to the poset ∆(C)≥FR ; it is, up to notation, just the poset
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of all residues contained in R, ordered by reverse inclusion. So ∆(R) is canon-
ically isomorphic to the link lk∆(C) FR.

(c) If C′ is a subbuilding of C, then ∆′ := ∆(C′) can be identified with a
chamber subcomplex of ∆ := ∆(C) by Lemma 5.88. This subcomplex is a
building in its own right and has the same Coxeter matrix as ∆ (both Coxeter
matrices being the same as the Coxeter matrix of (W,S)). Hence ∆′ is a
subbuilding of ∆ in the sense of Definition 4.62.

We have now almost completed the proof of the equivalence of the chamber
complex approach and the W-metric approach to buildings. We started this
with Proposition 4.81 in Chapter 4, where we showed that a simplicial building
gives rise to a W-metric building. We have now shown how, conversely, one
can construct a simplicial building from a W-metric building. It remains to
show that the transitions ∆ �→ (C(∆), δ) and (C, δ) �→ ∆(C) are inverse to one
another.

Corollary 5.93.

(1) Let ∆ be a simplicial building of type (W,S), and let (C(∆), δ) be the
W-metric building associated to ∆ as in Section 4.8. Then the chamber
complex ∆

(
C(∆)

)
is canonically isomorphic to ∆.

(2) Let (C, δ) be a (W-metric) building of type (W,S), and let ∆ = ∆(C) be
the corresponding simplicial building of type (W,S). Then the W-metric
building associated to ∆(C) is equal to the original building (C, δ).

Proof. (1) This statement is an immediate application of Proposition A.20 in
Appendix A.

(2) By Theorem 5.91, the simplicial building ∆(C) is of type (W,S), and
its set of chambers can be identified with C. We have to show that its Weyl
distance function is equal to the function δ that we started with. Consider
two chambers C,D ∈ C, and let Γ : C = C0, . . . , Cn = D be a minimal gallery
in ∆(C) connecting them. Then the type s = (s1, . . . , sn) of Γ is the same
whether Γ is considered as a gallery in the simplicial building ∆(C) or in the
W-metric building C. And, of course, Γ is also a minimal gallery in C. By
Proposition 4.81 and Lemma 5.16, the Weyl distance δ∆(C)(C,D) as defined
in Section 4.8 is equal to s1 · · · sn = δ(C,D). Hence δ∆(C) = δ. 	


Before proceeding further, we digress to complete the proof of Theorem
4.66. For ease of reference, we restate the part whose proof we deferred:

Proposition 5.94. Let ∆ be a simplicial building, and let ∆′ be a chamber
subcomplex that is weak and convex. Then ∆′ is a subbuilding of ∆ in the
sense of Definition 4.62.

Proof. We may assume that ∆ comes equipped with a type function, so that it
is a building of type (W,S) for some Coxeter system (W,S). Then C′ := C(∆′)
is a weak and convex subset of C := C(∆), so it is a subbuilding of C in
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the W-metric sense. The simplicial building associated to C can be identified
with ∆, and the simplicial building associated to C′ can be identified with a
subbuilding of ∆ by Remark 5.92(c). This subbuilding and ∆′ both have C′ as
their set of chambers; since they are both chamber subcomplexes of ∆, they
coincide. 	


In Remark 5.90 we described how σ-isometries between W-metric build-
ings give rise to injective chamber maps between the corresponding simplicial
buildings. Recall that a chamber map ψ : ∆′ → ∆ between two chamber com-
plexes ∆ and ∆′ of the same dimension is a simplicial map that takes chambers
to chambers (see Section A.1.3).

We conclude this section by investigating how, conversely, injective cham-
ber maps between simplicial buildings induce σ-isometries. In order to do this,
we need to make further assumptions, since one can for instance often embed
a tree into the flag complex of a generalized m-gon (see Exercise 5.99 below),
and these injective chamber maps certainly do not correspond to σ-isome-
tries. But if the simplicial buildings are of the same type, or if the chamber
map is bijective, then we will show that there exists an associated σ-isometry
between the corresponding W-metric buildings:

Proposition 5.95. Let ∆′ and ∆ be simplicial buildings of respective types
(W ′, S′) and (W,S). Let ψ : ∆′ → ∆ be an injective chamber map. If
ψ is bijective, or if Σ(W ′, S′) and Σ(W,S) are isomorphic chamber com-
plexes, then ψ induces a σ-isometry φ : C(∆′) → C(∆) for some isomorphism
σ : (W ′, S′) ∼−→ (W,S) of Coxeter systems.

Proof. Recall that ∆ comes equipped with a type function having values in S,
such that the diameter of lk∆ A is equal to the order m(s, t) of st for all
simplices A of cotype {s, t} ⊆ S, and similarly for ∆′. We also know by
Proposition A.14 that the chamber map ψ induces a bijection f : S′ → S such
that τ(ψ(A)) = f(τ(A)) for any A ∈ ∆′. Here τ (resp. τ ′) is the type function
on ∆ (resp. ∆′). We claim that m(f(s′), f(t′)) = m′(s′, t′) for all s′, t′ ∈ S′, so
that f induces an isomorphism σ : (W ′, S′) ∼−→ (W,S). It then follows from
Lemma 5.61 that the restriction φ : C(∆′) → C(∆) of ψ is a σ-isometry. It
remains to prove the claim.

In the first case, when ψ is a simplicial isomorphism, our claim is ob-
vious. In fact, ψ induces isomorphisms between lk∆′ A and lk∆ ψ(A) for all
A ∈ ∆′; specializing to simplices A of cotype {s′, t′}, we obtain m′(s′, t′) =
m(f(s′), f(t′)) for all s′, t′ ∈ S′.

The second case is more subtle, but we have done the necessary work in
Section 4.5. Choose an apartment Σ′ of ∆′, and note that it is isomorphic, as
a chamber complex, to any apartment of ∆. Proposition 4.59 therefore implies
that Σ := ψ(Σ′) is an apartment of ∆ (in the complete system of apartments).
In particular, the diameter of lk∆ B is equal to the diameter of lkΣ B for any
B ∈ Σ (see Corollary 4.34). We now apply the first case to the simplicial
isomorphism ψ|Σ′ : Σ′ → Σ, and we again obtain m′(s′, t′) = m(f(s′), f(t′))
for all s′, t′ ∈ S′. This proves the claim and hence the proposition. 	




5.6 W-Metric Spaces Versus Chamber Complexes 253

The following consequence of Proposition 5.95 and Lemma 5.62 is by no
means obvious a priori.

Corollary 5.96. If ψ : ∆′ → ∆ is an injective chamber map between simpli-
cial buildings that have isomorphic apartments, then ψ(∆′) is a convex cham-
ber subcomplex of ∆. 	


Exercises

5.97. We defined the notion of subbuilding in both the simplicial setting (Sec-
tion 4.6) and the W-metric setting (Section 5.4.2). Show that the two de-
finitions are consistent under the equivalence of theories established in the
present section.

5.98. Let (C, δ) be a building of type (W,S) with S finite. Show that the sim-
plicial complex ∆ = ∆(C) admits the following alternative description: There
is one vertex for each residue of rank |S| − 1, and a collection of such ver-
tices forms a simplex if and only if the corresponding residues have nonempty
intersection.

5.99. Let ∆ be a building of type I2(m) such that each vertex of ∆ is contained
in infinitely many chambers. (One can for instance take m = 3 and let ∆ be the
incidence graph of the projective plane associated to a 3-dimensional vector
space over an infinite field.) Show that ∆ contains chamber subcomplexes that
are thick trees.

5.100. Make the following statements precise and prove them:

(a) The category of simplicial buildings, with bijective chamber maps as mor-
phisms, is equivalent to the category of W-metric buildings, with surjec-
tive σ-isometries as morphisms.

(b) For a fixed Coxeter system (W,S), the category of simplicial buildings of
type (W,S), with injective chamber maps as morphisms, is equivalent to
the category of buildings of type (W,S), with σ-isometries as morphisms.
(Here σ ranges over all automorphisms of (W,S).)

5.101. Let ∆ be a simplicial building of type (W,S), and let (C(∆), δC(∆)) be
the associated W-metric building.

(a) Show that the group Aut0 ∆ of type-preserving simplicial automorphisms
of ∆ is isomorphic to the group of surjective isometries of C(∆) onto itself.

(b) Show that the group Aut∆ of simplicial automorphisms of ∆ is isomor-
phic to the group of surjective σ-isometries of C(∆) onto itself, where σ
ranges over all automorphisms of (W,S).

5.102. Let ∆ and ∆′ be simplicial buildings of type (W,S). Show that any
type-preserving chamber map φ : ∆ → ∆′ induces a map φ : C(∆) → C(∆′)
that is “distance-decreasing” with respect to the Bruhat order on W , i.e.,



254 5 Buildings as W-Metric Spaces

δ(φ(C), φ(D)) ≤ δ(C,D)

for all C,D ∈ C(∆). Generalize to the case that the map is not necessarily
type-preserving.

5.7 Spherical Buildings

In Section 4.7 we introduced spherical buildings in the context of simplicial
buildings. We now take a fresh look at this subject from our new W-metric
point of view. Let us start with the obvious definition.

Definition 5.103. A building (C, δ) of type (W,S) is called spherical if W is
finite.

In this section, (W,S) will always be a Coxeter system with W finite, and
(C, δ) will be a (spherical) building of type (W,S).

5.7.1 Opposition

We start by recalling a few standard facts about finite Coxeter groups, which
all follow from Corollary 2.19 in Section 2.3.2. Recall first that W has a
unique element of maximal length. This element w0 is equal to its inverse w−1

0

and satisfies l(ww0) = l(w0) − l(w) = l(w0w) for all w ∈ W . In particular,
l(w0sw0) = l(w0) − l(w0s) = l(w0) − (l(w0) − 1) = 1 for all s ∈ S, so w0

normalizes S.
We now fix some notation.

Definition 5.104. We denote by w0 the unique element of maximal length
in W , and we set d0 := l(w0). For J ⊆ S, w0(J) denotes the longest element
of WJ , and d0(J) := l(w0(J)). In particular, w0(S) = w0 and d0(S) = d0.

The existence of a longest element w0 in W has the important consequence
that the diameter of the building C is finite. Here the diameter of C is defined
as usual in a metric space by

diam C := sup {d(C,D) | C,D ∈ C} = l(w0) = d0 ,

where w0 and d0 are as in Definition 5.104. This leads to the fundamental
concept that distinguishes spherical buildings from general buildings:

Definition 5.105. Two chambers C,D ∈ C are called opposite if d(C,D) =
d0 or, equivalently, δ(C,D) = w0, in which case we also write C op D. Two
residues R and S of C are called opposite if for each C ∈ R, there exists a
D ∈ S with D op C and for each D′ ∈ S, there exists a C ′ ∈ R with C ′ op D′.
If this is the case, we also use the notation R op S.
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We noted above that w0 normalizes S. Hence conjugation by w0 induces
an automorphism of (W,S).

Definition 5.106. We denote by σ0 the automorphism of (W,S) given by
σ0(w) = w0ww0 for all w ∈ W . If J ⊆ S, we set J0 := σ0(J). We call two
subsets J and K of S opposite, and we write J op K, if K = J0.

We have already encountered σ0 in Chapter 1, where it occurred in several
exercises as well as in Proposition 1.130 and Corollary 1.131. We will not use
those results here except in our discussion of examples in Section 5.7.4.

Here is an alternative characterization of opposite residues, which also
justifies the definition of opposite types in Definition 5.106.

Lemma 5.107. A J-residue R and a K-residue S of C are opposite if and
only if J = K0 and there is a chamber in R that is opposite to some chamber
in S. If this is the case, then δ(R,S) = WJw0 = w0WK , and w0(J)w0 =
w0w0(K) is the unique element of minimal length in δ(R,S).

Proof. Suppose there are chambers C ∈ R and D ∈ S with C op D, i.e.,
δ(C,D) = w0. Applying Lemma 5.29, we obtain δ(R,S) = WJw0WK . If
R and S are opposite, then for each D′ ∈ S there exists a C ′ ∈ R with
δ(C ′,D′) = w0. This implies that δ(R,D′) = WJw0. Since this is true for
every D′ ∈ S, it follows that δ(R,S) = WJw0. Similarly, δ(R,S) = w0WK .
Thus WJw0 = w0WK , which implies that WJ = w0WKw0 = WK0 and hence
that J = K0 by the basic properties of standard parabolic subgroups.

If, conversely, J = K0, then WJ = w0WKw0; hence

δ(R,S) = WJw0WK = (w0WKw0)w0WK = w0WK ,

and similarly δ(R,S) = WJw0. This implies δ(C ′,S) = w0WK for any C ′ ∈ R
(since δ(C ′,S) is a left coset of WK and is contained in δ(R,S)), and similarly
δ(R,D′) = WJw0 for any D′ ∈ S. But this just means that each C ′ ∈ R is
opposite a chamber in S and each D′ ∈ S is opposite a chamber in R. Hence
the residues R and S are opposite, and the first part of the lemma is proved.

Now assume that R op S, so that δ(R,S) = WJw0 = w0WK by the ar-
gument above. Consider an arbitrary element wJw0 ∈ WJw0 (wJ ∈ WJ). We
have l(wJw0) = l(w0)− l(wJ ), so we minimize l(wJw0) by maximizing l(wJ ),
i.e., by taking wJ = w0(J). Thus w0(J)w0 is the unique element of mini-
mal length in WJw0. Similarly, w0w0(K) is the element of minimal length in
w0WK . Finally, we must have w0(J)w0 = w0w0(K), since WJw0 = w0WK .

	


*5.7.2 A Metric Characterization of Opposition

It is natural to ask whether the opposition relation on residues admits a direct
characterization in terms of distances between residues, as in the definition
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of opposition for chambers. In this optional subsection we will give such a
characterization.

Note first that the distance between residues makes sense, as a special
case of the distance between subsets of a metric space. Namely, if R and S
are residues, then

d(R,S) := min {d(C,D) | C ∈ R, D ∈ S} .

If (C, δ) is the W-metric building associated to a simplicial building ∆, then
this is a familiar concept. Indeed, we have R = C≥A and S = C≥B for some
simplices A,B ∈ ∆, and d(R,S) is the same as the gallery distance d(A,B)
that we have worked with in earlier chapters. As usual, we will write d(R,D)
instead of d(R, {D}) in case S is a singleton. From the theory of projections,
we know that

d(R,D) = d(projR D,D) .

The key to our metric characterization of opposition is the following
lemma:

Lemma 5.108. Let R be a J-residue and D a chamber of C.
(1) max {d(C,D) | C ∈ R} = d0(J) + d(R,D).
(2) d(R,D) ≤ d0 − d0(J), with equality if and only if R contains a chamber

opposite D.

Proof. Let C ′ := projR D. Then by the gate property (Proposition 5.34) we
have

d(C,D) = d(C,C ′) + d(C ′,D)

for all C ∈ R. This is maximal when d(C,C ′) is maximal. Since δ(R, C ′) =
WJ , it follows that we maximize d(C,D) by taking C ∈ R such that δ(C,C ′) =
w0(J), in which case d(C,D) = d0(J) + d(C ′,D). This proves (1), and (2)
follows immediately. 	


We can now give our promised characterization of opposition. See Exer-
cise 4.80 for the same result stated in the language of simplicial buildings.

Proposition 5.109. Let R be a J-residue, and let S be a residue with
rankS ≥ rankR. Then the following conditions are equivalent.

(i) R op S.
(ii) d(R,S) = d0 − d0(J).
(iii) d(R,S) = max {d(R,S ′) | S ′ is a residue of C}.

Proof. It is immediate from the definitions that the maximum on the right
side of (iii) is equal to

max {d(R,D) | D ∈ C} .
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By Lemma 5.108, this maximum is equal to d0 − d0(J). So (ii) and (iii) are
equivalent. The last assertion of Lemma 5.107 shows that (i) implies (ii). To
complete the proof, we assume that (ii) and (iii) hold, and we show that
R op S.

It follows from (ii) and (iii) that every chamber D ∈ S satisfies d(R,D) =
d0−d0(J) and hence, by the lemma again, R contains a chamber C op D. As
in the proof of Lemma 5.107, we conclude that δ(R,S) = WJw0 = w0WJ0 .
On the other hand, if K is the type of S, then δ(R,S) contains w0WK , so
K ⊆ J0. But |K| = rankS ≥ |J |, so we must have K = J0, and then R op S
by Lemma 5.107. 	


It is worth explicitly mentioning the following corollary of the proof:

Corollary 5.110. Let R be a J-residue and S a K-residue. If R and S satisfy
condition (iii) of the proposition, then K ⊆ J0. 	


5.7.3 The Thin Case

Next we want to investigate the opposition relation in an apartment, which
we can identify with the standard thin building. Some basic properties are
collected in the following lemma.

Lemma 5.111. Let (W, δ) be the standard thin building of type (W,S) (where
W is finite). Then the following hold:

(1) Any w ∈ W is opposite precisely one w′ ∈W , namely w′ = ww0.
(2) The map opW : W → W defined by opW (w) := ww0 for all w ∈ W is a

surjective σ0-isometry.
(3) Any residue wWJ in W (with w ∈ W and J ⊆ S) is opposite precisely

one residue in W , namely opW (wWJ ) = ww0WJ0 .

Proof. (1) Given w,w′ ∈ W , we have w op w′ ⇐⇒ δ(w,w′) = w0 ⇐⇒
w−1w′ = w0 ⇐⇒ w′ = ww0.

(2) Just observe that

δ(opW (v), opW (w)) = (vw0)−1(ww0) = w0δ(v, w)w0 = σ0(δ(v, w))

for all v, w ∈W and that opW is obviously surjective.
(3) Set R := wWJ , and let S be any residue in W . By Definition 5.105 and

part (1) of this lemma, R and S are opposite if and only if S = Rw0. But this
is equivalent to S = opW (R) = opW (wWJ ) = wWJw0 = ww0(w0WJw0) =
ww0WJ0 . 	


Remarks 5.112. (a) Since every thin building is isometric to the standard
one, Lemma 5.111 implies that every thin spherical building A admits an op-
position involution opA; it is an almost isometry characterized by the property
that it maps every chamber of A to its opposite.
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(b) Recall that the standard Coxeter complex Σ = Σ(W,S) is the simplicial
building associated to (W, δW ). By Remark 5.90, opW induces a simplicial
automorphism φ of Σ, again characterized by the property that it maps every
chamber of Σ to its opposite. If W is given as a finite reflection group acting
on a Euclidean space V and we identify Σ with the cell complex Σ(W,V )
introduced in Section 1.5, then φ coincides with the opposition involution opΣ

introduced in Section 1.6.2 and given by opΣ(A) = −A for each cell A ∈
Σ(W,V ). We remark in passing that right multiplication by an element w ∈ W
usually does not map residues of W onto residues of W ; the special property
of w0 that makes this work is that w0 normalizes S.

(c) The fact that opW is a σ0-isometry translates to the statement that σ0 is
the type-change map associated to opΣ (see the last sentence of Remark 5.90).
We already noted this from the point of view of finite reflection groups in
Proposition 1.130.

For future reference, we record an easy fact about the opposition involu-
tion. Recall that every root α in a thin building A has an opposite root −α
(cf. Section 3.4.1); from the W-metric point of view, −α is simply the com-
plement A� α.

Lemma 5.113. Let A be a thin spherical building. Then the opposition invo-
lution maps every root α of A to the opposite root −α.

Proof. This can be proved in many ways. For example, one can identify A
with the set of chambers of a finite reflection group and use the fact that
the opposition involution is given by multiplication by −1. Alternatively, one
can use the fact that opposite chambers in a spherical Coxeter complex are
separated by every wall. Details are left to the reader. 	


5.7.4 Computation of σ0

In this subsection we describe σ0 explicitly for all finite Coxeter groups. Note
first that we may assume that (W,S) is irreducible. For if (W,S) and (W ′, S′)
are given with finite W and W ′ and respective longest elements w0 and w′

0,
then w0w

′
0 is obviously the longest element in W ×W ′ with respect to S ∪ S′.

Next, recall that σ0, being an automorphism of (W,S), can be identified with
a diagram automorphism. This greatly simplifies the analysis. In fact, it will
turn out in all cases that we can determine σ0 as soon as we can decide
whether it is the identity. Recall, finally, that if W is given to us as a finite
reflection group, then Corollary 1.131 gives us several equivalent ways of decid-
ing whether σ0 is trivial. We now proceed case by case, using the classification
of irreducible finite Coxeter systems given in Sections 1.3 and 1.5.6.

(a) If (W,S) is of type A1, then σ0 is the identity.
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(b) Suppose |S| = 2, so that W is a dihedral group

D2m =
〈
s1, s2 ; s2

1 = s2
2 = (s1s2)m = 1

〉
.

Then one can write down w0 explicitly and check that σ0 is the identity if m
is even and that it interchanges s1 and s2 if m is odd. [Alternatively, consider
a 2m-gon with colored vertices, and observe that opposite vertices have the
same color if m is even and different colors if m is odd.]

(c) Suppose (W,S) is of type An with n ≥ 2. Then σ0 is nontrivial, and
hence it is the unique nontrivial diagram automorphism. There are many
ways to see this. For example, we can use the fact that W = Sn+1 has trivial
center, so conjugation by w0 cannot be the identity. Or, using Corollary 1.131,
we can examine the permutation action of W on the n-dimensional space
V :=

{
x ∈ R

n+1 |
∑

i xi = 0
}

and observe that −idV /∈ W for n ≥ 2. Or we
can compute w0 explicitly (Exercise 1.86). When n = 2, the nontriviality of σ0

also follows from case (b) with m = 3.

(d) If (W,S) is of type Cn with n ≥ 2, then the description of W as the group
of signed permutation matrices shows that −idV ∈ W ; hence σ0 is trivial.
If n = 2, the result is also included in (b) with m = 4. And if n > 2, the
result could have been deduced from the fact that the Coxeter diagram has
no nontrivial automorphisms.

(e) If (W,S) is of type Dn (n ≥ 4), then σ0 is trivial if n is even and is the
unique nontrivial diagram automorphism if n is odd. To see this, recall that
W is the group of signed permutation matrices with an even number of minus
signs. Hence −idV ∈W if and only if n is even.

(f) The Coxeter diagrams of type E7 and E8 have no nontrivial automor-
phisms, so σ0 is trivial in those cases. For W of type E6, on the other hand,
there is a unique nontrivial diagram automorphism, and this is σ0. The proof,
which uses ideas that we have not treated in this book, will be omitted; see
Bourbaki [44, Chapter VI, Section 4.12].

(g) The Coxeter diagram of type F4 has a unique nontrivial automorphism,
but σ0 is trivial in this case. One can see this by using the Dynkin diagram
instead of the Coxeter diagram and noting that it does not have any nontriv-
ial automorphisms. For readers not familiar with Dynkin diagrams, we can
explain this as follows. Let σ1 be the nontrivial automorphism of the Coxeter
diagram. If we had σ0 = σ1, then Exercise 1.126, which describes the action
of w0 on the simple roots, would imply that w0αs = −ασ1(s) for all s ∈ S.
But this is impossible, because the roots αs and ασ1(s) do not have the same
length [44, Chapter VI, Section 4.9].

(h) The Coxeter diagrams of type H3 and H4 do not have any nontrivial
automorphisms, so σ0 is trivial in those cases.
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5.7.5 Projections

We return to the general theory of spherical buildings. The characterization of
opposite residues in Lemma 5.107 has important consequences for projections.

Proposition 5.114. If R and S are opposite residues of C, then projR S = R
and projS R = S.

Proof. Let J be the type of R and let K be the type of S. By Lemma 5.107,
δ(R,S) = WJw0 = w0WK . This implies that δ(C,S) = w0WK = δ(R,S) for
any C ∈ R. In particular, there exists a chamber D ∈ S such that δ(C,D) =
min
(
δ(R,S)

)
. Using Lemma 5.36, we conclude that C ∈ projR S. Since C ∈ R

was arbitrary, we have shown that R = projR S. Interchanging the roles of R
and S, we also obtain projS R = S. 	


Remark 5.115. It is easy to see that the necessary conditions projR S = R
and projS R = S are not sufficient to imply that R and S are opposite, even
if one excludes the trivial counterexamples in which R and S are chambers or
R = S. For instance, if R and S correspond to two codimension-1 simplices
that lie on a common wall in an apartment containing them (here we refer to
the associated simplicial building), then one easily checks that projR S = R
and projS R = S. If we identify the apartment with the set of cells asso-
ciated to a finite reflection group, the explanation for this is that two cells
A and B have the same support if and only if AB = A and BA = B; see
Proposition 1.41.

However, there is an interesting special case in which these conditions are
in fact also sufficient to imply R op S. Namely, if R and S are two distinct
residues of rank equal to |S| − 1 (and hence corresponding to distinct vertices
in ∆(C)) such that projR S = R or projS R = S, then these residues are
already opposite. To see this, we can work in an apartment as above. Then
two distinct vertices correspond to two cells A and B that are rays. If AB = A,
then suppB ⊆ suppA, and hence suppB = suppA. This means that A and B
are opposite rays in a line. See Sections 3.6.6 and 3.6.7 for further remarks
about this, as well as a discussion of the nonspherical case.

Proposition 5.114 has some interesting consequences, which we give in the
following corollaries.

Corollary 5.116. Let R and S be opposite residues in C, and let J be the
type of R. Then the projection map projS induces a surjective σ-isometry
from R onto S, where σ is given by conjugation by w0w0(J). The inverse of
this σ-isometry is the σ−1-isometry that we obtain by restricting projR to S.

Proof. Since projR S = R and projS R = S, Proposition 5.37 implies
that the projection map from R onto S is a σ-isometry, with the projec-
tion from S onto R as its inverse, where σ is given by conjugation by
w−1

1 = min
(
δ(R,S)

)−1 (see Example 5.60(b)). By Lemma 5.107, w−1
1 =

(w0(J)w0)−1 = w0w0(J). 	
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Here is an important special case, for which we have already stated the
simplicial analogue in Proposition 4.103:

Corollary 5.117. If P and Q are opposite panels, then the relation of non-
opposition induces a bijection between P and Q.

Proof. Given C ∈ P and D ∈ Q, we have C op D if and only if d(C,D) = d0.
Otherwise d(C,D) = d0 − 1, and C and D correspond under the bijection of
Corollary 5.116. In other words, C and D correspond under that bijection if
and only if they are not opposite. 	


Note that σ in Corollary 5.116 depends only on the type J of R. This
leads to the next corollary.

Corollary 5.118. If the spherical building C is thick, then residues of C of
the same type are isometric.

Proof. LetR and T be two J-residues of C. Choose arbitrary chambers C ∈ R
and D ∈ T . By Proposition 4.104, there exists a chamber E ∈ C that is op-
posite both C and D. [This is where we use thickness.] Set K := J0 and S :=
RK(E). Then Lemma 5.107 implies R op S and S op T . By Corollary 5.116,
there exists a surjective σ-isometry φ : R → S, where σ is induced by conjuga-
tion by w0w0(J). Similarly, there is a surjective σ′-isometry φ′ : S → T , where
σ′ is induced by conjugation by w0w0(K) = (w0w0(K)w0)w0 = w0(J)w0,
since K = J0. Hence σ′ = σ−1, and φ′ ◦ φ is an isometry of R onto T . 	


In view of Section 5.6, the last two corollaries have simplicial interpreta-
tions that are worth stating explicitly. We first introduce, from our present
point of view, an opposition relation for simplices in a simplicial spherical
building. Let ∆ be a simplicial spherical building of type (W,S). Thus ∆
has a type function with values in S such that the link of any simplex of
cotype {s, t} (s, t ∈ S) has diameter m(s, t) = the order of st. We still call
two subsets J and K of S opposite if K = J0, and we say that two simplices
A and B in ∆ are opposite if they are of opposite types and are faces of op-
posite chambers. Equivalently, A and B are opposite if the residues C(∆)≥A

and C(∆)≥B are opposite in the sense of Definition 5.105.

Remark 5.119. We already defined the concept of opposition for simplices
in a simplicial spherical building in Section 4.7, based on the theory of finite
reflection groups. The interested reader can refer to Exercise 4.79 in that
section for a proof that the definition there is equivalent to the one we have
just given.

The following result should be compared with Exercise 4.100:

Corollary 5.120. Let A and B be simplices of a simplicial spherical build-
ing ∆ of type (W,S).
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(1) If A and B are opposite, then lk∆ A and lk∆ B are isomorphic simplicial
complexes.

(2) If ∆ is thick and A and B are of the same type, then there is a type-
preserving isomorphism between lk∆ A and lk∆ B.

Proof. Let (C, δ) be the W-metric building of type (W,S) associated with ∆
(so C = C(∆)).

(1) By assumption, the residues C≥A and C≥B are opposite. So by Corol-
lary 5.116 they are almost isometric. In view of Remark 5.90 this implies that
the associated simplicial complexes are isomorphic. These associated simpli-
cial buildings are lk∆ A and lk∆ B by Remark 5.92(b).

(2) Corollary 5.118 implies that the residues C≥A and C≥B are isometric.
By the remarks from Section 5.6 that we already quoted, this isometry induces
a type-preserving simplicial isomorphism from lk∆ A onto lk∆ B. 	


5.7.6 Apartments

The next result is the analogue of Lemma 4.69 in the W-metric setup. (See
Example 5.44(c) for the definition of convex hull in the present context.)

Lemma 5.121. If w and w′ are opposite chambers of the standard thin build-
ing (W, δW ), then W is the convex hull of {w,w′}.

Proof. This is essentially a reformulation of the equation

l(w0) = l(x) + l(x−1w0) (5.9)

for all x ∈ W , which follows from Corollary 2.19. Here are the details. Given
v ∈ W , we want to show that there is a minimal gallery from w to w′ that
contains v or, equivalently, that

d(w, v) + d(v, w′) = d(w,w′) ,

where d(−,−) denotes gallery distance. Recalling from Lemma 5.111 that
w′ = ww0, we can rewrite this as

l(w−1v) + l(v−1ww0) = l(w0) .

This is precisely (5.9), with x = w−1v. 	


We can use this to re-prove the important Theorem 4.70 from the W-metric
point of view:

Theorem 5.122. Let (C, δ) be a spherical building.

(1) If C and C ′ are opposite chambers of C, then there is precisely one apart-
ment A of C containing them both, and A is the convex hull of {C,C ′}.
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(2) If A is an apartment of C and C ∈ A, then there is precisely one chamber
C ′ ∈ A that is opposite C. Therefore, A is the convex hull of {C,C ′}.

(3) The set of apartments of C is equal to the set of all convex hulls of pairs
of opposite chambers.

Proof. Recall that apartments are convex subsets of C by Corollary 5.54
and are isometric images of (W, δW ) by Corollary 5.67, where (C, δ) is of
type (W,S).

(1) There exists an apartment A containing C and C ′ by Corollary 5.74.
Since A is convex in C, the convex hull of {C,C ′} in C is the same as the convex
hull of {C,C ′} in A, which is the entire apartment A by Lemma 5.121. This
proves the last assertion of (1), and the uniqueness of A follows.

(2) The first statement follows from Lemma 5.111, and the second state-
ment is then a consequence of (1).

(3) This is immediate from (1) and (2). 	


Remark 5.123. One can define as in Chapter 4 the notion of system of apart-
ments for a building (C, δ). By definition, this is a collection Ω of apartments
in the sense of Definition 5.53 such that any two chambers in C are contained
in some A ∈ Ω. As we observed in the simplicial setting, it follows from The-
orem 5.122 that a spherical building admits a unique system of apartments.

5.7.7 The Dual of a Spherical Building

We complete this section by introducing the “dual” of a spherical building.
One can define this notion using either the simplicial approach or the W-metric
approach, but it seems more natural from the W-metric point of view.

Definition 5.124. Let (C, δ) be a spherical building of type (W,S), and let
w0 continue to denote the longest element of W . Define a new function
δ− : C × C →W by δ(C,D) := w0δ(C,D)w0 for C,D ∈ C. Then (C, δ−) is
called the dual of (C, δ). We write C− instead of C when we want to emphasize
that we are thinking of C as the set of chambers of the dual building.

It is very easy, as we will see below, to verify that (C−, δ−) is indeed a
building of type (W,S). It is equal to the original building (C, δ) if and only if
w0 is central in W , i.e., if and only if the function σ0 introduced in Definition
5.104 is the identity. We use the notation δ− instead of δ∗ for the dual Weyl
distance function in order to be consistent with standard conventions in the
theory of twin buildings (Section 5.8 below).

Lemma 5.125. The dual (C, δ−) of (C, δ) is also a building of type (W,S), and
it is σ0-isometric to (C, δ). The associated simplicial buildings ∆(C) and ∆(C−)
are identical. If one considers ∆(C) and ∆(C−) as buildings of type (W,S) with
their natural colorings, then the identity map between ∆(C) and ∆(C′) has σ0

(or more precisely σ0|S) as the associated type-change map.
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Proof. Observe that δ− = δσ0 with the notation introduced in Exercise 5.64.
So it follows from this exercise (which was a straightforward verification) that
(C, δ) is a building of type (W,S). By the very definition of the dual, the
identity function idC : C → C defines a σ0-isometry from C onto C−. Since C
and C− have the same residues, Definition 5.87 implies ∆(C) = ∆(C−). If a
residue R has type J in C, then it has type w0Jw0 = σ0(J) in C−. Hence σ0 is
the type-change map of the identity isomorphism from ∆(C) onto ∆(C−). 	


From the simplicial point of view, then, the distinction between a spherical
building and its dual appears only when one considers colored buildings.

Lemma 5.126. If (C′, δ′) is another building of type (W,S), the following are
equivalent:

(i) C′ and C− are isometric.
(ii) There is a type-preserving simplicial isomorphism ∆(C′) ∼−→ ∆(C−).
(iii) There is a simplicial isomorphism ∆(C′) ∼−→ ∆(C) with σ0 as the associ-

ated type-change map.

Proof. By Remark 5.90, an isometry between C′ and C− induces a type-
preserving simplicial automorphism between ∆(C′) and ∆(C−). Conversely,
a type-preserving automorphism between ∆(C′) and ∆(C−) induces an isom-
etry between C′ and C− by Proposition 5.95. This proves the equivalence of
(i) and (ii). By Lemma 5.125, there is an isomorphism between the simplicial
buildings ∆(C) and ∆(C−) of type (W,S) with associated type-change map σ0.
This immediately implies the equivalence of (ii) and (iii). 	


Specializing to C′ = C, we obtain the following:

Corollary 5.127. The spherical building (C, δ) is isometric to its dual (C, δ−)
if and only if the simplicial building ∆(C) of type (W,S) admits an automor-
phism with associated type-change map σ0. 	


Remark 5.128. Lemmas 5.125 and 5.126 show how the dual building should
be defined in the category of simplicial spherical buildings of type (W,S).
Namely, let ∆ be a building of type (W,S) with type function τ having values
in S. Then the dual of ∆ is the same simplicial complex ∆, endowed with the
type function τ− := σ0 ◦ τ .

Example 5.129. The motivation for the notion of “dual building” comes
from the case that ∆ is the building ∆(V ) that we introduced in Section 4.3.
The dual building in that case was essentially computed in Exercise 4.31. We
will repeat some of the details.

Let us first recall the setup. We are given a division ring k and a left vector
space V over k of finite dimension n. We assume n ≥ 3 to avoid trivial cases.
Then ∆(V ) is the flag complex of the poset of proper nontrivial subspaces
of V . We have seen in Section 4.3 that ∆(V ) is a building of type An−1.



5.7 Spherical Buildings 265

It has a canonical coloring having values in {1, . . . , n− 1}, where the type of
a vertex U of ∆(V ) is its dimension as a subspace of V .

As we saw in Section 5.7.4, σ0 is the unique nontrivial automorphism of
the Coxeter diagram of type An−1, i.e., σ0(i) = n− i for all i ∈ {1, . . . , n− 1}.
So the dual building ∆(V )−, according to Remark 5.128, is the same build-
ing ∆(V ), where now a vertex U is declared to have type equal to its codi-
mension in V instead of its dimension. Equivalently, we can identify ∆(V )−
with ∆(V ∗), where V ∗ is the vector space dual to V , and the (type-preserving)
isomorphism ∆(V )− → ∆(V ∗) sends U to its annihilator in V ∗.

There is one issue that deserves some attention in case the division ring k
is not commutative. (This was already pointed out in the solution to Exer-
cise 4.32.) In that case, the dual V ∗ of V has to be considered either as a
right k-vector space or as a left vector space over the opposite skew field kop.
Therefore, even though we “only” changed the coloring, ∆(V )− should re-
ally be viewed as different from ∆(V ), since it has a different coordinatizing
division ring kop instead of k.

This brings us to the question of when ∆(V )− is isomorphic, as a col-
ored simplicial building, to ∆(V ). Equivalently, we ask when there is a type-
preserving isomorphism between ∆(V ∗) and ∆(V ). From the point of view of
projective geometry, this is the question of when the projective space P (V ) as-
sociated with V admits a correlation. The answer is classical and well known:
P (V ) admits a correlation if and only if the division rings k and kop are iso-
morphic (or, in other words, if and only if k admits an antiautomorphism).
In view of Corollary 5.127, we can restate this result as follows: The build-
ing ∆(V ) admits an automorphism that is not type-preserving (and so has
σ0 as its type-change map) if and only if the underlying field k admits an
antiautomorphism.

Exercises

In the exercises below, (W,S) always denotes a Coxeter system with finite W ,
and (C, δ) denotes a building of type (W,S).

5.130. Let C′ be a subbuilding of C (e.g., an apartment), and let R and S be
two residues of C that meet C′. Show that R and S are opposite in C if and
only if R∩ C′ and S ∩ C′ are opposite in C′.
5.131. Let R be a residue and D a chamber of C that is opposite (at least)
one chamber of R. Show that the set of chambers in R opposite D in C is
precisely the set of chambers opposite projR D in R (note that R can also be
considered as a spherical building).

5.132. Generalize the previous exercise as follows. Let (C′, δ′) be an arbitrary
building of type (W ′, S′) (W ′ need not be finite), and let R be a residue in C′
of type J , with J ⊆ S′. Assume that R is spherical, i.e., W ′

J is finite. Let D
be any chamber of C′. Show that the chambers E opposite projR D in R are
precisely the chambers E in R satisfying d(D,E) = max {d(D,E′) | E′ ∈ R}.
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*5.8 Twin Buildings

This optional section is long and treats an advanced topic. Most readers will
want to omit it on first reading. We are presenting this topic in the present
chapter because, historically, the theory of twin buildings provided much of
the impetus for the development of the W-metric approach to buildings.

Motivated by Tits’s fundamental paper [260] on Kac–Moody groups over
fields, Ronan and Tits introduced twin buildings in the late 1980s. Twin
buildings generalize spherical buildings, and they are naturally associated to
“groups of Kac–Moody type” in the same way that spherical buildings are
associated to algebraic groups. We will treat the group theory later (Sections
6.3 and 8.6–8.11). Here we simply collect the basic facts about twin buildings.

The central idea is that a twin building consists of a pair (C+, C−) con-
sisting of two buildings of the same type together with an opposition relation
between the chambers of C+ and those of C−, with properties similar to those
of the opposition relation on the chambers of a spherical building. In this way,
the pair (C+, C−) behaves in many respects like a spherical building, whereas
the individual buildings C+ and C− are generally not spherical (e.g., they may
be Euclidean or hyperbolic).

5.8.1 Definition and First Examples

There are various ways of axiomatizing the opposition relation in a twin build-
ing. We will follow Tits [261] and introduce a Weyl-group-valued “codistance”
between the chambers of C+ and those of C−, with two chambers declared to
be opposite if their codistance is 1. A different approach due to Abramenko
and Van Maldeghem [16], which axiomatizes the opposition relation directly,
is described in Remark 5.154 below.

We again fix an arbitrary Coxeter system (W,S).

Definition 5.133. A twin building of type (W,S) is a triple (C+, C−, δ∗) con-
sisting of two buildings (C+, δ+) and (C−, δ−) of type (W,S) together with a
codistance function

δ∗ : (C+ × C−) ∪ (C− × C+) →W

satisfying the following conditions for each ε ∈ {+,−}, any C ∈ Cε, and any
D ∈ C−ε, where w := δ∗(C,D):

(Tw1) δ∗(C,D) = δ∗(D,C)−1.

(Tw2) If C ′ ∈ Cε satisfies δε(C ′, C) = s with s ∈ S and l(sw) < l(w), then
δ∗(C ′,D) = sw.

(Tw3) For any s ∈ S, there exists a chamber C ′ ∈ Cε with δε(C ′, C) = s and
δ∗(C ′,D) = sw.
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As a minor technical issue, we assume that C+ and C− are disjoint sets, so
that δ∗ is never defined on pairs of chambers that are contained in the same
building.

Definition 5.134. We define the numerical codistance between chambers
C ∈ Cε and D ∈ C−ε (ε = ±) by

d∗(C,D) := l
(
δ∗(C,D)

)
.

We say that C and D are opposite, and we write C op D, if d∗(C,D) = 0 or,
equivalently, if δ∗(C,D) = 1. Two residues R in C+ and S in C− are called
opposite if they have the same type and contain opposite chambers.

Remarks 5.135. (a) Although there are no connecting galleries between a
chamber C ∈ C+ and a chamber D ∈ C−, one should think of d∗(C,D) as a
measure of how far away C and D are from each other. Intuitively, the bigger
d∗(C,D) is, the closer C and D are; they are “at maximal distance” if they
are opposite. This explains why we have l(sw) < l(w) in (Tw2): Decreasing
codistance should be thought of as increasing distance. We will see soon that
any s-panel P in Cε (or, more generally, any spherical residue in Cε) contains
precisely one chamber that is “closest” to a given chamber D ∈ C−ε in the
sense that it has maximal codistance from D among all the chambers in P.

(b) At first sight our convention that opposite residues have the same type
seems to be inconsistent with what we have observed about spherical build-
ings. Note, however, that we have more leeway in the context of twin build-
ings since we can always adjust one of the two type functions, either for C+
or for C−. This is precisely what happens in Example 5.136 below when we
associate a twin building to a spherical building. See also Exercise 5.161 below
for further justification.

Before deriving some elementary consequences of the axioms, we briefly
discuss two examples. The first shows that twin buildings do in fact generalize
spherical buildings. The second shows that, just as for buildings, W provides
us with the prototype of a thin twin building (and hence, as we will see, of a
twin apartment).

Examples 5.136. (a) Assume that W is finite with w0 as its element of max-
imal length, and let (C, δ) be a building of type (W,S). Denote by C+ and C−
two disjoint copies of C, and, for any C ∈ C, denote by Cε the corresponding
chamber in Cε. We then define δε : Cε × Cε →W by

δ+(C+,D+) := δ(C,D) and δ−(C−,D−) := w0δ(C,D)w0 .

We now obtain a twin building (C+, C−, δ∗) by setting

δ∗(C+,D−) := δ(C,D)w0 and δ∗(D−, C+) := w0δ(D,C)
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for C,D ∈ C. The reader should check as an exercise that (C+, C−, δ∗) is in fact
a twin building of type (W,S). Note that C− is the dual of C+ as defined in
Section 5.7.7. Moreover, opposition as defined above coincides with the usual
opposition relation in a spherical building. See Exercise 5.138 below for the
interpretation of numerical codistance.

(b) Take two disjoint copies W+ and W− of W . For w ∈ W , we denote by
w+ and w− the corresponding elements of W+ and W−, respectively. We now
define two distance functions δ± and a codistance function δ∗ by setting

δ+(v+, w+) = δ−(v−, w−) = δ∗(v+, w−) = δ∗(v−, w+) = v−1w

for all v, w ∈ W . It is even easier than in the first example to check that
(W+,W−, δ∗) is in fact a twin building of type (W,S). The codistance δ∗

introduced here will be denoted by δ∗W in the following, and we will refer to
(W+,W−, δ∗W ) as the standard thin twin building of type (W,S).

Of course, these two examples are not sufficient motivation for introduc-
ing twin buildings. As we already mentioned, however, we have to postpone
further examples until we have provided the necessary group-theoretic back-
ground. The first interesting example will be given in Section 6.12, and a
source of many additional examples will be described in Section 8.11.

Remark 5.137. In view of (Tw1), the other two axioms have “right” ana-
logues. For each ε ∈ {+,−}, any C ∈ Cε, and any D ∈ C−ε, let w := δ∗(C,D);
then we have:

(Tw2′) If D′ ∈ C−ε satisfies δ−ε(D,D′) = s with s ∈ S and l(ws) < l(w),
then δ∗(C,D′) = ws.

(Tw3′) For any s ∈ S, there exists a chamber D′ ∈ C−ε with δ−ε(D,D′) = s
and δ∗(C,D′) = ws.

So every statement referring to “left” properties of δ∗ has a companion refer-
ring to “right” properties of δ∗. We will tacitly use this in the following.

Exercise 5.138. Let (C+, C−, δ∗) be the twin building associated to a spher-
ical building (C, δ) as in Example 5.136(a). Show that

d∗(C+,D−) = d0 − d(C,D)

for all C,D ∈ C. (This explains the term “codistance.”) Show further that

d∗(C+,D−) = min {d(C,C ′) | C ′ op D}

and that the minimum is achieved if and only if C ′ is the chamber opposite D
in an apartment of (C, δ) containing C and D.
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5.8.2 Easy Consequences

Assume that (C+, C−, δ∗) is a twin building of type (W,S).

Lemma 5.139. Given ε ∈ {+,−}, C ∈ Cε, D ∈ C−ε, and s ∈ S, let w :=
δ∗(C,D). Then we have:

(1) δ∗(C ′,D) ∈ {w, sw} for any C ′ ∈ Cε with δε(C ′, C) = s.
(2) If l(sw) > l(w), there exists precisely one chamber C ′ ∈ Cε satisfying

δε(C ′, C) = s and δ∗(C ′,D) = sw.

Proof. (1) follows from (Tw2) if l(sw) < l(w), so assume l(sw) > l(w). Then,
by (Tw3), there exists C ′′ ∈ Cε with δε(C ′′, C) = s and δ∗(C ′′,D) = sw. If
C ′ = C ′′, (1) is again satisfied. If C ′ �= C ′′, then C ′ and C ′′ are both contained
in the s-panel through C, and hence δε(C ′, C ′′) = s. Since l(s(sw)) < l(sw)
by assumption, (Tw2) implies that δ∗(C ′,D) = s(sw) = w. So statement (1)
is proved. At the same time, our argument has shown that δ∗(C ′,D) = w for
all chambers C ′ �= C ′′ in the s-panel of C if l(sw) > l(w). This proves (2). 	

Lemma 5.140. Given ε ∈ {+,−}, C,D ∈ Cε, and E ∈ C−ε, let w :=
δ∗(D,E).

(1) If Γ is a gallery of type s = (s1, . . . , sn) from C to D in Cε, then there
exists a subword (si1 , . . . , sim

) of s such that δ∗(C,E) = si1 · · · sim
w.

(2) If v := δε(C,D) satisfies l(vw) = l(w)− l(v), then δ∗(C,E) = vw.

Proof. (1) follows immediately from Lemma 5.139(1) by an obvious induction
on n.

(2) The hypothesis can also be written as l(w) = l(v−1)+ l(vw), so there is
a reduced decomposition w = s1 · · · sn such that some initial segment s1 · · · sl

is a reduced decomposition of v−1. Choose a minimal gallery from C to D
of type (sl, . . . , s1). Then repeated application of (Tw2) yields δ∗(C,E) =
sl · · · s1w = vw. 	

Corollary 5.141.

(1) If C,D ∈ Cε and C ′ ∈ C−ε satisfy δε(D,C) = δ∗(D,C ′), then C op C ′.
(2) Given any chamber C ′ ∈ C−ε, any apartment of Cε contains at least one

chamber opposite C ′.

Proof. (1) If w := δ∗(D,C ′), then the hypothesis says that δε(C,D) = w−1.
Now apply Lemma 5.140(2) to get δ∗(C,C ′) = 1.

(2) Let Σ be an apartment of Cε. Choose an arbitrary chamber D ∈ Σ,
and let C ∈ Σ be the chamber such that δε(D,C) = δ∗(D,C ′). Then C op C ′

by (1). 	

Remark 5.142. Note that we have reverted to using the letter Σ for a typical
apartment, as in Chapter 4. The reason is that in dealing with twin buildings,
it is useful to have the symbol A available for the system of “admissible
apartments” that will arise in Section 5.8.4. From the present W-metric point
of view, of course, Σ is a set of chambers, not a simplicial complex.
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The final result of this subsection shows that the codistance δ∗ is uniquely
determined by the opposition relation. It should be compared with Exercise
5.138 above.

Lemma 5.143. For any C ∈ Cε and any D ∈ C−ε, δ∗(C,D) is the unique
element of minimal length in the set W (C,D) ⊆W defined by

W (C,D) := {δε(C,D′) | D′ ∈ Cε and D′ op D} .

In particular,

d∗(C,D) = min {d(C,D′) | D′ ∈ Cε and D′ op D} ,

where d(−,−) denotes gallery distance.

Proof. Set w := δ∗(C,D). Then we have w ∈ W (C,D) by Corollary 5.141(1).
Now consider any D′ ∈ Cε, and set v := δε(D′, C). By Lemma 5.140(1), we
have δ∗(D′,D) = v′w, where either l(v′) < l(v) or v′ = v. So if δ∗(D′,D) = 1,
i.e., v′ = w−1, then either l(v) > l(v′) = l(w) or v = v′ = w−1. This implies
that all elements v−1 ∈ W (C,D) different from w satisfy l(v−1) > l(w). 	


Remark 5.144. Since the codistance is determined by the opposition rela-
tion, we can, in principle, view a twin building as a triple (C+, C−, op), where
op is a relation between C+ and C− having suitable properties. We will elab-
orate on this in Remark 5.154 below.

Exercises

5.145. In our treatment of ordinary buildings, the statement analogous to
Lemma 5.139(1) was taken as part of axiom (WD2). Could we have omitted
it from the axioms and then deduced it as we have done for twin buildings?

5.146. (For readers familiar with the Bruhat order.) With the notation of
Lemma 5.143, show that δ∗(C,D) is the smallest element of W (C,D) with
respect to the Bruhat order.

5.147. Given C,D ∈ Cε and E ∈ C−ε such that d∗(C,E) = d(C,D)+d∗(D,E),
show that δ∗(C,E) = δε(C,D)δ∗(D,E).

5.8.3 Projections and Convexity

We continue to assume that (C+, C−, δ∗) is a twin building of type (W,S).
Given M⊆ Cε and N ⊆ C−ε (where ε = + or −), we set

δ∗(M,N ) := {δ∗(C,D) | C ∈M, D ∈ N} .

We will also write δ∗(M,D) for δ∗(M, {D}) and δ∗(C,N ) for δ∗({C} ,N ).
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Lemma 5.148. If R is a residue of Cε of type J and S is a residue of C−ε of
type K, then δ∗(R,S) = WJδ∗(C,D)WK for any C ∈ R and D ∈ S.

Proof. This follows immediately from (Tw3) and Lemma 5.139(1) (and their
“right” analogues). 	


In the following, we will mainly work with ordinary cosets rather than
double cosets. As before, we write w1 = min(WJw) if w1 is the element of
minimal length in WJw and hence l(vw1) = l(v)+ l(w1) for all v ∈ WJ . If J is
spherical, which means that WJ is finite, there is also a unique element of max-
imal length in WJw, namely w∗

1 := w0(J)w1. Here, as in Section 5.7, w0(J) is
the longest element in WJ . Recall that it satisfies l(vw0(J)) = l(w0(J))− l(v)
for all v ∈WJ . It follows easily that

l(vw∗
1) = l(w∗

1)− l(v) (5.10)

for all v ∈WJ if J is spherical.

Lemma 5.149. If R is a residue of Cε of spherical type and D is a chamber
in C−ε, then there is a unique C1 ∈ R such that δ∗(C1,D) is of maximal length
in δ∗(R,D). This chamber C1 satisfies

δ∗(C,D) = δε(C,C1)δ∗(C1,D)

for all C ∈ R.

Proof. By Lemma 5.148, δ∗(R,D) is a coset of the form WJw, where J is the
type of R. Choose C1 ∈ R such that δ∗(C1,D) is the element w∗

1 of maximal
length in this coset. Then, by Lemma 5.140(2),

δ∗(C,D) = δε(C,C1)δ∗(C1,D)

for any C ∈ R, since

l
(
δε(C,C1)δ∗(C1,D)

)
= l(δ∗(C1,D))− l(δε(C,C1))

by (5.10) (which applies because δε(C,C1) ∈ WJ ). This also shows that
l(δ∗(C,D)) < l(δ∗(C1,D)) for all C ∈ R� {C1}. 	


Definition 5.150. If R, D, and C1 are as in Lemma 5.149, then C1 is called
the projection of D onto R and is denoted by projR D.

Remarks 5.151. (a) As is common in the theory of twin buildings, we do
not distinguish in notation and terminology between the projections in one
building and the projections between the two “halves” of a twin building.
Note, however, that the latter exist only for spherical residues. It will always
be clear from the context which type of projection we mean.
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(b) Projections in the sense of Definition 5.150 are a powerful tool, provided
there exist “enough” spherical residues. In particular, if all residues of rank 2
are spherical (this is the important 2-spherical case), then twin buildings, like
spherical buildings, admit a nice classification. We will discuss this briefly in
Section 9.12.

(c) Note that C1 = projR D is the unique chamber in R that maximizes the
numerical codistance d∗(C1,D). Moreover, as a byproduct of the proof of
Lemma 5.149, we have the following analogue of the gate property:

d∗(C,D) = d∗(C1,D)− d(C,C1) (5.11)

for all C ∈ R, where d(−,−) is the gallery distance in Cε. To understand this
intuitively, recall that decreasing codistance should be thought of as increasing
distance.

As a first application of projections, we will prove an analogue of Corol-
lary 5.116. If J ⊆ S is spherical, let σJ be the automorphism of (WJ , J)
defined by σJ(v) := w0(J)vw0(J) for v ∈WJ .

Proposition 5.152. Let R and S be opposite residues of spherical type J
in the twin building (C+, C−, δ∗). Then the projection maps projR and projS
induce mutually inverse σJ -isometries between R and S.

Proof. By assumption, we have 1 ∈ δ∗(R,S); hence δ∗(R,S) = WJ by
Lemma 5.148. The same lemma also implies that δ∗(R,D) = δ∗(C,S) = WJ

for any C ∈ R and D ∈ S. In view of the definition of the projection, it follows
that

C = projR D ⇐⇒ δ∗(C,D) = w0(J) ⇐⇒ D = projS C .

This shows that projR and projS induce mutually inverse bijections betweenR
and S. The proposition will now follow from Lemma 5.61 if we show that these
projections transform s-adjacency to s′-adjacency for any s ∈ J , where s′ :=
σJ(s) = w0(J)sw0(J). Consider, for instance, C,C ′ ∈ R with δε(C ′, C) = s
(where we assume that R ⊆ Cε). If we set D := projS C, then δ∗(C,D) =
w0(J) and δ∗(C ′,D) = sw0(J) = w0(J)s′. By (Tw3′), there exists D′ ∈ S with
δ−ε(D,D′) = s′ and δ∗(C ′,D′) = δ∗(C ′,D)s′ = w0(J). Hence projS C ′ = D′,
which is s′-adjacent to projS C = D. 	


Here is an important special case, which could also have been deduced
directly from Definition 5.133:

Corollary 5.153. If P and Q are opposite panels, then the relation of non-
opposition induces a bijection between P and Q. In particular, the cardinalities
of P and Q are equal. 	

Remark 5.154. Given two buildings C± of the same type, a symmetric op-
position relation between them is called a 1-twinning if it has the property
described in Corollary 5.153. This notion was introduced by Mühlherr [173].
The main result of Abramenko and Van Maldeghem [16] is that (C+, C−, op)
defines a twin building if and only if the following two conditions are satisfied:



5.8 Twin Buildings 273

(1) op is a 1-twinning.
(2) There is a chamber C ∈ C+ with the following property: Any chamber

C ′ ∈ C− opposite C is contained in an apartment Σ− of C− such that C ′

is the only chamber of Σ− opposite C.

The second condition is motivated by the theory of twin apartments, which
we will discuss in the next subsection.

Definition 5.155. The twin building (C+, C−, δ∗) is called thick (resp. thin)
if each of the buildings C+ and C− is thick (resp. thin). Corollary 5.153 shows
that it suffices to require only one of the two buildings to be thick (resp. thin).

The following lemma generalizes Proposition 4.104 to twin buildings.

Lemma 5.156. Let (C+, C−, δ∗) be a thick twin building of type (W,S). Then
for each ε ∈ {+,−} and any two chambers C,D ∈ Cε, there is a chamber
E ∈ C−ε that is opposite to both C and D.

Proof. Choose, by applying Corollary 5.141 for instance, a chamber E′ ∈ C−ε

that is opposite C. Set w := δ∗(E′,D), and choose a reduced decompo-
sition w = s1 · · · sn. By Corollary 5.153 and thickness, there is a gallery
E′ = E0, E1, . . . , En =: E of type (s1, . . . , sn) in C−ε such that each Ei is
opposite C. Then δ−ε(E′, E) = w by Lemma 5.16, and E op D by Corol-
lary 5.141(1). We also have E op C by construction. 	


We can now also generalize Corollary 5.118 to twin buildings.

Corollary 5.157. Let (C+, C−, δ∗) be a thick twin building of type (W,S).
Then for each ε ∈ {+,−} and any spherical subset J ⊆ S, any two residues
of Cε of type J are isometric.

Proof. Let R and T be two residues of Cε of type J . Choose C ∈ R, D ∈ T ,
and (by Lemma 5.156) E ∈ C−ε such that E op C and E op D. Denote
by S the J-residue of C−ε containing E. Then S is opposite R and T . By
Proposition 5.152, there are surjective σJ -isometries f : R → S and g : S → T .
Hence g ◦ f : R → T is a surjective isometry. 	


We close this section by using projections to define a notion of convexity
for twin buildings.

Definition 5.158. A pair (M+,M−) of nonempty subsets M+ ⊆ C+ and
M− ⊆ C− is called convex if projP C ∈ M+ ∪M− for any C ∈ M+ ∪M−
and any panel P ⊆ C+ ∪ C− that meets M+ ∪M−.

Remark 5.159. Note that projP C could be either the usual projection in one
of the buildings Cε (if P and C are contained in Cε) or the projection in the
sense of Definition 5.150 (if P ⊆ Cε and C ∈ C−ε). The first case implies that
for a convex pair (M+,M−), each Mε is convex in Cε; see Proposition 5.46.
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Hence, by Lemma 5.45, projR C ∈Mε for any residue R of Cε that meets Mε

and any C ∈Mε. It is not difficult to verify that a similar statement holds for
the second type of projection (see Exercise 5.169 below): If the pair (M+,M−)
is convex and R ⊆ Cε is a residue of spherical type that meets Mε, then
projR C ∈ Mε for any C ∈ M−ε. Hence Definition 5.158 can be formulated
more simply as follows:

A pair (M+,M−) of nonempty subsets M+ ⊆ C+ and M− ⊆ C− is convex
if and only if it is closed under projections.

Given a family of convex pairs (M+,M−), it is immediate that their
intersection (computed componentwise) is again convex if both components
are nonempty. We can therefore form convex hulls in the usual way:

Definition 5.160. The convex hull of a pair (M+,M−) of nonempty subsets
M+ ⊆ C+ and M− ⊆ C− is the smallest convex pair containing (M+,M−).
[Here pairs (M+,M−) are ordered componentwise.] Equivalently, the convex
hull of (M+,M−) is the intersection of all convex pairs containing it.

In the following, an important role will be played by convex hulls of pairs
of opposite chambers. These turn out to be twin apartments, which are as
fundamental for twin buildings as apartments are for ordinary buildings.

Exercises

5.161. Let R be a residue of C+ and S a residue of C−. Show that R and S
are opposite in the sense of Definition 5.134 if and only if every chamber in R
is opposite some chamber in S and vice versa.

5.162. (a) Give an example of a convex pair (M+,M−) such that each Mε

contains exactly one chamber.
(b) If (W,S) is infinite and (M+,M−) is a convex pair, show that each Mε

contains more than one chamber.

5.163. If W is finite, show that every twin building of type (W,S) is iso-
metric to one of the form described in Example 5.136(a). Here an isometry
between two twin buildings of the same type is a pair of isometries preserving
codistance.

5.164. Show that every thin twin building of type (W,S) is isometric to the
standard thin twin building described in Example 5.136(b).

5.165. Define a notion of “almost isometry” for twin buildings of possibly
different types. Show that an almost isometry is the same thing as a pair of
simplicial isomorphisms preserving the opposition relation.

5.166. Let R and S be opposite residues. Show that (R,S, δ∗|) is again a
twin building, where δ∗| denotes the restriction of δ∗ to (R× S) ∪ (S ×R).
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5.167. Let R be a residue of Cε, and let D be a chamber of C−ε. Set

M(R,D) :=
{
C ∈ R | δ∗(C,D) = min

(
δ∗(R,D)

)}
.

If R is spherical, show that M(R,D) is the set of all chambers that are
opposite projR D in the spherical buildingR. (We will give another description
of M(R,D), valid for arbitrary residues R, in Exercise 5.189.)

5.168. Let R be a spherical residue in Cε and S an arbitrary residue in C−ε.
Set

projR S := {projR D | D ∈ S} .

Try to give a characterization of projR S similar to the one in Lemma 5.36(1)
and to prove that projR S is again a residue. Do you need to assume that S
is spherical?

5.169. Suppose (M+,M−) is a convex pair in the sense of Definition 5.158.
If R is a spherical residue in Cε that meets Mε, show that projR D ∈Mε for
all D ∈M−ε.

5.170. Let (M+,M−) be a convex pair that is weak in the sense that each
panel P that meets M+ ∪M− contains at least two chambers of M+ ∪M−.
Show that (M+,M−, δ∗|) is a twin building, where δ∗| denotes the restriction
of δ∗ to (M+ ×M−) ∪ (M− ×M+).

5.8.4 Twin Apartments

For brevity, we will start suppressing δ∗ from the notation and simply saying
that (C+, C−) is a twin building of type (W,S). We may also write C = (C+, C−)
when there is no ordinary building (C, δ) under discussion. Twin apartments
will be defined as certain subpairs Σ = (Σ+, Σ−) of C. There are various
equivalent ways of characterizing twin apartments, and it is a matter of taste
which one is taken as the definition. Here we choose one that stresses the
opposition relation.

Definition 5.171. A twin apartment of a twin building C is a pair Σ =
(Σ+, Σ−) such that Σ+ is an apartment of C+, Σ− is an apartment of C−,
and every chamber in Σ+ ∪ Σ− is opposite precisely one other chamber in
Σ+ ∪Σ−.

Recall that for each ε = ±, there is always at least one chamber in Σ−ε op-
posite any given chamber in Cε (see Corollary 5.141(2)). So “precisely one” can
be replaced by “at most one” in the definition. Figure 5.1 shows a schematic
representation of a twin apartment and two pairs of opposite chambers. The
two “halves” Σ+, Σ− of Σ have been drawn so as to suggest the analogy with
apartments in spherical buildings. Definition 5.171 leads immediately to the
following generalization of the opposition involution of a spherical Coxeter
complex (see Sections 1.6.2 and 5.7.3).
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D C

D′C ′

Fig. 5.1. A twin apartment.

Definition 5.172. If Σ = (Σ+, Σ−) is a twin apartment, then the opposition
involution, denoted by opΣ , associates to each chamber C ∈ Σ+ ∪ Σ− the
unique chamber C ′ = opΣ(C) ∈ Σ+ ∪Σ− such that C ′ op C.

Figure 5.1 suggests that opΣ preserves s-adjacency for all s ∈ S and hence
induces an isometry Σε → Σ−ε for each ε = ±. Let’s prove this, along with
some other useful facts about twin apartments:

Lemma 5.173. Let Σ = (Σ+, Σ−) be a twin apartment and let ε = + or −.

(1) opΣ : Σε → Σ−ε is an isometry.
(2) Given C ∈ Σε and D′ ∈ Σ−ε, set D := opΣ D′ ∈ Σε. Then

δ∗(C,D′) = δε(C,D) . (5.12)

(3) Given C ∈ Σε and w ∈ W , there is a unique chamber D′ ∈ Σ−ε such
that δ∗(C,D′) = w.

(4) For any three chambers C,D,E ∈ Σ+ ∪Σ−,

δ(C,E) = δ(C,D)δ(D,E) ,

where each δ is to be interpreted as δ+, δ−, or δ∗, whichever one makes
sense.

(5) Σ is a thin twin building in its own right, isomorphic to the standard thin
twin building of type (W,S).

(6) Σ is convex in C.

Proof. (1) Let C and D be s-adjacent chambers of Σε, and set C ′ := opΣ(C).
Then δ∗(C,C ′) = 1 and hence, by Lemma 5.139(1), δ∗(D,C ′) = s, since D
and C ′ are not opposite. If we denote by D′ the chamber of Σ−ε that is s-ad-
jacent to C ′, then (Tw2′) now yields δ∗(D,D′) = ss = 1, so D′ = opΣ(C ′).
Thus opΣ preserves s-adajacency and hence is an isometry by Lemma 5.61.
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(2) Let D1 be the unique chamber in Σε such that δε(C,D1) = δ∗(C,D′).
Then D1 op D′ by Corollary 5.141(1); hence D1 = D and (5.12) holds.

(3) This is immediate from (2) and a standard property of apartments.
(4) This is a standard property of ordinary apartments if all three chambers

are in a single Σε. In general, one can use (2) to reduce to the case that all
chambers are in one Σε. Suppose, for instance, that C,D ∈ Σ+ and E ∈ Σ−.
Then we obtain, using (2) twice,

δ∗(C,E) = δ+(C, opΣ E)
= δ+(C,D)δ+(D, opΣ E)
= δ+(C,D)δ∗(D,E) .

(5) This follows easily from the previous results.
(6) Since Σ+ and Σ− are apartments and hence convex, it suffices to

prove the following: If R is a spherical residue in Cε that meets Σε and D is a
chamber in Σ−ε, then projR D ∈ Σε. Set R0 := R∩Σε, and choose C ∈ R0.
Since δε(R0, C) = WJ , it follows from (4) that δ∗(R0,D) = WJδ∗(C,D) =
δ∗(R,D). By Lemma 5.149 and Definition 5.150, this implies that projR D ∈
R0 ⊆ Σε, as required. 	


Examples 5.174. (a) Let (C0, δ) be a spherical building, and let C = (C+, C−)
be the associated twin building as in Example 5.136(a). Then every apartment
Σ0 of C0 gives rise to a twin apartment Σ = (Σ+, Σ−), where Σε is the copy
of Σ0 in Cε for ε = ±. The opposition involution opΣ is essentially the same
as the opposition involution of Σ0 previously defined, except that it is now
viewed as interchanging two disjoint copies Σ± of Σ0. In other words, we have
a commutative square

Σε

opΣ
Σ−ε

Σ0 opΣ0
Σ0

for each ε. Note that when viewed in this way, opΣ becomes an isometry rather
than a σ0-isometry because of the way the Weyl distance in C− is defined.

(b) In the standard thin twin building (W+,W−, δ∗W ), the pair Σ = (W+,W−)
is a twin apartment, and opΣ maps each copy Wε of W to the other copy W−ε

by the identity map.

Our goal for the rest of this subsection is to show that every twin building
has “sufficiently many” twin apartments. Let C and C ′ be opposite chambers,
with C ∈ Cε. If there exists a twin apartment Σ containing C and C ′, then
Σε contains, for each w ∈W , exactly one chamber Cw such that δε(C,Cw) =
w, and this chamber also satisfies δ∗(C ′, Cw) = w by Lemma 5.173(2). The
following lemma will allow us to conclude that Σ is completely determined by
C and C ′.



278 5 Buildings as W-Metric Spaces

Lemma 5.175. Let C and C ′ be opposite chambers with C ∈ Cε.

(1) For any w ∈W there is a unique chamber Cw ∈ Cε such that

δε(C,Cw) = w = δ∗(C ′, Cw) .

(2) The chamber Cw is contained in the convex hull of the pair (C,C ′).
(3) The map fC,C′ : W → Cε given by w �→ Cw is an isometry.

Proof. (1) and (2) are proved by induction on l(w). We may assume l(w) > 0,
so that w = w′s with s ∈ S and l(w′) = l(w)−1. By the induction hypothesis,
there is a unique chamber Cw′ ∈ Cε with δε(C,Cw′) = w′ = δ∗(C ′, Cw′), and
this chamber Cw′ is in the convex hull K of (C,C ′).

To prove the existence of Cw, let P be the s-panel containing Cw′ , and
set Cw := projP C ′. Note that Cw ∈ K because Cw′ and C ′ are in K. Since
l(w′s) > l(w′), we have δ∗(C ′, Cw) = w′s = w. In particular, Cw �= C ′

w, and
hence δε(Cw, Cw′) = s. Using (WD2′), we now get δε(C,Cw) = δε(C,Cw′)s =
w′s = w. So Cw has the desired properties.

To prove the uniqueness of Cw, assume that D ∈ Cε also satisfies
δε(C,D) = w = δ∗(C ′,D). Let P1 be the s-panel containing D, and set
D1 := projP1

C. (This is the ordinary projection in Cε.) Then δε(C,D1) = w′

since l(w′) = l(ws) < l(w). Now δε(D1,D) = s, so (Tw2′) implies that
δ∗(C ′,D1) = δ∗(C ′,D)s = w′. By uniqueness of Cw′ , we must have D1 = Cw′ .
Hence P1 = P. And since D is s-adjacent to Cw′ and satisfies δ∗(C ′,D) = w,
we also obtain D = projP C ′ = Cw. This proves the uniqueness of Cw.

(3) The map fC,C′ is obviously injective, so it suffices to show that it
preserves s-adajcency for all s ∈ S. Let w and w′ be s-adjacent in W , i.e.,
w = w′s. We may assume that l(w′) < l(w), in which case Cw′ and Cw are
s-adjacent in Cε by the existence proof above. 	


Definition 5.176. With C and C ′ as in Lemma 5.175, we define

Σ(C,C ′) := fC,C′(W ) = {D ∈ Cε | δε(C,D) = δ∗(C ′,D)} .

We also define

Σ {C,C ′} :=

{(
Σ(C,C ′), Σ(C ′, C)

)
if ε = + ,

(
Σ(C ′, C), Σ(C,C ′)

)
if ε = − .

Note that Σ(C,C ′) is an apartment of Cε and Σ(C ′, C) is an apartment
of C−ε by Lemma 5.175 and Corollary 5.67. We will show soon that Σ {C,C ′}
is a twin apartment. But first we need another uniqueness statement, which
is also of independent interest. In this context, the following notation will be
useful:

Definition 5.177. For ε ∈ {+,−} and C ∈ Cε, we set

Cop := {C ′ ∈ C−ε | C ′ op C} .
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Lemma 5.178. Let C and C ′ be opposite chambers with C ∈ Cε, and let Σε

be an apartment of Cε such that (C ′)op ∩Σε = {C}.
(1) Σε = Σ(C,C ′).
(2) If C ′′ is a second chamber of C−ε such that (C ′′)op ∩ Σε = {C}, then

C ′′ = C ′.

Proof. (1) For each w ∈ W , let Dw be the chamber of Σε such that
δε(C,Dw) = w. We have to show that Dw = Cw, where Cw is defined as
in Lemma 5.175. In other words, we have to show that δ∗(C ′,Dw) = w. Let
D be the chamber in Σε such that δε(D,Dw) = δ∗(C ′,Dw). Then D op C ′ by
Corollary 5.141(1). Our hypothesis now implies that D = C and hence that
δ∗(C ′,Dw) = δε(C,Dw) = w, as required.

(2) Set w := δ−ε(C ′, C ′′), and consider the chamber Cw ∈ Σε = Σ(C,C ′).
Since δ∗(C ′, Cw) = w = δ−ε(C ′, C ′′), we have C ′′ op Cw by Corollary 5.141(1).
Our hypothesis now implies that Cw = C; hence w = 1 and C ′′ = C ′. 	


It is now easy to derive the main properties of twin apartments.

Proposition 5.179.

(1) If C and C ′ are opposite chambers, then Σ {C,C ′} is a twin apart-
ment and is the unique twin apartment containing C and C ′. Moreover,
Σ {C,C ′} is the convex hull of the pair (C,C ′).

(2) For any apartment Σε of Cε, there is at most one apartment Σ−ε of C−ε

such that (Σ+, Σ−) is a twin apartment.
(3) Given any two chambers C,D ∈ C+ ∪ C−, there is a twin apartment

containing them.

Proof. (1) We may assume that C ∈ C+. The main thing to show here is
that Σ {C,C ′} is a twin apartment. For w ∈ W , denote by Cw the chamber
of Σ(C,C ′) satisfying δ+(C,Cw) = w = δ∗(C ′, Cw) and by C ′

w the chamber
of Σ(C ′, C) satisfying δ−(C ′, C ′

w) = w = δ∗(C,C ′
w). By Corollary 5.141(1),

Cw op C ′
w for all w ∈ W . Assume now that Cw op C ′

v for some w, v ∈ W ,
and consider the set W (C,C ′

v) defined in Lemma 5.143. According to that
lemma, v = δ∗(C,C ′

v) is the unique element of minimal length in W (C,C ′
v).

But w = δ+(C,Cw) is in that set, so we have

w = v or l(w) > l(v) . (5.13)

Similarly, we have v ∈W (C ′, Cw) and w = δ∗(C ′, Cw), so

v = w or l(v) > l(w) . (5.14)

Assertions (5.13) and (5.14) can be consistent with one another only if v = w.
So for each chamber Cw ∈ Σ(C,C ′), C ′

w is the unique chamber of Σ(C ′, C)
that is opposite Cw, and similarly with the roles of C and C ′ interchanged.
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Thus Σ {C,C ′} is indeed a twin apartment. It is then the unique twin apart-
ment containing C and C ′ by Lemma 5.175 and the remarks preceding it. It
is convex by Lemma 5.173(6) and is contained in the convex hull of (C,C ′)
by Lemma 5.175(2), so it is equal to that convex hull.

(2) We may assume that ε = +. Suppose there is an apartment Σ− of C−
such that Σ := (Σ+, Σ−) is a twin apartment. Fix a chamber C ∈ Σ+, and
denote by C ′ the unique chamber in Σ− opposite C. Then Lemma 5.178(1)
(or part (1) of the present proposition) implies that Σ = Σ {C,C ′}. If Σ′ =
(Σ+, Σ′

−) is another twin apartment with first component Σ+, then the unique
chamber of Σ′

− opposite C is the same C ′ by Lemma 5.178(2). Hence Σ′ is
also equal to Σ {C,C ′}.

(3) Let C be in Cε. If D is also in Cε, choose (using (Tw3)) a chamber
C ′ ∈ C−ε with δ∗(C ′,D) = δε(C,D). Then C ′ op C by Corollary 5.141(1), and
C and D are both contained in Σ {C,C ′}. Similarly, if D is in C−ε, choose a
chamber C ′ ∈ C−ε such that δ−ε(C ′,D) = δ∗(C,D). Then C op C ′, and C
and D are contained in Σ {C,C ′}. 	


Proposition 5.179 shows that the twinning of C+ and C− distinguishes
certain apartment systems in these buildings. We introduce some notation for
these systems.

Definition 5.180. We set

A+ := {Σ(C,C ′) | C ∈ C+, C ′ ∈ C−, C op C ′} ,

A− := {Σ(C ′, C) | C ′ ∈ C−, C ∈ C+, C op C ′} .

The elements ofAε are called admissible apartments of Cε (ε = ±) with respect
to the given twinning. We also denote by A the set of all twin apartments
Σ = (Σ+, Σ−). Equivalently,

A = {Σ{C,C ′} | C ∈ C+, C ′ ∈ C−, C op C ′} .

Remark 5.181. The apartment systems A+ and A− are usually far from
being complete. If the buildings C+ and C− are countable, for example, then
A+ and A− are also countable. But a thick, infinite, nonspherical building
typically has uncountably many apartments (think for instance of a tree).
When we treat concrete examples of twin buildings, we will also be able to
describe A+ and A− as orbits of a “small” group; see Sections 6.12 and 8.11.

We close this subsection with a result that will be needed in Section 5.11.
Recall from Corollary 5.30 that a J-residue R in a building is itself a building
of type (WJ , J). In particular, there is an opposition relation on R if the latter
is spherical.

Proposition 5.182. Let Σ = Σ {C,C ′} be a twin apartment, with C ∈ C+,
C ′ ∈ C−, and C op C ′. Let R be a spherical residue of C+ containing C, and
let J ⊆ S be its type.
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(1) There is a unique chamber C1 ∈ R∩Σ+ that is opposite C in the spherical
building R, and

projR C ′ = C1 . (5.15)

(2) For any chamber D ∈ R,

δ∗(D,C ′) = δ+(D,C1)w0(J) . (5.16)

Proof. The first assertion of (1) follows from the fact that R ∩ Σ+ is an
apartment of R. We then have δ∗(C ′, C1) = δ+(C,C1) = w0(J), which is the
longest element of WJ = δ∗(C ′,R). Equation (5.15) now follows from the
definition of the projection. For (2), we use (5.15) and Lemma 5.149 to obtain

δ∗(D,C ′) = δ+(D,C1)δ∗(C1, C
′)

= δ+(D,C1)δ+(C1, C)
= δ+(D,C1)w0(J) . 	


Remarks 5.183. (a) Equation (5.16) looks more natural if we interpret the
right side as a codistance in the spherical building R (see Example 5.136(a)).

(b) The significance of the proposition for us will be that it describes the
restriction of δ∗(−, C ′) to R entirely in terms of R and Σ+.

Exercises

5.184. Prove the following analogue of condition (B2′′) in Section 4.1: If Σ
and Σ′ are twin apartments, then there is a surjective isometry φ : Σ → Σ′

fixing every chamber in Σ∩Σ′. [See Exercise 5.163 for the definition of “isom-
etry” in this context.]

5.185. (a) Given a twin apartment Σ = Σ {C,C ′} of the twin building
(C+, C−), construct a retraction ρ of (C+, C−) onto (Σ+, Σ−) that pre-
serves codistances from C and C ′.

(b) Interpret this retraction in terms of the usual retractions in the spherical
case.

(c) Let α : (C+, C−) → (Σ−, Σ+) be the composite opΣ ◦ρ. Show that
α(E) op E for all chambers E ∈ C+ ∪ C−.

5.186. Let C,D,E be chambers with C,D ∈ C+ and E ∈ C−. If δ∗(C,E) =
δ+(C,D)δ∗(D,E), show that there is a twin apartment containing C,D,E.

5.187. Given opposite chambers C ∈ Cε and C ′ ∈ C−ε, show that

Σ(C,C ′) = {D ∈ Cε | d(C,D) = d∗(C ′,D)} .

5.188. Recall from Lemma 5.143 that for any C ∈ Cε and D ∈ C−ε,

d∗(C,D) = min {d(C,D′) | D′ op D} .

Show that the minimum is achieved precisely when D′ is the chamber opposite
D in a twin apartment containing C and D. This generalizes Exercise 5.138.
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5.189. Recall from Exercise 5.167 that

M(R,D) :=
{
C ∈ R | δ∗(C,D) = min

(
δ∗(R,D)

)}

for any residue R of C+ and any chamber D ∈ C−. Choose a chamber C ∈ R
and a twin apartment Σ = (Σ+, Σ−) containing (C,D). Set C ′ := opΣ(C),
and denote by S the residue in C− of the same type as R that contains C ′.

(a) Recall that (R,S, δ∗|) is a twin building, and prove that M(R,D) =
(projS D)op with respect to opposition in this restricted twin building.

(b) If R is spherical, verify that projR(projS D) = projR D. Explain how
part (a) translates into the statement of Exercise 5.167 in this case.

5.8.5 Twin Roots

Twin roots can be thought of as “half twin apartments,” just as roots are “half
apartments.” We will continue to use the W-metric approach, so that roots
are considered to be certain sets of chambers (see Section 5.5.4). But one basic
fact concerning roots that was discussed in Chapter 3 in the simplicial setup
will be used repeatedly in the following. Namely, if C and D are adjacent
chambers in some apartment Σ, then the unique root α in Σ containing C
but not D is given (as a set of chambers) by

α = α(C,D) := {X ∈ Σ | d(C,X) < d(D,X)} ;

see Lemma 3.45. Here d(−,−), as usual, denotes gallery distance. We also
recall our convention that given a fixed apartment Σ, the root opposite a
root α is denoted by −α.

In the following, C = (C+, C−) will continue to denote a twin building of
type (W,S). Fix a twin apartment Σ = (Σ+, Σ−). Given a pair of roots α =
(α+, α−) in Σ, we set −(α+, α−) := (−α+,−α−). Recall from Definition 5.172
that Σ has an opposition involution opΣ . For a pair of roots (α+, α−) as above,
we set opΣ(α) :=

(
opΣ(α−), opΣ(α+)

)
. The following definition is motivated

by Lemma 5.113.

Definition 5.190. Let α = (α+, α−) be a pair of roots in the twin apart-
ment Σ. We call α a twin root of Σ if opΣ(α) = −α.

Note that the equation opΣ(α) = −α can be written as

opΣ(α−) = −α+ and opΣ(α+) = −α− . (5.17)

These two equations are in fact equivalent to one another, since opΣ is an
involution. Moreover, we could start with one αε and use (5.17) to define α−ε;
the latter will be a root in Σ−ε, since opΣ is an isometry. This leads to the
following concrete description of a typical twin root α. Start with a pair of
adjacent chambers C,D in one Σε, say Σ+, and let α+ be the root containing
C but not D, i.e.,
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α+ = α+(C,D) = {X ∈ Σ+ | d(C,X) < d(D,X)} . (5.18)

Define α− by (5.17), and set C ′ := opΣ(C) and D′ = opΣ(D). Then α−
contains D′ but not C ′, so

α− = α−(D′, C ′) = {Y ∈ Σ− | d(D′, Y ) < d(C ′, Y )} . (5.19)

See Figure 5.2.

D C

α−

α+

D′C ′

Fig. 5.2. A twin root.

Lemma 5.191. Let Σ be a twin apartment.

(1) Let α be a twin root in Σ, described as in (5.18) and (5.19). Let P be the
panel of C+ containing C and D, and let P ′ be the panel of C− containing
C ′ and D′. Then

α+ = {X ∈ Σ+ | projP′ X = D′}

and

α− = {Y ∈ Σ− | projP Y = C} .

(2) Every twin root α in Σ is convex in C.

Remark 5.192. By parts (5) and (6) of Lemma 5.173, Σ is a (thin) twin
building in its own right and is convex in C. So an equivalent formulation
of (2) is that α is convex in Σ.
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Proof of Lemma 5.191. (1) For any chamber X ∈ Σ+, Lemma 5.173(4) im-
plies that δ∗(D′,X) = sδ∗(C ′,X), where s = δ−(C ′,D′) = δ+(C,D). Hence,
by Definition 5.150, D′ = projP′ X if and only if d∗(D′,X) > d∗(C ′,X). By
Lemma 5.173(2), this holds if and only if d(D,X) > d(C,X), i.e., if and only
if X ∈ α+. This proves the first equation in (1), and the second is proved
similarly.

(2) Let Q be any panel in C+ with Q̃ := Q ∩ α+ �= ∅, and let Y be a
chamber in α−. We want to show that projQ Y ∈ α+. This is clear if Q̃ has
two chambers (and hence Q̃ = Q ∩ Σ+) because we already know that Σ

is convex. So assume that Q̃ contains only one chamber C. Denote by D the
chamber different from C in Q∩Σ+, and set C ′ := opΣ(C) and D′ := opΣ(D).
Then α+ and α− are described by (5.18) and (5.19), so we can apply (1) to
conclude that projQ Y = C ∈ α+. One shows similarly that projQ′ X ∈ α−
for any panel Q′ in C− with Q′∩α− �= ∅ and any X ∈ α+. Since α+ is convex
in C+ and α− is convex in C−, this proves that α = (α+, α−) is convex in the
sense of Definition 5.158. 	


We can now use twin roots to prove an analogue of Proposition 3.94,
characterizing convex pairs in the twin apartment Σ.

Proposition 5.193. A pair M = (M+,M−) of nonempty sets in the twin
apartment Σ is convex if and only if it is an intersection of twin roots of Σ.

Proof. In view of Lemma 5.191(2), it suffices to prove the “only if” part. So
assume that M is convex. Recall from the proof of Proposition 3.94 that M+

is the intersection of the roots of the form α+ = α+(C,D), where C and D
are adjacent chambers of Σ+ with C ∈ M+ and D /∈ M+. For each such
pair C,D, let α be the corresponding twin root, with α− defined by (5.17) or,
equivalently, by (5.19). We claim thatM− ⊆ α−, and henceM⊆ α. Indeed, if
P is the panel containing C and D, then projPM− ⊆ P∩M+ = {C} by con-
vexity, so our claim follows from the characterization of α− in Lemma 5.191(1).
In view of the claim, the intersection of the twin roots containing M has M+

as its first component. Similarly, that intersection has M− as its second com-
ponent. 	


As an easy but important special case, we get the following characteriza-
tion of twin roots, which should be compared with Exercise 3.146.

Corollary 5.194. Let Σ be a twin apartment.

(1) If α is a twin root of Σ described as in (5.18) and (5.19), then α is the
convex hull of the pair (C,D′).

(2) The twin roots of Σ are precisely the convex hulls of pairs (C,D′) with
C ∈ Σ+, D′ ∈ Σ−, and d∗(C,D′) = 1 (i.e., δ∗(C,D′) ∈ S).

Proof. Both parts of the corollary will follow if we show that for any pair
(C,D′) as in (2), there is a unique twin root of Σ containing it. Set C ′ :=
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opΣ(C) and D := opΣ D′. Then a twin root α containing (C,D′) cannot
contain D (since then it would contain the convex hull of (D,D′), which is
the whole twin apartment Σ). So necessarily α is the twin root given by (5.18)
and (5.19). 	

Definition 5.195. A twin root of the twin building C is a pair α = (α+, α−)
such that α is a twin root in some twin apartment Σ.

(It then follows easily that α is a twin root in every twin apartment that
contains it; see Exercise 5.199 below.)

Since any pair of chambers is contained in a twin apartment, Corol-
lary 5.194 has the following immediate consequence:

Corollary 5.196. The twin roots of C are precisely the convex hulls of pairs
(C,D′) with C ∈ C+, D′ ∈ C−, and d∗(C,D′) = 1. 	


This corollary is useful, for instance, when one wants to describe all twin
apartments containing a given twin root α.

Definition 5.197. If α is a twin root, we denote by A(α) the set of all twin
apartments containing α.

The following lemma, which generalizes Lemma 4.118, will be applied in
Chapter 8.

Lemma 5.198. Let α = (α+, α−) be a twin root, and for ε ∈ {+,−}, let P
be a panel in Cε that contains precisely one chamber C ∈ αε. Then there is a
bijection P � {C} → A(α) that assigns to each D ∈ P � {C} the convex hull
of {D} ∪ α.

Proof. We may assume that ε = +. Observe first that there is a panel P ′ of C−
that is opposite P and contains precisely one chamber D′ ∈ α−. (Work in a
fixed twin apartment, and use the description of twin roots given in (5.18)
and (5.19).) We have C = projP D′ by Lemma 5.191, and α is the convex hull
of C and D′ by Corollary 5.194. Moreover, δ∗(C,D′) = s, where s is the type
of P and P ′, as one again sees by working in a twin apartment.

Note next that by Corollary 5.153, C is the unique chamber in P that is
not opposite D′. So every chamber D ∈ P�{C} is opposite D′ and hence gives
rise to a twin apartment Σ {D,D′}, which is the convex hull of D and D′.
This convex hull contains C and hence α, so it coincides with the convex
hull of {D} ∪ α. There is therefore a map f : P � {C} → A(α) such that
f(D) = Σ {D,D′} for D ∈ P � {C}, and also f(D) is the convex hull of
{D} ∪ α.

To see that f is bijective, we define a map g : A(α) → P�{C} by g(Σ) :=
opΣ(D′) for Σ ∈ A(α). If D = g(Σ), then δ+(C,D) = δ∗(C,D′) = s by
Lemma 5.173(2), so D is indeed in P � {C}. Since Σ = Σ {D,D′}, we have
f(g(Σ)) = Σ. And if we start with any D ∈ P�{C} and set Σ := Σ {D,D′},
then D = opΣ(D′), so g(f(D)) = D. Thus f and g are mutually inverse
bijections. 	
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Exercises

5.199. Let α be a twin root of C, and let Σ be any twin apartment contain-
ing α. Show that α is a twin root of Σ.

5.200. Let α and β be twin roots with α ⊆ β. Show that α = β.

5.201. Let α be a twin root of a twin apartment Σ. Show that α is a maximal
(proper) convex subpair of Σ.

5.202. Let α be a twin root, and let Σ and Σ′ be two distinct twin apartments
containing α. Show that Σ ∩Σ′ = α.

5.203. Let Σ = Σ {C,C ′} be a twin apartment, where C op C ′ with C ∈ C+
and C ′ ∈ C−. Let D be a chamber of C+ that is adjacent to C but not in Σ+.

(a) Show that D op C ′, so that there is a twin apartment Σ′ = Σ {D,C ′}.
(b) Show that Σ ∩Σ′ is a twin root.

5.9 A Rigidity Theorem

In this section and the next we discuss two fundamental theorems of Tits [247].
Taken together, they say, roughly speaking, that a thick spherical building is
completely determined by a very small portion of it. The precise statements
involve a family of “neighborhoods” of a given chamber C.

Definition 5.204. Let (C, δ) be a building of type (W,S). Given a chamber C
and a natural number k, we define

Ek(C) :=
⋃

J⊆S
|J|≤k

RJ(C) .

Thus D is in Ek(C) if and only if there is a residue of rank ≤ k containing
both C and D. From the simplicial point of view, residues of rank r correspond
to simplices of codimension r. So if C = C(∆) for a simplicial building ∆, then
there is a residue of rank r containing two given chambers if and only if they
have a common face of codimension r. Hence

Ek(C) = {D ∈ C | codim(C ∩D) ≤ k} .

Note that the sets Ek(C) increase with k:

E0(C) ⊆ E1(C) ⊆ E2(C) ⊆ · · · . (5.20)

Note also that E0(C) = {C} and that E1(C) consists of C together with all
chambers adjacent to C. Figure 5.3 shows the intersection of E2(C) with an
apartment in a rank-3 example; it consists of all chambers that have at least
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C

Fig. 5.3. E2(C) in an apartment.

one vertex in common with C. In general, if |S| = n < ∞, then the sequence
in (5.20) stabilizes with En(C) = C.

By an automorphism of (C, δ) we mean a surjective almost isometry of C
onto C. If C = C(∆), this is the same thing as a simplicial automorphism of ∆.

Theorem 5.205. Let (C, δ) be a thick spherical building, and let C,C ′ be op-
posite chambers in C. If an automorphism φ of C fixes E1(C)∪{C ′} pointwise,
then φ is the identity.

Proof. Note first that φ is actually an isometry, since it fixes every chamber
adjacent to C. (From the simplicial point of view, φ is type-preserving.) The
proof now consists of two steps. The first step is to remove the apparent
asymmetry in the hypothesis.

(a) φ fixes every chamber in E1(C ′).

Let D′ be a chamber adjacent to C ′, and let P ′ be the panel containing
C ′ and D′. Let P be the panel containing C and having type opposite to
that of P ′. By Lemma 5.107 the panels P and P ′ are opposite. We therefore
have a bijection between P and P ′ given by nonopposition (Corollary 5.117).
Since φ(C ′) = C ′ and φ is a surjective isometry, we have φ(P ′) = P ′. Now
φ is compatible with the nonopposition bijection and fixes P pointwise, so it
follows at once that φ fixes P ′ pointwise. In particular, φ(D′) = D′.

(b) For every chamber D′ adjacent to C ′, there is a chamber D ∈ E1(C) such
that D op D′ and φ fixes E1(D) ∪ {D′} pointwise.
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As in (a), let P ′ be the panel containing C ′ and D′, and let P be the
panel opposite P ′ containing C. Then P contains a unique chamber not op-
posite C ′ and a unique chamber not opposite D′. By thickness, we can choose
D ∈ P different from these two chambers, so that D is opposite both C ′

and D′. By (a), φ fixes E1(C ′) and hence also E1(C ′) ∪ {D} pointwise, the
latter because D is in E1(C). Applying (a) once more, with the pair (C,C ′)
replaced by (C ′,D), we conclude that φ fixes E1(D) pointwise. And we also
have φ(D′) = D′, since D′ ∈ E1(C ′).

An easy induction using (b) now shows that for any chamber D′ ∈ C there
exists a chamber D opposite D′ such that φ fixes E1(D) ∪ {D′} pointwise.
Hence φ = id. 	


By Theorem 5.122, there exists precisely one apartment of C that contains
two given opposite chambers C and C ′, and each chamber C of an apartment
A is opposite precisely one chamber of A. Now an isometry of C fixes an
apartment pointwise if and only it stabilizes this apartment and fixes one of
its chambers. This leads to the following restatement of Theorem 5.205, which
is the rigidity theorem as stated by Tits [247, Theorem 4.1.1]:

Corollary 5.206. Let (C, δ) be a thick spherical building, let A be an apart-
ment of C, and let C be a chamber of A. If an automorphism φ of (C, δ) fixes
E1(C) ∪ A pointwise, then φ = id. 	


We will see many applications of the rigidity theorem in Chapter 7. The
following corollary of the proof of the rigidity theorem will also be useful in
that chapter:

Corollary 5.207. Let (C, δ) be a thick spherical building, and let C,C ′ be
opposite chambers in C. Then C is the convex hull of E1(C) ∪ {C ′}.

Proof. Let D be the convex hull of E1(C) ∪ {C ′}.
(a) D contains E1(C ′).

This follows from step (a) of the proof of Theorem 5.205. [Recall that the
nonopposition bijection from P to P ′ in that proof is given by projection
onto P ′.]

(b) For every chamber D′ adjacent to C ′ (and hence in D by (a)), there is a
chamber D ∈ E1(C) such that D op D′ and D contains E1(D).

Choose D as in step (b) of the proof of Theorem 5.205. By (a), D contains
E1(C ′) and hence E1(C ′) ∪ {D}, so another application of (a) shows that D
contains E1(D).

An easy induction using (b) now gives us D = C. 	
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Remark 5.208. Readers familiar with twin buildings (Section 5.8) will note
that the rigidity theorem and its proof remain valid, essentially verbatim, for
automorphisms of thick twin buildings. The key result that is needed is the
nonopposition bijection between opposite panels, which for twin buildings is
given by Corollary 5.153. Similarly, Corollary 5.207 remains valid for thick
twin buildings.

5.10 An Extension Theorem

The rigidity theorem implies that an isomorphism between thick spherical
buildings is uniquely determined by what it does on a small part of the domain.
There is also an existence theorem, which says that an isomorphism can be
arbitrarily prescribed in the neighborhood of a given chamber, provided the
buildings are irreducible and of rank at least 3. Here, as in the previous section,
an isomorphism is a surjective almost isometry (or, equivalently, a simplicial
isomorphism).

Theorem 5.209. Let (C, δ) and (C′, δ′) be thick, irreducible, spherical build-
ings of rank at least 3. Let φ : E2(C) → E2(C ′) be an adjacency-preserving
bijection for some C ∈ C and C ′ ∈ C′. Then φ extends to an isomorphism
C → C′.

This is Theorem 4.1.2 of Tits [247]. The original proof was long and tech-
nical, but there is a simplified proof (with a slightly different hypothesis on φ)
in Weiss [281, Chapter 10], based on ideas of Ronan. This proof makes sys-
tematic use of the W-metric point of view, which was not available when Tits
wrote [247]. We will not give a proof here, but we remark only that it consists of
the following two steps. First, one extends φ to a map E2(C)∪A → E2(C ′)∪A′

that maps A isomorphically onto A′, where A is an apartment of C contain-
ing C and A′ is an apartment of C′ containing C ′. Second, one shows that any
such map extends to an isomorphism C → C′. This second step is of interest
in its own right, and we state it explicitly for future reference.

Theorem 5.210. Let (C, δ) and (C′, δ′) be thick, irreducible, spherical build-
ings of rank at least 3, and let A (resp. A′) be an apartment of C (resp. C′).
Let φ : E2(C) → E2(C ′) be an adjacency-preserving bijection for some C ∈ A
and C ′ ∈ A′, and let ψ : A → A′ be an isomorphism that coincides with φ on
A ∩ E2(C). Then there is an isomorphism C ∼−→ C′ extending φ and ψ.

For the proof, see Tits [247, Proposition 4.16] or Weiss [281, Theorem 10.1].
The following special case will be needed in Chapter 7. We state it in simplicial
language, since that is the context in which it will arise.

Corollary 5.211. Let ∆ be a thick, irreducible, spherical building of rank
at least 3. Let α be a root of ∆, and let Σ and Σ′ be apartments contain-
ing α. Then there is an automorphism of ∆ that fixes α pointwise and maps
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Σ onto Σ′. Moreover, the automorphism can be chosen to fix E2(C) pointwise,
where C is a chamber in α that is disjoint from ∂α.

Proof. By axiom (B2′′) for buildings, there is an isomorphism ψ : Σ → Σ′

that fixes α pointwise. Now apply Proposition 3.125 to get a chamber C ∈ α
that is disjoint from ∂α, and let φ : E2(C) → E2(C) be the identity map. It
remains to verify that φ and ψ agree on E2(C)∩Σ. To this end we need only
note that (since rank ∆ ≥ 3) every chamber in E2(C) has a vertex in common
with C. This implies that E2(C) ∩ Σ = E2(C) ∩ α and hence that ψ is the
identity on E2(C) ∩Σ. 	


*5.11 An Extension Theorem for Twin Buildings

We mentioned in Remark 5.208 that the rigidity theorem for spherical build-
ings generalizes to twin buildings. The situation for the extension theorem is
more complicated, but there does exist an extension theorem for a class of
twin buildings, due to work of Mühlherr–Ronan [177] that is based on earlier
results of Tits [261]. The statement involves two supplementary hypotheses.
The first is 2-sphericity, already mentioned briefly in Remark 5.151(b). [An
equivalent formulation is that every entry m(s, t) of the Coxeter matrix is
finite.] The second is the following connectivity condition:

(co) For every chamber C ∈ Cε (ε = ±), the set Cop of chambers opposite C
is a gallery-connected subset of C−ε.

Remark 5.212. “Almost all” thick, irreducible, 2-spherical twin buildings C
of rank at least 3 satisfy (co). More precisely:

(a) C satisfies (co) if all of its rank-2 residues, viewed as spherical buildings,
satisfy (co); see Mühlherr and Ronan [177, Theorem 1.5].

(b) The rank-2 residues of C necessarily have the Moufang property (which
will be defined in Chapter 7); see Tits [261, Section 5.6] and Ronan [203,
Section 8].

(c) There are only four Moufang spherical buildings of rank 2 that do not sat-
isfy (co), namely, the buildings associated to the finite Chevalley groups
Sp4(F2), G2(F2), G2(F3), and 2F4(F2). (The latter is a “twisted” Cheval-
ley group; see Section 9.6.) This is due to Abramenko. A proof is sketched
in [9, Section II.2], and a detailed proof can be found in [14].

Combining (a)–(c), we see that a thick, irreducible, 2-spherical twin building
of rank at least 3 satisfies (co) unless it has a rank-2 residue isomorphic to
one of the four buildings listed in (c).

We now quote the extension theorem from [177].
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Theorem 5.213. Let C = (C+, C−) and C′ = (C′+, C′−) be thick 2-spherical
twin buildings of the same type. Assume that C and C′ satisfy condition (co).
Given two pairs of opposite chambers (C+, C−) ∈ C+ × C− and (C ′

+, C ′
−) ∈

C′+ × C′− and a surjective isometry φ : E2(C+) ∪ {C−} → E2(C ′
+) ∪

{
C ′

−
}
,

there is a unique extension of φ to an isomorphism C ∼−→ C′ of twin buildings.

(The hypothesis on φ means that it preserves Weyl distances and codistances.)

Remark 5.214. The extension theorem is not valid for arbitrary thick twin
buildings; there are counterexamples involving twin trees [18, 102, 206]. This
explains the 2-sphericity assumption. Moreover, it is not expected that 2-
sphericity alone is sufficient. Work in progress by Abramenko and Mühlherr
suggests that the theorem can fail in some cases in which C is 2-spherical but
does not satisfy (co).

As in the spherical case, we will be interested in the following consequence
of the extension theorem:

Corollary 5.215. Let C be a thick, irreducible, 2-spherical twin building of
rank at least 3 satisfying (co). Let α be a twin root of C, and let Σ and Σ′ be
twin apartments containing α. Then there is an automorphism of C that fixes
α pointwise and maps Σ onto Σ′. This automorphism can be chosen to fix
E2(C+) pointwise, where C+ is a chamber in α+ that is disjoint from ∂α+.

(“Disjoint” in the last sentence should be interpreted from the simplicial point
of view.)

Proof. As in the proof of Corollary 5.211, we can find a chamber C+ ∈ α+

that is disjoint from ∂α+, and we then have E2(C+) ∩Σ+ = E2(C+) ∩ α+ =
E2(C+)∩Σ′

+. Let C− and C ′
− be the chambers opposite C+ in Σ and Σ′, re-

spectively, and define φ : E2(C+) ∪ {C−} → E2(C+) ∪
{
C ′

−
}

by φ(C−) = C ′
−

and φ|E2(C+) = id. Then φ is an isometry by Proposition 5.182, so we can
apply Theorem 5.213 to extend φ to an automorphism ψ of C. By construc-
tion, ψ maps Σ onto Σ′. We must show that it fixes α pointwise. Since ψ
fixes C+, it also fixes (by the standard uniqueness argument) the intersec-
tion Σ+ ∩Σ′

+, and hence α+, pointwise. Now let D− be any chamber in α−,
and note that δ∗(C+,D−) = δ∗(C+, ψ(D−)). This implies that ψ(D−) = D−,
since Σ′

− contains only one chamber at any given codistance from C+ (see
Lemma 5.173(3)). 	


*5.12 Covering Maps

This optional section gives an introduction to the notion of “covering map.”
This is important for some aspects of the theory of buildings, but it will play
a minimal role in the present book. We will refer to it only in Section 8.7.
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It will be convenient to view buildings of type (W,S) as chamber systems
over S as in Section 5.2. Here (W,S) is an arbitrary Coxeter system. We
will also need to deal with chamber systems

(
C, (∼s)s∈S

)
over S that are not

known, a priori, to be buildings. But we will always think of S as a set of
generators of W , and this will play a role in some of our definitions. We begin
by extending the concept of “residue” to general chamber systems.

Definition 5.216. Given J ⊆ S, we say that two chambers C,D ∈ C are
J-equivalent if there is a gallery of type (s1, . . . , sn) connecting C and D with
si ∈ J for all 1 ≤ i ≤ n. The equivalence classes are called J-residues, or
residues of type J , and the J-residue containing a given chamber C is denoted
by RJ(C). A subset R ⊆ C is called a residue if it is a J-residue for some
J ⊆ S.

In the present generality of arbitrary chamber systems, it is not true that a
residue has a well-defined type J , or even a well-defined rank |J |. Nevertheless,
we will allow ourselves to say “R is a residue of rank m” as shorthand for
“R = RJ(C) for some C ∈ C and some J ⊆ S such that |J | = m.” We will
also say that a residue R is spherical if it is a J-residue for some spherical
subset J ⊆ S, where J is said to be spherical if WJ is finite. [Note that this
notion makes sense only because we have a fixed Coxeter system in mind.]
For example, panels are spherical residues of rank 1. The chamber system C is
called connected if C = RS(C) for some (and hence any) C ∈ C. Finally, note
that a residue RJ(C) can be viewed as a chamber system in its own right,
over the set J .

Definition 5.217. A morphism between two chamber systems C′ and C
over S is a map κ : C′ → C such that

C ′ ∼s D′ =⇒ κ(C ′) ∼s κ(D′)

for any C ′,D′ ∈ C′ and s ∈ S. A morphism κ is called an isomorphism if it is
bijective and the inverse κ−1 is also a morphism; in other words,

κ(C ′) ∼s κ(D′) =⇒ C ′ ∼s D′ (5.21)

for any C ′,D′ ∈ C′ and s ∈ S.

The implication (5.21) says that the bijection κ maps every s-panel in C′
onto an s-panel in C. This leads naturally to our next definition.

Definition 5.218. Given two chamber systems C′ and C over S and a natural
number m, we call a morphism κ : C′ → C an m-covering if for every spher-
ical subset J ⊆ S of cardinality |J | ≤ m, every J-residue of C′ is mapped
bijectively onto a J-residue of C.

More briefly, the definition says that κ maps every spherical residue of
rank at most m bijectively onto a (spherical) residue of the same rank. But
we have spelled this out carefully in order to avoid ambiguity.
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Remarks 5.219. (a) Note that any m-covering maps s-panels of C′ bijec-
tively onto s-panels of C, since the natural number m, by convention, is at
least 1. It follows that the bijections between J-residues in the definition are
actually isomorphisms of chamber systems over J .

(b) Some of the literature uses a more restrictive notion of m-covering, in
which J is allowed to be an arbitrary subset of S with |J | ≤ m. We have
chosen the definition that will be useful for us in what follows. Note that
it makes use of our standing assumption that S is the set of distinguished
generators of a Coxeter group W .

The first observation about covering maps is that they have a “path-lifting”
property that should look familiar to anyone who has studied covering maps
in topology:

Lemma 5.220. Let κ : C′ → C be a morphism of chamber systems over S
such that for all s ∈ S, κ maps every s-panel of C′ onto an s-panel of C. Let
C ′ be a chamber in C′, let s be an S-word, and let Γ be a gallery in C of type s
starting at κ(C ′). Then there is a gallery Γ ′ in C′ of type s starting at C ′ such
that κ(Γ ′) = Γ . Consequently, κ maps every J-residue of C′ onto a J-residue
of C for all J ⊆ S.

Proof. This is immediate from the definitions. 	


Lemma 5.221. Let κ : C′ → C be a 1-covering, where C′ is a chamber system
over S and C is a building of type (W,S). Assume that any two chambers
C ′,D′ ∈ C′ can be connected by a gallery of reduced type. Then C′ is a building
of type (W,S) and κ is an isomorphism.

Proof. (a) κ is surjective.

Choose an arbitrary C ′ ∈ C′. Then κ maps RS(C ′) onto RS(κ(C ′)) by
the last assertion of Lemma 5.220. Since C, being a building, is connected,
RS(κ(C ′)) = C.
(b) κ is an isomorphism.

Let C ′ and D′ be distinct chambers in C′. We have to show that κ(C ′) �=
κ(D′) and that

κ(C ′) ∼s κ(D′) =⇒ C ′ ∼s D′

for any C ′,D′ ∈ C′ and s ∈ S. By assumption, there exists a gallery Γ ′

of reduced type s = (s1, . . . , sn) in C′ connecting C ′ and D′. Since κ sends
s-panels in C′ bijectively onto s-panels in C, κ(Γ ′) is a gallery in C of the
same reduced type s; hence δ(κ(C ′), κ(D′)) = s1 · · · sn by condition (G) in
Section 5.2. In particular, δ(κ(C ′), κ(D′)) �= 1, so κ(C ′) �= κ(D′). If we now
assume that κ(C ′) ∼s κ(D′) for some s ∈ S, then δ(κ(C ′), κ(D′)) = s and s
is a reduced decomposition of s. Hence n = 1 and s = (s), so C ′ ∼s D′.
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(c)
(
C′, (∼s)s∈S

)
is a building of type (W,S).

Since we are working in the context of buildings as chamber systems, what
we mean here is that there exists a function δ′ : C′ × C′ → W such that the
conditions of Proposition 5.23 are satisfied. This follows at once from (b) if
we set δ′(C ′,D′) := δ(κ(C ′), κ(D′)) for C ′,D′ ∈ C′. 	


Remark 5.222. Suppose the building C in Lemma 5.221 is spherical and of
rank 2. Viewing it as a graph with colored edges, we can form its universal
cover κ : C′ → C, which is a 1-covering (see Exercise 5.224 below) but not an
isomorphism. This shows that the assumption we made in Lemma 5.221 is
not vacuous. However, it is a characteristic feature of buildings that we only
have to check spherical rank-2 residues in order to make sure that a covering
is an isomorphism:

Proposition 5.223. Let κ : C′ → C be a 2-covering, where C′ is a connected
chamber system over S and C is a building of type (W,S). Then C′ is a building
of type (W,S), and κ is an isomorphism.

Proof. We will verify the assumption of Lemma 5.221. Since C′ is connected,
it suffices to show that any minimal gallery in C′ has reduced type. For this
we first observe the following:

(∗) Let Γ ′ be a gallery of type s in C′ connecting C ′ and D′, and let t be an
S-word homotopic to s. Then there exists a gallery of type t in C′ from C ′

to D′.

It suffices to prove this when there is an elementary homotopy between s
and t. But then we only have to change a part of the gallery Γ ′ in some
spherical rank-2 residue of C′, and this is possible because C is a building and
κ is a 2-covering.

Now if the type s of Γ ′ is not reduced, then by Tits’s solution of the word
problem for Coxeter groups (Section 2.3.3), there is an S-word t homotopic
to s that contains a subword of the form (s, s) for some s ∈ S. By (∗), there
exists a gallery Γ ′′ of type t with the same extremities as Γ ′. But then Γ ′′

contains three consecutive chambers that are s-equivalent to one another, so
Γ ′′ is not minimal and hence Γ ′ is not minimal. 	


Exercise 5.224. In this exercise, continuing Exercise 5.25, we interpret some
of the concepts of the present section in terms of graphs with colored edges.

(a) Show that a morphism κ of chamber systems is the same thing as a
color-preserving graph homomorphism. [Here graph homomorphisms are
allowed to be degenerate, i.e., an edge might be collapsed to a vertex.]

(b) Show that κ is an isomorphism in the sense of Definition 5.217 if and
only if it is an isomorphism of graphs.

(c) Show that κ is a 1-covering if and only if it is a covering map of graphs
in the usual topological sense.
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Buildings and Groups

In this chapter we will develop the group theory that goes along with the
theory of buildings, in much the same way that the theory of Coxeter groups
goes along with the theory of Coxeter complexes. In particular, we will discover
a class of groups G for which we can construct an associated building ∆ on
which G acts as a group of automorphisms.

We begin by assuming that we have a group G that acts in a nice way
on a building ∆. This imposes some conditions on G, and we will then take
those conditions as axioms for the class of groups we are seeking. Recall from
Section 2.5 our convention that the generating set S of a Coxeter group is
always assumed finite. It will be obvious to the reader that this assumption
is largely unnecessary in the present chapter, especially if one adopts the
W-metric point of view (Chapter 5), but it simplifies some terminology.

6.1 Group Actions on Buildings

Assume throughout this section that ∆ is a simplicial building of type (W,S)
with a type-preserving action of a group G. We will certainly want to as-
sume that the action is chamber transitive, i.e., that it is transitive on the
set of chambers C := C(∆). But in contrast to the situation with Coxeter
groups and Coxeter complexes, chamber transitivity is not strong enough to
lead to a useful theory. In this section we will discuss two ways of strength-
ening this condition. The first, called strong transitivity, will be introduced
in Section 6.1.1. It arises naturally when one thinks of buildings in terms of
apartment systems, as in Chapter 4. After making some easy observations, we
will introduce the second strengthening of chamber transitivity, called Weyl
transitivity, in Section 6.1.3. It is the more natural condition if one approaches
buildings from the W-metric point of view of Chapter 5.
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6.1.1 Strong Transitivity

Suppose A is a system of apartments that is G-invariant. Thus if Σ is an
apartment in A, then so is its image gΣ. This is automatic, of course, if A is
the complete system of apartments, but we want to allow A to be arbitrary.

Definition 6.1. We say that the G-action is strongly transitive (with respect
toA) if G acts transitively on the set of pairs (Σ,C) consisting of an apartment
Σ ∈ A and a chamber C ∈ Σ.

This is equivalent to saying that the action is chamber transitive and that
the stabilizer of a given chamber C is transitive on the set of apartments in A
containing C. Alternatively, it is equivalent to saying that G is transitive on A
and that the stabilizer of a given apartment Σ ∈ A is transitive on C(Σ).

Assume that the G-action is strongly transitive, and choose an arbitrary
pair (Σ,C) as in the definition. We will often refer to C as the fundamental
chamber and to Σ as the fundamental apartment. Whenever it is convenient,
we will identify Σ with Σ(W,S) via the unique type-preserving isomorphism
Σ ∼−→ Σ(W,S) taking C to the fundamental chamber of Σ(W,S). In particu-
lar, we can view W as the group of type-preserving automorphisms of Σ and
S as the set of reflections with respect to the panels of C.

We now introduce three subgroups of G:

B := {g ∈ G | gC = C} ,

N := {g ∈ G | gΣ = Σ} ,

T := {g ∈ G | g fixes Σ pointwise} .

Note that T is a normal subgroup of N , being the kernel of the homomorphism
f : N → W induced by the action of N on Σ. Note also that f is surjective,
so that W ∼= N/T . For if we are given w ∈ W , then we can find n ∈ N such
that nC = wC; since n and w are both type-preserving, they agree pointwise
on C; hence f(n) = w by the standard uniqueness argument. In what follows
we will identify W with N/T . Note, finally, that T = B∩N ; for if n ∈ B∩N ,
then n fixes C pointwise and hence acts trivially on Σ. Figure 6.1 summarizes
the notation.

G

B N W = 〈S〉

T

Fig. 6.1. BN data.
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Remark 6.2. Everything we are going to do in what follows would go through
with no essential change if we replaced N by a subgroup N ′ ≤ N such that
N ′ acts transitively on C(Σ) or, equivalently, such that N ′ surjects onto W .
We would then have to replace T by T ′ := N ′ ∩ T .

We will see that strong transitivity has many consequences for the struc-
ture of G, especially if we assume further that ∆ is thick. For the moment,
we confine ourselves to one simple observation:

Proposition 6.3. Suppose a group G acts strongly transitively on a building
∆ with respect to a system of apartments A. Then, with the notation above,

G = BNB .

In particular, G is generated by B and N .

This is a special case of a more precise result, involving a set of apartments
A that is not necessarily a system of apartments. Suppose A is a nonempty
G-invariant subset of the complete apartment system. We say that the action
of G is strongly transitive on A if G acts transitively on the set of pairs (Σ,C)
with Σ ∈ A and C a chamber in Σ. If A is in fact a system of apartments, this
reduces to strong transitivity as defined in Definition 6.1. In the more general
setting, we can still choose a fundamental pair (Σ,C) and define subgroups
B,N, T as above.

Lemma 6.4. Suppose a group G acts strongly transitively on a set A of apart-
ments in a building ∆. Then, with the notation above, the following conditions
are equivalent:

(i) The subcomplex ∆′ :=
⋃

Σ′∈A is a subbuilding of ∆ with A as a system
of apartments.

(ii) G = BNB.

(Note that the content of Proposition 6.3 is the implication (i) =⇒ (ii) in
the special case ∆′ = ∆.)

Proof. (i) holds if and only if any two chambers of ∆′ are contained in an
apartment in A. We may assume that one of the two chambers is the funda-
mental chamber C, and the other chamber is then gC for some g ∈ G. So a
restatement of (i) is that for any g ∈ G, there is an apartment in A containing
C and gC. By strong transitivity, B acts transitively on the apartments in A
containing C. Thus these apartments are the transforms bΣ (b ∈ B), and we
obtain the following formulation of (i): For any g ∈ G, there is an element
b ∈ B such that gC ∈ bΣ. Now gC is in bΣ if and only if gC = bnC for some
n ∈ N . So a final reformulation of (i) is that for any g ∈ G there are elements
b ∈ B and n ∈ N such that gC = bnC. This is clearly equivalent to (ii). 	


We record, for future reference, the following corollary of the proof (in the
case ∆′ = ∆):



298 6 Buildings and Groups

Corollary 6.5. Suppose G acts strongly transitively on ∆ with respect to an
apartment system A. If Σ is any apartment in A and B is the stabilizer of a
chamber in Σ, then

∆ =
⋃

b∈B

bΣ . 	


We close this subsection by recording a consequence of strong transitivity
that will be useful in Chapter 7.

Proposition 6.6. Suppose a group G acts strongly transitively on a building
∆ with respect to an apartment system A.

(1) Given two apartments Σ,Σ′ ∈ A and a type-preserving isomorphism
φ : Σ → Σ′, there is an element g ∈ G such that gA = φ(A) for all
simplices A ∈ Σ.

(2) Given two apartments Σ,Σ′ ∈ A, there is an element g ∈ G such that
gΣ = Σ′ and g fixes Σ ∩Σ′ pointwise.

Proof. (1) Choose an arbitrary chamber C ∈ Σ. By strong transitivity, there
is an element g ∈ G such that gΣ = Σ′ and gC = φ(C). Then g agrees with
φ on Σ by the standard uniqueness argument.

(2) This follows from (1) and Proposition 4.101. 	


Statement (2) has the following immediate consequence:

Corollary 6.7. Suppose a group G acts strongly transitively on a building ∆
with respect to an apartment system A. Let K be an arbitrary set of simplices
in ∆, and let FixG(K) be the pointwise fixer of K, i.e.,

FixG(K) := {g ∈ G | gA = A for all A ∈ K} .

Then FixG(K) acts transitively on the set of apartments in A containing K.
	


6.1.2 Example

Let P be the projective plane over a field k, as defined in Section 4.2, and
let ∆ be its flag complex. It is a rank-2 building, with one vertex for every
proper nonzero subspace of k3 and one edge for each pair consisting of a
1-dimensional subspace contained in a 2-dimensional subspace. The unique
apartment system for ∆ has an apartment for every triple {L1, L2, L3} of
1-dimensional subspaces such that k3 = L1 ⊕ L2 ⊕ L3. Given any subset
X ⊆ k3, we denote by [X] the subspace spanned by X. Then a triple as
above has the form {[e1], [e2], [e3]} for some basis e1, e2, e3 of k3, and the
corresponding apartment is the subcomplex of ∆ shown in Figure 6.2. As
fundamental apartment Σ we take the apartment associated to the standard
basis of k3. And as fundamental chamber C we take the edge joining [e1]
to [e1, e2].
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[e1]

C

[e1, e2] [e1, e3]

[e2] [e3]

[e2, e3]

Fig. 6.2. An apartment Σ.

Let G be the group GL3(k) of linear automorphisms of k3. Then any g ∈ G
takes subspaces to subspaces and induces a type-preserving automorphism
of ∆. It is easy to check that this action of G is strongly transitive (with
respect to the unique apartment system). Let’s compute B, N , T , W , and S.

The stabilizer B of C consists of all automorphisms of k3 that leave the
subspaces [e1] and [e1, e2] invariant; hence B is the upper-triangular group

⎛

⎝
∗ ∗ ∗
0 ∗ ∗
0 0 ∗

⎞

⎠ .

The stabilizer N of Σ consists of all automorphisms that permute the three
subspaces [e1], [e2], [e3]. Hence N is the monomial group, consisting of all
matrices with exactly one nonzero element in every row and every column.
Given n ∈ N , the action of n on Σ is determined by the permutation of
{[e1], [e2], [e3]} induced by n; so T consists of the diagonal matrices (which
induce the trivial permutation), and W = N/T can be identified with the
symmetric group on 3 letters, or, equivalently with the group of 3× 3 permu-
tation matrices. [Thus we have a splitting N = T � W .] Finally, it is easy to
check that the set S of fundamental reflections consists of the permutations
represented by ⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠ and

⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ .

As a mnemonic aid, we remark that B is what is called a Borel subgroup of G
in the theory of algebraic groups, T is a maximal torus, N is the normalizer
of T , and W is the Weyl group.

Remarks 6.8. (a) Instead of taking G = GL3(k) above, we could equally well
have taken G to be the subgroup SL3(k) consisting of matrices of determi-
nant 1. The groups B, N , and T would then be the intersections with SL3(k)
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of the groups B, N , and T above. The quotient W = N/T would still be the
symmetric group on 3 letters (as it has to be, since W = Aut0 Σ, independent
of G). The set S ⊂W consists of the same two permutations as above, which
can be represented by the monomial matrices

⎛

⎝
0 −1 0
1 0 0
0 0 1

⎞

⎠ and

⎛

⎝
1 0 0
0 0 −1
0 1 0

⎞

⎠

of determinant 1.

(b) Still another variation on this example is obtained by replacing GL3(k)
by its quotient PGL3(k) := GL3(k)/Z, where Z < GL3(k) is the central
subgroup consisting of scalar multiples of the identity matrix. The subgroup Z
acts trivially on ∆, so we obtain an action of PGL3(k) on ∆; and clearly this
action is still strongly transitive. Similarly, PSL3(k) := SL3(k)/(SL3(k) ∩ Z)
acts strongly transitively on ∆.

(c) As we indicated in Remark 6.2, we do not have to take N to be the full
stabilizer of Σ; any subgroup of the monomial group that surjects onto the
symmetric group would work just as well. For example, we could use the group
of permutation matrices. Or, in the case of SL3(k), we could use the monomial
matrices of determinant 1 whose nonzero entries are ±1.

(d) In view of Section 4.3, everything we have done generalizes from GL3

to GLn (or SLn, or PGLn, or PSLn).

Exercise 6.9. With G as in this section, prove the equation G = BNB of
Proposition 6.3 by direct matrix calculations (row and column operations).

6.1.3 Weyl Transitivity

We return now to an arbitrary building ∆ of type (W,S) with a type-
preserving G-action. Let (C, δ) be the corresponding W-metric building. Thus
C := C(∆) is the set of chambers, δ is the Weyl distance function (Section 4.8),
and G acts on C as a group of isometries:

δ(gC, gD) = δ(C,D)

for all chambers C,D ∈ C and all g ∈ G.

Definition 6.10. We say that the action of G on ∆ is Weyl transitive if for
each w ∈ W , the action is transitive on the set of ordered pairs (C,D) of
chambers with δ(C,D) = w.

This is equivalent to saying that the action is chamber transitive and that
the stabilizer of a given chamber C is transitive on the “w-sphere”

{D ∈ C | δ(C,D) = w}
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for every w ∈ W . Weyl transitivity is analogous to a condition called “two-
point transitivity” or “distance-transitivity” in the setting of group actions
on ordinary metric spaces.

There is a convenient characterization of Weyl transitivity that does not
explicitly refer to Weyl distance:

Proposition 6.11. Assume that the action of G is chamber transitive. Let C
be an arbitrary chamber, and let Σ an arbitrary apartment (in the complete
apartment system) containing C. Let B be the stabilizer of C in G. Then the
action of G on ∆ is Weyl transitive if and only if

∆ =
⋃

b∈B

bΣ . (6.1)

Proof. As we noted above, Weyl transitivity holds if and only if the action
of B is transitive on the w-sphere centered at C for each w ∈ W . Given w,
there is a unique chamber Cw ∈ C(Σ) with δ(C,Cw) = w. (If we identify Σ
with Σ(W,S) in such a way that C corresponds to the fundamental chamber,
then Cw is simply wC. Or, if we identify C(Σ) with the standard thin build-
ing W in such a way that C corresponds to 1 ∈ W , then Cw is simply w.) So
Weyl transitivity says that the B-orbit of Cw is the entire w-sphere for each
w ∈W , and this is precisely equation (6.1). 	


Combining the proposition with Corollary 6.5, we see that, as the name
suggests, strong transitivity is indeed stronger than Weyl transitivity:

Corollary 6.12. Strong transitivity (with respect to some apartment system)
implies Weyl transitivity. 	


If one wants to try to show, conversely, that a given Weyl-transitive action
is strongly transitive, one needs a way to use Weyl transitivity to construct
an apartment system. This is easy:

Lemma 6.13. Suppose the action of G on ∆ is Weyl transitive, and let Σ be
an arbitrary apartment (in the complete system of apartments). Then the set
GΣ := {gΣ | g ∈ G} is a system of apartments.

Proof. Since GΣ is given to us as a subset of the complete system of apart-
ments, it suffices to show that any two chambers C,D are contained in some
apartment in GΣ. By chamber transitivity we may assume that C ∈ C(Σ).
Then equation (6.1) gives us an apartment bΣ ∈ GΣ that contains C and D.

	


We can now clarify the relationship between our two notions of transitivity:

Proposition 6.14. The following conditions are equivalent:

(i) The G-action on ∆ is strongly transitive with respect to some apartment
system.
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(ii) The G-action on ∆ is Weyl transitive, and there is an apartment Σ (in
the complete system of apartments) such that the stabilizer of Σ acts
transitively on C(Σ).

Proof. The implication (i) =⇒ (ii) is immediate from the definitions and
Corollary 6.12. Conversely, if (ii) holds, then the action is strongly transitive
with respect to GΣ, which is an apartment system by Lemma 6.13. 	


We will see examples in Sections 6.10 and 6.11 of actions that are Weyl
transitive but are not strongly transitive with respect to any apartment sys-
tem. In the spherical case, however, such examples cannot exist. Recall first
that there is a unique system of apartments in a spherical building, so we can
talk about strong transitivity without specifying an apartment system. And,
as we will now prove, strong transitivity then turns out to be equivalent to
Weyl transitivity.

Proposition 6.15. The following conditions are equivalent for a (type-pre-
serving) action of a group on a spherical building:

(i) The action is strongly transitive.
(ii) The action is Weyl transitive.
(iii) The action is transitive on ordered pairs (C,C ′) of opposite chambers.

Proof. We already know that (i) =⇒ (ii). To prove (ii) =⇒ (iii), just
note that C and C ′ are opposite if and only if δ(C,C ′) = w0, where w0 is
the longest element of W (Section 1.5.2). Finally, (iii) is equivalent to the
assertion that G is transitive on C and the stabilizer of a given chamber C
is transitive on the chambers opposite C. Using the correspondence between
chambers opposite C and apartments containing C (Section 4.7), we conclude
that (iii) =⇒ (i). 	


Exercise 6.16. Characterize Weyl transitivity without referring to Weyl dis-
tances or apartments in case ∆ is a tree.

6.1.4 The Bruhat Decomposition

Assume now that we have a Weyl transitive action of G on ∆. Choose a fun-
damental chamber C, and let B be its stabilizer in G. We can then identify the
set C of chambers with the set G/B of left cosets gB via gC ↔ gB for g ∈ G.
Now Weyl transitivity implies that the B-orbits in C are in 1–1 correspon-
dence with the elements of W , with the orbit of a chamber D corresponding
to w = δ(C,D). But the B-orbits in C correspond to the B-orbits in G/B
and hence to double cosets BgB. Thus we have a bijection B\G/B →W and
hence a set-theoretic decomposition

G =
∐

w∈W

C(w) , (6.2)
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where C(w) is the double coset corresponding to w. This decomposition is
known as the Bruhat decomposition for historical reasons that we will explain
in Section 6.4.

It is easy to chase through the definitions and see that the bijection
B\G/B → W is given by BgB �→ δ(C, gC). Thus the relation “g ∈ C(w)”
can be represented schematically by the diagram

C
w

gC .

The following theorem summarizes the discussion:

Theorem 6.17. Assume that the action of G on ∆ is Weyl transitive, and
let B be the stabilizer of a chamber C. Then there is a bijection B\G/B → W
given by BgB �→ δ(C, gC). Hence (6.2) holds, where w �→ C(w) is the inverse
bijection. 	


Exercise 6.18. Choose an apartment Σ containing C, and identify it with
Σ(W,S) as above. Let ρ : ∆ → Σ be the retraction onto Σ centered at C.
Show that the double coset C(w) containing g can be characterized by the
equation ρ(gC) = wC.

With the aid of the Bruhat decomposition, we can completely reconstruct
the Weyl distance function δ, and hence the building ∆, from group-theoretic
data. Namely, if we identify C with G/B, then δ becomes a function

G/B ×G/B →W ,

still denoted by δ, and we claim that it is a “difference” function, much like
those that occurred in Section 3.5. More precisely, given cosets gB, hB, the
set (gB)−1(hB) of differences is the double coset Bg−1hB and hence is C(w)
for a unique w ∈ W . The claim is that δ(gB, hB) is this element w. In other
words, δ is the composite

G/B ×G/B → B\G/B →W , (6.3)

where the first arrow is given by (gB, hB) �→ Bg−1hB and the second is
the bijection in Theorem 6.17. This claim follows immediately from the fact
that by G-invariance, the Weyl distance function on C satisfies δ(gC, hC) =
δ(C, g−1hC).

6.1.5 The Strongly Transitive Case

If we assume further that the action is strongly transitive, then there is a
slight simplification, in that we can easily describe C(w) in terms of the “BN
data” (Figure 6.1). Namely, C(w) is simply the double coset Bw̃B, where w̃
is any lift of w to N . This follows from the fact that in the Coxeter complex Σ
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with fundamental chamber C, we have δ(C,wC) = w; see equation (3.8) in
Section 3.5. Thus the Bruhat decomposition becomes

G =
∐

w∈W

Bw̃B .

This is a considerable strengthening of Proposition 6.3. Taking G = GLn(k) as
in Section 6.1.2, for example, we can choose the elements w̃ to be permutation
matrices; the Bruhat decomposition then becomes

GLn(k) =
∐

w

BwB ,

where B is the upper-triangular group and w ranges over the permutation
matrices.

Remark 6.19. To simplify notation, we will often write BwB instead of
Bw̃B. This should cause no problem since the double coset is independent
of the choice of the lift w̃. Similar remarks apply to expressions like wB,
wBw′, and so on.

Exercise 6.20. Suppose G = GLn(k) acting on ∆(kn) as in Section 6.1.2.
Deduce from the Bruhat decomposition the following result, which has already
occurred in Exercise 4.93: The Weyl distance between two chambers is given
by the Jordan–Hölder permutation.

6.1.6 Group-Theoretic Consequences

We return now to the setup of Section 6.1.4, where G acts Weyl transitively
on a building ∆ of type (W,S). The arguments in that subsection were purely
set-theoretic and made no use of the fact that we were working with a building.
We now wish to use the properties of δ, as expressed by the WD axioms in
Section 5.1.1, to derive properties of double cosets. Axiom (WD1) leads to the
unsurprising result that

C(w) = B ⇐⇒ w = 1 , (6.4)

which is immediate from the definitions anyway. Axioms (WD2) and (WD3),
on the other hand, lead to much more interesting results, involving products
of double cosets.

Note first that a product BgB · Bg′B of two double cosets is a set that
contains gg′ and is closed under left and right multiplication by B; hence it is
a union of double cosets, one of which is Bgg′B. This is all that can be said
in general. In the present situation, however, we can say much more:

Theorem 6.21. Given s ∈ S and w ∈ W , we have

C(sw) ⊆ C(s)C(w) ⊆ C(sw) ∪ C(w) . (6.5)

In particular, C(s)C(w) is either the double coset C(sw) or else the union of
two double cosets. If l(sw) = l(w) + 1, then C(s)C(w) = C(sw).
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Proof. Given h ∈ C(s) and g ∈ C(w), we want to know which double coset
contains the product hg. In other words, we are given that δ(C, hC) = s and
δ(C, gC) = w, and we want to compute δ(C, hgC). To this end we apply
axiom (WD2) to the situation

C

s

hC w hgC

(6.6)

and we conclude that δ(C, hgC) = sw or w; moreover, δ(C, hgC) = sw if
l(sw) = l(w) + 1. Hence hg ∈ C(sw) ∪ C(w), and hg ∈ C(sw) if l(sw) =
l(w) + 1. This proves the second inclusion in (6.5) and the last assertion of
the proposition. Finally, consider the diagram

h−1C

s

C w gC

(6.7)

obtained by applying the action of h−1 to (6.6). Axiom (WD3) implies that
the representative h ∈ C(s) can be chosen such that δ(h−1C, gC) = sw. Thus
hg ∈ C(sw) for this h, which proves that C(s)C(w) meets C(sw) and hence
contains it. This proves the first inclusion in (6.5). 	


Remark 6.22. There is another property of δ that has a simple group-
theoretic interpretation, namely the symmetry property (Corollary 5.17(2)).
We will show that this implies

C(w)−1 = C(w−1) (6.8)

and hence lets us remove the apparent asymmetry in Theorem 6.21. In other
words, we could state an analogue of the theorem for C(w)C(s) instead
of C(s)C(w). To prove (6.8), note that it is equivalent to the assertion that
the bijection B\G/B → W given by BgB �→ δ(C, gC) preserves inverses, i.e.,

δ(C, g−1C) = δ(C, gC)−1 . (6.9)

Now δ(C, g−1C) = δ(gC,C) by G-invariance of δ, so (6.9) follows from the
fact that δ(gC,C) = δ(C, gC)−1.

Exercise 6.23. Assume, in addition to the hypotheses of this subsection, that
∆ is thick and spherical. Let w0 ∈ W be the longest element. Show that
C(w0)C(w0) = G.
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6.1.7 The Thick Case

We continue to assume that we have a Weyl-transitive action of a group G on
a building ∆ of type (W,S). In the most important applications, ∆ is thick.
This again has a group-theoretic interpretation, and it leads to a sharpening
of Theorem 6.21.

First of all, ∆ is thick if and only if for each s ∈ S there are at least two
chambers C ′ such that δ(C,C ′) = s. Writing C ′ = hC with h ∈ G, we have
δ(C, hC) = s if and only if h ∈ C(s). So the condition for thickness is that

[C(s) : B] ≥ 2 for all s ∈ S , (6.10)

where [C(s) : B] is the number of left cosets hB in the double coset C(s).
Since C(s)−1 = C(s) by (6.8), we could equally well use right cosets Bh.

Let’s return now to the situation of (6.6) (or, equivalently, (6.7)), where
we appealed to axiom (WD3) to find h ∈ C(s) such that δ(C, hgC) = sw.
In case l(sw) = l(w) − 1, we know from Lemma 5.5 (or Proposition 4.84)
that the chamber hC, and hence the coset hB, is unique; all other cosets
h′B ⊆ C(s) would give δ(C, h′gC) = w, and hence h′g ∈ C(w). Now thickness
says precisely that there exists such an h′, so C(s)C(w) meets C(w) and hence
contains it. This proves the following result, which makes Theorem 6.21 more
precise in the thick case:

Proposition 6.24. Suppose ∆ is thick. For any s ∈ S and w ∈ W with
l(sw) = l(w)− 1,

C(s)C(w) = C(sw) ∪ C(w) . 	


Exercise 6.25. Give an example to show that the assumption of thickness
cannot be removed from the proposition.

Remark 6.26. We can rewrite the criterion (6.10) for thickness in a way that
might look more natural from the point of view of group theory. Namely, if we
choose any element h ∈ C(s), then [C(s) : B] ≥ 2 if and only if C(s) �= hB,
i.e., BhB �= hB. This holds if and only if Bh � hB, so the criterion can be
stated in terms of conjugation:

B � hBh−1 .

Note that we could have used right cosets instead of left cosets, so another
equivalent formulation is

hBh−1
� B .

Finally, since these last two conditions are equivalent to one another (in the
present context of a Weyl-transitive action on a building), they are also equiv-
alent to the more symmetric condition

hBh−1 �= B .
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6.1.8 Stabilizers

We return to the general case, where we have a Weyl-transitive action on a
building ∆ that is not necessarily thick.

So far we have concentrated on chambers. From the simplicial viewpoint,
however, there are simplices other than chambers. In particular, if we want
to reconstruct ∆ as a simplicial complex directly from the group G, then we
need to know the stabilizers of the faces of the fundamental chamber. These
are quite easy to work out:

Proposition 6.27. Given J ⊆ S, let A be the face of C of cotype J . Then
the stabilizer of A in G is

PJ :=
⋃

w∈WJ

C(w) . (6.11)

In particular, the union of double cosets in (6.11) is a subgroup of G.

Proof. Recall that simplices are in 1–1 correspondence with residues (Corol-
lary 4.11). Given g ∈ G, it follows that gA = A if and only if gC and C are
in the same J-residue. As we noted in Section 5.3.1 (or Exercise 4.92), this
happens if and only if δ(C, gC) ∈ W ′, i.e., if and only if g ∈ C(w) for some
w ∈WJ . 	

Definition 6.28. We will call the subgroups of the form PJ standard parabolic
subgroups, and we will call the left cosets gPJ standard parabolic cosets.

As in the case of Coxeter complexes, the stabilizer calculation leads im-
mediately to the following result:

Corollary 6.29. The building ∆ is isomorphic, as a poset, to the set of stan-
dard parabolic cosets, ordered by reverse inclusion. 	

Remark 6.30. Let Z :=

⋂
g∈G gBg−1; this is the normal subgroup of G con-

sisting of the elements that act trivially on ∆. Let Ḡ := G/Z. By analogy with
the situation for Coxeter groups and their associated complexes, one might
expect to be able to recover Ḡ from ∆ as the group Aut0 ∆ of type-preserving
automorphisms. This turns out to be false in general; counterexamples will
be given in Section 6.9 below (see Remark 6.112(c)).

6.2 Bruhat Decompositions, Tits Subgroups,
and BN-Pairs

6.2.1 Bruhat Decompositions

We have seen that a Weyl-transitive action of a group G on a building leads
to a subgroup B and a bijection C : W → B\G/B with certain properties.
Conversely, we will show that such a bijection leads easily to a Weyl-transitive
action of G on a building.
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Definition 6.31. Suppose we are given a group G, a subgroup B, a Cox-
eter system (W,S), and a bijection C : W → B\G/B satisfying the following
condition:

(B) For all s ∈ S and w ∈ W ,

C(sw) ⊆ C(s)C(w) ⊆ C(sw) ∪ C(w) .

If l(sw) = l(w) + 1, then C(s)C(w) = C(sw).

Then the bijection C is said to provide a Bruhat decomposition of type (W,S)
for (G,B).

Note that we necessarily have C(1) = B. For if w1 ∈ W is the element
such that C(w1) = B, then we can take any s ∈ S and deduce that

C(s) = C(s)C(w1) ⊇ C(sw1) ;

hence s = sw1 and w1 = 1.
It is now completely routine to reverse the arguments given in Section 6.1.6

and construct a building ∆, provided we use the W-metric approach to build-
ings. Namely, set C := G/B and define δ : C × C →W to be the composite

G/B ×G/B → B\G/B →W ,

where the first map is (gB, hB) �→ Bg−1hB, and the second is C−1. Thus

δ(gB, hB) = w ⇐⇒ g−1h ∈ C(w) .

One easily verifies the axioms (WD1), (WD2), and (WD3) of Section 5.1.1,
so, by Section 5.6, we have a building ∆ with C(∆) = C. Moreover, the nat-
ural action of G on G/B induces an action of G on ∆, which we claim is
Weyl transitive: Take the coset B as fundamental chamber, and consider two
chambers gB, g′B with δ(B, gB) = δ(B, g′B). Then g and g′ are in the same
double coset C(w), so g′ = bgb′ for some b, b′ ∈ B; hence g′B = bgB. Thus B,
the stabilizer of the fundamental chamber, is transitive on the chambers at
given Weyl distance from the fundamental chamber. This proves the claim.

Note that Corollary 6.29 gives an explicit description of the building ∆ as
a simplicial complex: It can be identified with the poset of standard parabolic
cosets, ordered by reverse inclusion. [As a byproduct, we obtain the fact that
PJ :=

⋃
w∈WJ

C(w) is in fact a subgroup of G, which we will also verify alge-
braically in the next subsection.] Alternatively, one can derive this description
from the W-metric theory, which says that ∆ is the poset of residues, ordered
by reverse inclusion. Indeed, given J ⊆ S, one checks directly from the de-
finitions that two chambers gB, hB are in the same J-residue if and only if
g−1h ∈ PJ , so the J-residues are in 1–1 correspondence with the left PJ -cosets.

Definition 6.32. Given a Bruhat decomposition for (G,B), we denote by
∆(G,B) the poset of standard parabolic cosets, ordered by reverse inclusion.
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Remark 6.33. The notation ∆(G,B) is somewhat misleading, since one
needs the bijection C : W → B\G/B in order to define the standard par-
abolic subgroups and hence the poset ∆(G,B). This abuse of notation is not
serious, however, because it turns out that ∆(G,B), if it is thick, depends
only on the pair (G,B). See Corollary 6.44.

Combining the discussion above with Theorems 6.17 and 6.21, we obtain
the following:

Proposition 6.34. Given a Bruhat decomposition for (G,B), the poset ∆ =
∆(G,B) is a building, and the natural action of G on ∆ by left translation
is Weyl transitive and has B as the stabilizer of a fundamental chamber.
Conversely, if a group G admits a Weyl-transitive action on a building ∆ and
B is the stabilizer of a fundamental chamber, then (G,B) admits a Bruhat
decomposition and ∆ is canonically isomorphic to ∆(G,B). 	


Thus there is essentially a 1–1 correspondence between Bruhat decompositions
and Weyl-transitive actions.

Remark 6.35. In this subsection we have used the W-metric approach to
buildings since it meshes so perfectly with the algebraic theory of Bruhat de-
compositions. Moreover, we do not know any way to prove Proposition 6.34
from the simplicial point of view, since there is no obvious way to construct
apartments in ∆(G,B) from the data given in Definition 6.31. In Section 6.2.5,
however, when we develop the algebraic theory corresponding to strongly tran-
sitive actions, it will be possible to give an alternative treatment that is purely
simplicial. This will be outlined in Exercise 6.54.

Our next goal is to get a better algebraic understanding of Bruhat decom-
positions.

6.2.2 Axioms for Bruhat Decompositions

If one wants to construct a building from group-theoretic data, it is of interest
to minimize what has to be verified. It turns out that we can get by with
axioms that appear to be weaker than the requirements in Section 6.2.1.

Let G be a group, B a subgroup, (W,S) a Coxeter system, and

C : W → B\G/B

a function. Consider the following three axioms:

(Bru1) C(w) = B if and only if w = 1.

(Bru2) C : W → B\G/B is surjective, i.e.,

G =
⋃

w∈W

C(w) .
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(Bru3) For any s ∈ S and w ∈W ,

C(sw) ⊆ C(s)C(w) ⊆ C(sw) ∪ C(w) .

There appears to be asymmetry in (Bru3), which involves left multiplication
by elements of S. But we will see in the next proposition that the axioms
(Bru1)–(Bru3) imply the following “right” analogue of (Bru3):

(Bru3′) For any s ∈ S and w ∈ W ,

C(ws) ⊆ C(w)C(s) ⊆ C(ws) ∪ C(w) .

We now show that (Bru1), (Bru2), and (Bru3) suffice for a Bruhat decom-
position. In other words, they imply that C is bijective and that the second
assertion of (B) holds. For reasons that will become obvious in Section 6.2.3,
we will take care to prove this without using the assumption that (W,S) is a
Coxeter system.

Proposition 6.36. Let G be a group and B a subgroup. Suppose we are given
a group W , a generating set S consisting of elements of order 2, and a function
C : W → B\G/B satisfying (Bru1), (Bru2), and (Bru3). Then the six con-
ditions below are satisfied. In particular, C provides a Bruhat decomposition
for (G,B) if (W,S) is a Coxeter system.

(1) C is a bijection, i.e.,
G =

∐

w∈W

C(w) .

(2) C(w)−1 = C(w−1) for all w ∈W . Consequently, (Bru3′) holds.
(3) If l(sw) ≥ l(w) with s ∈ S and w ∈W , then C(s)C(w) = C(sw).
(4) Given a reduced decomposition w = s1 · · · sl of an element w ∈ W , we

have C(w) = C(s1) · · ·C(sl).
(5) If l(sw) ≤ l(w) with s ∈ S and w ∈ W , and if [C(s) : B] ≥ 2, then

C(s)C(w) = C(sw) ∪ C(w).
(6) Let J ⊆ S be an arbitrary subset. Then PJ :=

⋃
w∈WJ

C(w) is a subgroup
of G. It is generated by the cosets C(s) with s ∈ J .

Proof. For (1), we must show that C(v) = C(w) =⇒ v = w for v, w ∈ W . We
argue by induction on min {l(v), l(w)}, which we may assume is equal to l(v).
The case l(v) = 0 is covered by (Bru1), so suppose l(v) > 0 and choose s ∈ S
such that l(sv) < l(v). If C(v) = C(w), then we can multiply by C(s) to get
C(s)C(v) = C(s)C(w). If these equal products consist of one double coset,
then the equation becomes C(sv) = C(sw). Otherwise, there are two double
cosets on each side, and we have C(sv) ∪ C(v) = C(sw) ∪ C(w); subtracting
C(v) = C(w), we again obtain C(sv) = C(sw). In either case, the induction
hypothesis implies sv = sw, and hence v = w.

Next we prove (2), (3), and (4) simultaneously, by induction on l(w). We
may assume l(w) > 0, since the assertions are all trivial if w = 1. We will
carry out the induction by means of the following steps:
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(a) (2) is true if l(w) = 1.
(b) Given l > 0, if (3) and (4) hold when l(w) < l then (4) holds when

l(w) = l.
(c) Given l > 0, if (4) holds when l(w) = l, then (2) holds when l(w) = l.
(d) Given l > 0, if (2) holds when l(w) ≤ l and (3) holds when l(w) < l, then

(3) holds when l(w) = l.

For (a) we must show that C(s)−1 = C(s) for s ∈ S. To prove this, note that
1 ∈ B = C(1) ⊆ C(s)C(s), so C(s)−1 meets C(s) and hence is equal to it.
(b) is easy and is left to the reader. For (c), take a reduced decomposition
w = s1 · · · sl. Then C(w) = C(s1) · · ·C(sl) and C(w−1) = C(sl) · · ·C(s1);
now apply the result of (a). To prove (d), finally, write w = w1t with t ∈ S
and l(w1) = l−1. Then the hypothesis of (d) implies that C(w) = C(w1)C(t),
as one sees by taking inverses. Hence

C(s)C(w) = C(s)C(w1)C(t) . (6.12)

Our assumption l(sw) ≥ l(w) implies that l(sw1) ≥ l(w1); for otherwise we
would have

l(sw) = l(sw1t) ≤ l(sw1) + 1 < l(w1) + 1 = l(w) .

So we may apply the hypothesis of (d) again to rewrite (6.12) as

C(s)C(w) = C(sw1)C(t) . (6.13)

We wish to show that C(s)C(w) is a single double coset, in which case it is
necessarily C(sw). Suppose this is false. Then we have

C(s)C(w) = C(sw) ∪ C(w) (6.14)

by (Bru3). On the other hand, we get a different expression for C(s)C(w) as
a union of two double cosets by applying (Bru3) to the inverse of the right
side of (6.13):

C(s)C(w) = C(sw1)C(t)

=
(
C(t)C(w−1

1 s)
)−1

=
(
C(tw−1

1 s) ∪ C(w−1
1 s)

)−1

= C(w−1s)−1 ∪ C(sw1) .

(6.15)

Note that our hypothesis does not allow us to go one step further and claim
that C(w−1s)−1 = C(sw), but fortunately we do not need this. Indeed, (6.15)
and (6.14) imply that C(sw1) ⊆ C(sw) ∪ C(w) and hence that sw1 = sw or
sw1 = w. The first possibility would imply w1 = w, contradicting the fact
that l(w1) < l(w), while the second would contradict the assumption that
l(sw) ≥ l(w). This completes the proof of (d) and hence the inductive proof
of (2)–(4).
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To prove (5), note first that as in Remark 6.26, the assumption that
[C(s):B] ≥ 2 can be rewritten as hBh−1

� B, where C(s) = BhB = Bh−1B.
Now C(s)C(s) = BhBh−1B, so C(s)C(s) � B. In view of (Bru3), we must
have C(s)C(s) = B ∪C(s). This is a special case of (5), and this special case,
together with (3), easily yields the general case. Indeed, if l(sw) ≤ l(w), then
l(s · sw) ≥ l(sw). So (3) implies

C(w) = C(s · sw) = C(s)C(sw) ,

hence

C(s)C(w) = C(s)C(s)C(sw)
= (B ∪ C(s))C(sw)
= C(sw) ∪ C(s)C(sw)
= C(sw) ∪ C(w) .

To prove (6), finally, let GJ := 〈C(s)〉s∈J . Then GJ contains PJ by (4),
and it follows from (Bru3) (and the fact that C(s)−1 = C(s) for s ∈ S) that
PJ is closed under left multiplication by GJ . So PJ = GJ . 	


Exercises

6.37. Let the hypotheses be as in Proposition 6.36. Given any two elements
w,w′ ∈W , write w = s1 · · · sd with si ∈ S, and show that

C(ww′) ⊆ C(w)C(w′) ⊆
⋃

w′′

C(w′′w′) ,

where w′′ ranges over the elements of W obtained from the word s1 · · · sd by
deleting zero or more letters. This shows again that PJ is a subgroup of G for
every J ⊆ S.

6.38. Prove the following generalization of the Bruhat decomposition: For
any standard parabolic subgroup PJ (J ⊆ S), there is a bijection B\G/PJ →
W/WJ . Still more generally, show for any two standard parabolics PJ and PK

(J,K ⊆ S) that there is a bijection PJ\G/PK →WJ\W/WK .

6.2.3 The Thick Case

Definition 6.39. We say that a Bruhat decomposition for (G,B) is thick if
the building ∆(G,B) is thick.

As we saw in Section 6.1.7, this is equivalent to the following condition:

(Th) [C(s) : B] ≥ 2 for all s ∈ S.
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We can also express thickness by saying that B has index ≥ 3 in the group
Ps := B ∪ C(s). Yet another formulation (cf. Remark 6.26) is that for every
s ∈ S and h ∈ C(s),

hBh−1
� B . (6.16)

Thickness has some remarkable consequences. First of all, in the presence
of (Th), we can further weaken the conditions that need to be verified in order
to construct a Bruhat decomposition. Namely, we do not need to assume that
(W,S) is a Coxeter system or even that the elements of S have order 2. This
is the group-theoretic analogue of the fact that in defining thick buildings,
apartments do not have to be assumed to be Coxeter complexes (Theorem
4.131). Moreover, we do not even have to specify S, since as we will show, it
is uniquely determined by the rest of the data.

In stating the precise result, we have to be careful about whether we
interpret [C(s) : B] in (Th) using left cosets or right cosets, since it might
make a difference if we do not know that C(s)−1 = C(s). It turns out that
we need to take [C(s) : B] to be the number of right cosets Bh in C(s). With
this convention, (Th) is equivalent to the condition that (6.16) holds for every
s ∈ S and for some (or every) h ∈ C(s).

Proposition 6.40. Let G be a group and B a subgroup. Suppose we are given
a group W , a generating set S of W , and a function C : W → B\G/B sat-
isfying (Bru1), (Bru2), (Bru3), and (Th). Then (W,S) is a Coxeter system,
and hence the given data constitute a thick Bruhat decomposition for (G,B).
Moreover, the generating set S is uniquely determined; it consists of all non-
trivial elements w ∈W such that B ∪ C(w) is a subgroup of G.

Proof. We show first that elements of S have order 2. Take w = s−1 in (Bru3)
to get

B ⊆ C(s)C(s−1) ⊆ B ∪ C(s−1) . (6.17)

This implies that C(s−1) meets C(s)−1 and hence is equal to it. Since
C(s)C(s−1) = C(s)C(s)−1

� B by (Th) (and our convention about how
to interpret it), we conclude that the two double cosets on the right of (6.17)
are distinct and that

C(s)C(s−1) = B � C(s−1) .

Taking inverses, we obtain C(s)C(s−1) again on the left but B �C(s) on the
right. This implies that C(s−1) = C(s), and the equality above becomes

C(s)C(s) = B � C(s) .

On the other hand, if we take w = s in (Bru3) and use the fact that C(s)C(s)
is known to consist of two double cosets, then we obtain

C(s)C(s) = C(s2)� C(s) .
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Hence C(s2) = B and C(s) �= B, so s has order 2 by (Bru1).
Next, we show that (W,S) is a Coxeter system by verifying the fold-

ing condition (F) of Section 2.3.1. Given w ∈ W and s, t ∈ S such that
l(sw) = l(w) + 1 = l(wt) but l(swt) < l(w) + 2, we must show that sw = wt.
The proof is very similar to the proof of (3) in Proposition 6.36, with the
present w playing the role of the element w1 in that proof. Namely, we com-
pute C(s)C(w)C(t) in two different ways. (Note that we can freely use the
results of Proposition 6.36 when we do these computations.) First, we have

C(s)C(w)C(t) = C(s)C(wt) = C(swt) ∪ C(wt) ,

where the first equality comes from l(wt) = l(w) + 1 and the second from
l(s(wt)) ≤ l(wt). Similarly,

C(s)C(w)C(t) = C(sw)C(t) = C(swt) ∪ C(sw).

Hence C(sw) = C(wt), and so sw = wt.
Finally, the last assertion of the proposition is an immediate consequence

of the lemma that follows. 	


Lemma 6.41. Suppose we are given a thick Bruhat decomposition for (G,B).
If w ∈ W admits a reduced decomposition w = s1 · · · sl, then the subgroup
of G generated by C(w) contains the double cosets C(si) for i = 1, . . . , l and
is generated by them. Moreover, this subgroup is generated by B and gBg−1

for any g ∈ C(w).

Proof. The subgroup generated by C(w) = BgB contains g and B. We there-
fore have 〈

B, gBg−1
〉
≤
〈
C(w)

〉
≤
〈
C(s1), . . . , C(sl)

〉
,

where the second inclusion follows from Proposition 6.36(4). The lemma will
follow if we can show that the subgroup P := 〈B, gBg−1〉 contains C(si) for
each i. We argue by induction on l = l(w). Since l(s1w) < l(w), we know
that C(s1)C(w) = C(s1w) ∪ C(w). Writing C(s1) = Bh1B, this becomes
Bh1BgB = C(s1w) ∪ C(w), so h1Bg meets C(w) = BgB. Hence h1B meets
BgBg−1, which implies that C(s1) ⊆ P . Let w′ = s1w = s2 · · · sl. Then
C(w) = C(s1)C(w′), so we can assume that g = h1g

′ with g′ ∈ C(w′). Since
P contains h1 and gBg−1 = h1g

′Bg′−1h−1
1 , we also have g′Bg′−1 ≤ P . We can

therefore apply the induction hypothesis to w′ to conclude that P contains
C(si) for i = 2, . . . , l, whence the lemma. 	


To summarize the results so far, a thick Bruhat decomposition (and hence
a Weyl-transitive action on a thick building) is determined by a group G, a
subgroup B, a group W , and a function C : W → B\G/B such that W admits
a set of generators S for which (Bru1), (Bru2), (Bru3), and (Th) are satisfied.
Since S is unique, it does not have to be specified as part of the structure.

We will see in the next subsection that in fact, a thick Bruhat decompo-
sition is uniquely determined by the pair (G,B) alone.
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Remark 6.42. The fact that the elements of S do not have to be assumed to
be of order 2 in Proposition 6.40 is interesting but of no practical importance.
For in all examples that we know of, it is trivial to verify that S consists
of elements of order 2. If we simply add this as a hypothesis, then we have
C(s)−1 = C(s) by Proposition 6.36, so we can forget about the annoying
distinction between left cosets and right cosets in interpreting (Th).

6.2.4 Parabolic Subgroups

We introduced Lemma 6.41 in order to finish off the proof of Proposition 6.40.
But the lemma has much more striking consequences. As in Section 6.1.8, a
subgroup of the form PJ :=

⋃
w∈WJ

C(w), where J ⊆ S, will be called a
standard parabolic subgroup.

Theorem 6.43. Suppose (G,B) admits a thick Bruhat decomposition.

(1) The standard parabolic subgroups are precisely the subgroups of G con-
taining B.

(2) If P is a standard parabolic subgroup and gBg−1 ≤ P for some g ∈ G,
then g ∈ P .

(3) Every standard parabolic subgroup is equal to its own normalizer, and no
two of them are conjugate.

Proof. The standard parabolics certainly contain B = C(1). Conversely, sup-
pose P is a subgroup containing B. Then P is a union of double cosets C(w);
hence it is generated by certain double cosets C(s) with s ∈ S by Lemma 6.41.
But any such subgroup is a standard parabolic by Proposition 6.36(6). This
proves (1)

(2) is an immediate consequence of the last assertion of Lemma 6.41, which
says that the subgroup generated by B and gBg−1 contains BgB.

Finally, suppose P and P ′ are standard parabolics and gP ′g−1 = P for
some g ∈ G. Then gBg−1 ≤ P , so (2) implies that g ∈ P . Thus P = P ′ and
is its own normalizer, whence (3). 	


It follows from the theorem that the building ∆(G,B) associated with a
thick Bruhat decomposition can be described entirely in terms of (G,B), as
we claimed in Remark 6.33:

Corollary 6.44. Suppose (G,B) admits a thick Bruhat decomposition. Then
the building ∆(G,B) of Definition 6.32 is the poset of cosets gP , where P
ranges over the subgroups of G containing B and the cosets are ordered by
reverse inclusion. 	


Following Bourbaki [44, Section IV.2, Exercise 3], we introduce the follow-
ing terminology:

Definition 6.45. A subgroup B of a group G is called a Tits subgroup if
(G,B) admits a thick Bruhat decomposition.
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Thus giving a group G and a Tits subgroup B is essentially the same as
giving a Weyl-transitive action of G on a thick building. We have used the
first assertion of Theorem 6.43 to give one description of this building in terms
of (G,B). We now use the second assertion to give a different description.

Definition 6.46. Given a group G and a Tits subgroup B, a subgroup Q ≤ G
is called parabolic if Q contains a conjugate of B, or, equivalently, if Q is
conjugate to a standard parabolic subgroup.

It follows from statement (3) of Theorem 6.43 that there is a bijection from
the set of standard parabolic cosets to the set of parabolic subgroups, given
by gP �→ gPg−1. This bijection is compatible with the inclusion relation.
Consequently:

Corollary 6.47. Let B be a Tits subgroup of a group G. Then the build-
ing ∆(G,B) is isomorphic to the set of parabolic subgroups of G, ordered by
reverse inclusion, with G acting by conjugation. 	


Remarks 6.48. (a) Since the simplices of ∆ = ∆(G,B) correspond to the
parabolic subgroups of G, one can use geometric language to express prop-
erties of the parabolic subgroups. Consider, for example, the minimal par-
abolics (conjugates of B). These correspond to the chambers of ∆, so we
can talk about the distance between two minimal parabolics. In the spherical
case, we can ask whether two minimal parabolics are opposite to one another.
In GLn(k), for example, the upper-triangular group and the lower-triangular
group are opposite to one another (Exercise 4.78).

(b) We have seen that a Tits subgroup B gives rise to a building ∆(G,B),
which can be described without reference to the group W and the function C.
The building then gives us the Weyl group W and the function w �→ C(w)
providing the Bruhat decomposition. In principle, then, it ought to be possible
to get this structure directly from (G,B). It is indeed quite easy to do this:

Index the double cosets in B\G/B by a set W , so that we are given a
bijection w �→ C(w) from W to B\G/B. Denote by 1 the element of W such
that C(1) = B, and let S be the set of elements s �= 1 in W such that
B ∪ C(s) is a subgroup of G. For s ∈ S and w ∈ W , define sw to be the
element of W such that C(s)C(w) ⊆ C(sw)∪C(w). This uniquely determines
a product on W such that it is a group with S as a set of generators of order 2.
The resulting pair (W,S) is in fact a Coxeter system, and the bijection C
that we started with gives the essentially unique thick Bruhat decomposition
for (G,B).

The verification of these assertions, which the reader is asked to carry
out in Exercise 6.51 below, is based on the fact that one knows a priori that
(G,B) admits a thick Bruhat decomposition. It is natural to go further and
try to axiomatize Tits subgroups entirely in terms of the pair (G,B). Giv-
ing the details would take us too far afield, but an outline can be found in
Bourbaki [44, Section IV.2, Exercise 3].



6.2 Bruhat Decompositions, Tits Subgroups, and BN-Pairs 317

Exercises

6.49. If B is a Tits subgroup of G, show that B contains the center Z(G).
Deduce that Z(G) acts trivially on ∆ = ∆(G,B). Show further that the image
of G in Aut∆ has trivial center.

6.50. If a group G contains a Tits subgroup, show that G cannot be nilpotent.

6.51. Verify the assertions made in Remark 6.48(b).

6.2.5 Strongly Transitive Actions

We know that Weyl-transitive actions correspond to Bruhat decompositions.
We now develop the algebraic theory corresponding to strongly transitive ac-
tions.

Suppose we are given a quadruple (G,B,N, S), where G is a group; B
and N are subgroups that generate G; the intersection T := B ∩N is normal
in N ; and S is a finite set of generators of the quotient group W := N/T .
Thus we have the setup described in Section 6.1.1:

G

B N W = 〈S〉

T

As in Remark 6.19, we will find it convenient to write expressions like BwB,
wB, wBw′, and so on, where w,w′ ∈ W . These are defined by using repre-
sentatives in N for elements of W , and they are independent of the choice of
representative.

Proposition 6.52. Assume that (W,S) is a Coxeter system and that

sBw ⊆ BswB ∪BwB (6.18)

for all s ∈ S and w ∈ W . Then the function w �→ C(w) := BwB provides a
Bruhat decomposition for (G,B). Let ∆ = ∆(G,B) be the associated building.
Then ∆ contains an apartment Σ stabilized by N such that N is transitive
on C(Σ). Hence the action of G on ∆ is strongly transitive with respect to the
apartment system A := GΣ.

Proof. The inclusion (6.18) is a restatement of the second inclusion in (Bru3),
since C(s)C(w) = BsBwB. The first inclusion in (Bru3) holds trivially in the
present setup, as does (Bru1). To get a Bruhat decomposition we must show
that the conditions of the proposition imply (Bru2). To this end, note that⋃

w∈W BwB is a subgroup; the proof is the same as that of statement (6) in
Proposition 6.36. This subgroup contains B and N ; hence it is G.
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Let ∆ = ∆(G,B) be the associated building, with C(∆) = G/B. Then
the chambers wB (w ∈ W ) form a subset W -isometric to W . This gives the
desired apartment Σ. The last assertion of the proposition follows from the
proof of Proposition 6.14. 	


Roughly speaking, then, strongly transitive actions with a chosen funda-
mental pair (Σ,C) correspond to quadruples (G,B,N, S) satisfying (6.18).
This statement is slightly misleading, however, because the subgroup N in
the quadruple might not be the full stabilizer of Σ. We have already seen
examples of this in connection with G = GLn(k); see Remark 6.8(c). So if
we want the group theory to precisely reflect the theory of strongly transitive
actions, we need to add a new axiom that guarantees that N is big enough.
The appropriate axiom turns out to be

T =
⋂

w∈W

wBw−1 . (6.19)

To see why this is the right axiom, consider an arbitrary (G,B,N, S) satis-
fying the conditions of Proposition 6.52, and let Ñ be the stabilizer of the
fundamental apartment Σ in the corresponding building. Then it is easy to
see that Ñ = NT̃ , where T̃ := {g ∈ G | g fixes Σ pointwise}. Now an element
of G fixes Σ pointwise if and only if it stabilizes every chamber of Σ [why?];
so we have T̃ =

⋂
w∈W wBw−1. Thus (6.19) simply says that T̃ = T , which

implies that Ñ = N .
In practice, there is no reason to impose the condition (6.19). For if we

want to apply geometry to group theory, the important thing is to be able to
construct a building associated to a given group.

Remark 6.53. We have based our proof of Proposition 6.52 on the W-metric
approach to buildings. In the (G,B,N, S) context, it is possible to carry out
the construction of the building entirely in the simplicial world, without refer-
ence to Weyl distances, but one has to work a little harder. See the following
exercise.

Exercise 6.54. Let (G,B,N, S) satisfy the hypotheses of Proposition 6.52.
Let ∆ = ∆(G,B) be as in Definition 6.32. Show that ∆ is a building with a
strongly transitive type-preserving G-action by proving the following:

(a) The poset ∆ is a simplicial complex.
(b) Let Σ be the subcomplex of ∆ consisting of the cosets of the form wP

with w ∈ W and P a standard parabolic subgroup of G. Then Σ is a
Coxeter complex.

(c) Let A = GΣ. Then A is a system of apartments for ∆, which is therefore
a building. The G-action is type-preserving and strongly transitive.
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6.2.6 BN-Pairs

We have saved for last the algebraic theory that goes with the most common
geometric situation: strongly transitive actions on thick buildings. All the work
has been done already, and we just need to combine the results of Sections
6.2.3 and 6.2.5.

Definition 6.55. We say that a pair of subgroups B and N of a group G is
a BN-pair if B and N generate G, the intersection T := B ∩ N is normal
in N , and the quotient W := N/T admits a set of generators S such that the
following two conditions hold:

(BN1) For s ∈ S and w ∈W ,

sBw ⊆ BswB ∪BwB .

(BN2) For s ∈ S,
sBs−1

� B .

The group W will be called the Weyl group associated to the BN-pair. One
also says in this situation that the quadruple (G,B,N, S) is a Tits system.

The following theorem summarizes Propositions 6.40 and 6.52, together
with some of the results of Section 6.1:

Theorem 6.56.

(1) Given a BN-pair in G, the generating set S is uniquely determined, and
(W,S) is a Coxeter system. There is a thick building ∆ = ∆(G,B) that
admits a strongly transitive G-action such that B is the stabilizer of a
fundamental chamber and N stabilizes a fundamental apartment and is
transitive on its chambers.

(2) Conversely, suppose a group G acts strongly transitively on a thick build-
ing ∆ with fundamental apartment Σ and fundamental chamber C. Let
B be the stabilizer of C, and let N be a subgroup of G that stabilizes Σ
and is transitive on the chambers of Σ. Then (B,N) is a BN-pair in G,
and ∆ is canonically isomorphic to ∆(G,B). 	


We emphasize, once again, that the building ∆(G,B) associated to a BN-
pair depends only on (G,B). But the subgroup N lets us exhibit an apartment
system with respect to which the G-action is strongly transitive. We will say
more about the role of N below.

Since we presented the theory of BN-pairs as a special case of the theory of
Tits subgroups, which was developed over several subsections, we review here
some of the important features of the theory. Let G be a group with a BN-pair.
Then the axioms (Bru1)–(Bru3) of Section 6.2.2 and (Th) of Section 6.2.3 are
satisfied, so all of the results derived from those axioms are true for (G,B).
In particular:
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(1) G has a Bruhat decomposition, which is a bijection

C : W ∼−→ B\G/B

given by
C(w) = BwB := Bw̃B

for w ∈ W , where w̃ is a representative of w in N . More briefly,

G = BWB =
∐

w∈W

BwB .

(2) There is a more precise version of axiom (BN1): Given s ∈ S and w ∈W ,
we have

C(s)C(w) =

{
C(sw) if l(sw) > l(w),
C(sw) ∪ C(w) if l(sw) < l(w).

(3) The subgroups of G containing B are precisely the standard parabolic
subgroups PJ = BWJB (J ⊆ S). These are self-normalizing, and no two of
them are conjugate.

(4) The building ∆ = ∆(G,B) has several equivalent descriptions. From the
W-metric point of view, ∆ = (C, δ), where C = G/B and δ : G/B×G/B → W
is characterized by

δ(gB, hB) = w ⇐⇒ Bg−1hB = C(w) .

The action of G is by left translation. The fundamental apartment is

Σ = {wB | w ∈ W} .

From the simplicial point of view, ∆ is the set of standard parabolic cosets gP
(g ∈ G, P ≥ B), ordered by reverse inclusion. Again, G acts by left transla-
tion. The fundamental apartment is

Σ = {wP | w ∈ W, P ≥ B} .

A second simplicial version takes ∆ to be the poset of parabolic subgroups,
ordered by reverse inclusion. The action of G is by conjugation. The funda-
mental apartment is

Σ =
{
wPw−1 | w ∈W, P ≥ B

}
.

Recall, finally, that N is not necessarily the full stabilizer of Σ. We an-
alyzed this situation near the end of Section 6.2.5, and our discussion there
leads to the following definition:
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Definition 6.57. The BN-pair (B,N) is said to be saturated if it satisfies

T =
⋂

w∈W

wBw−1

or, equivalently, if N is the full stabilizer of the fundamental apartment
of ∆(G,B).

Thus saturated BN-pairs are essentially in 1–1 correspondence with strongly
transitive group actions on thick buildings.

Remarks 6.58. (a) Although the building ∆ = ∆(G,B) does not depend
on N , there appears to be a dependence on N in our description of ∆ from the
W-metric point of view. Here is one way to get rid of the apparent dependence
on N . To begin with, suppose we have a Tits subgroup B ≤ G that is not
necessarily part of a BN-pair. Let (Ps)s∈S be the family of minimal parabolic
subgroups properly containing B. Here S is just an index set. Then we get
a type function τ on ∆ := ∆(G,B) with values in S such that the panel Ps

has cotype s. There is therefore a well-defined Coxeter group W generated
by S, which is simply the Weyl group of ∆ with respect to τ . Explicitly,
the entry m(s, t) of the Coxeter matrix of (W,S) is obtained by considering
the type of the rank-2 building ∆(Gs,t, B), where Gs,t := 〈Ps, Pt〉 for s �= t
in S. Consequently, there is a well-defined W-metric building depending only
on (G,B).

Suppose now that the Tits subgroup B happens to be part of a Tits system
(G,B,N, S′). Then there is a unique bijection S → S′, denoted by s �→ s′,
such that Ps = B ∪ Bs′B for all s ∈ S. Thus we can identify S′ with S, and
we can identify the Weyl group N/(N ∩ B) of the Tits system with W . [For
this last assertion, consider the Coxeter matrix of N/(N ∩ B) with respect
to S′; it can be described in the same way we described the Coxeter matrix
of (W,S).] It is not hard to deduce now that the W-metric building associated
to a BN-pair is independent of N up to canonical isomorphism. Further details
are left to the interested reader.

(b) A second question that naturally arises is the extent to which N itself is
unique. The following lemma and exercise shed some light on this.

Lemma 6.59. Let (B,N) be a saturated BN-pair in G, and let N ′ be a sub-
group of N . Then (B,N ′) is a BN-pair if and only if N ′T = N or, equivalently,
N ′ surjects onto W = N/T .

Proof. If N ′ surjects onto W , then it is trivial to verify that the BN-pair
axioms are still satisfied by (B,N ′). [Alternatively, note that N ′ stabilizes
the fundamental apartment and is transitive on its chambers, so (B,N ′) is
a BN-pair by Section 6.1.] Conversely, suppose (B,N ′) is a BN-pair, and let
W ′ be the image of N ′ in W . Then we have G = BW ′B, so W ′ = W by the
Bruhat decomposition. [Alternatively, note that N ′ acts transitively on the
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chambers of an apartment Σ′ that is contained in the fundamental apartment
Σ. By the thinness of apartments, we must have Σ′ = Σ; hence N ′ surjects
onto W .] 	


Exercise 6.60.

(a) Let (B,N) be a saturated BN-pair in G of spherical type (i.e., ∆(G,B) is
spherical). If N ′ is a subgroup of G such that (B,N ′) is also a saturated
BN-pair, show that N ′ = bNb−1 for some b ∈ B.

(b) Continuing with the hypotheses and notation of (a), set T := B ∩N and
T ′ := B∩N ′. Show that the isomorphism N/T ∼−→ N ′/T ′ induced by con-
jugation by b is the same isomorphism that one gets via Remark 6.58(a).

(c) What happens in (a) if ∆(G,B) is not spherical?

6.2.7 Simplicity Results

In this section we present results of Tits [244, Section 2], except that we for-
mulate these results in terms of Tits subgroups, whereas Tits worked with
BN-pairs. This requires minor modifications, but otherwise our treatment fol-
lows his very closely. Throughout this subsection, G denotes a group with a
Tits subgroup B of irreducible type (W,S), and ∆ := ∆(G,B) is the associ-
ated thick building. Thus we have a Weyl-transitive action of G on ∆, and B
is the stabilizer of a fundamental chamber C. We wish to give criteria under
which we can prove that G (or a closely related subquotient) is a simple group.
We set

Z :=
⋂

g∈G

gBg−1 ;

it is the kernel of the action of G on ∆. The letter Z is chosen because Z turns
out to be the center of G in many examples. For instance if G = GLn(k) as
in our standard example (see Section 6.1.2 and Remark 6.8(d)), then Z is the
set of scalar multiples of the identity.

Everything we do in this subsection will be based on the following lemma:

Lemma 6.61. If H is a normal subgroup of G, then either H ≤ Z or else
HB = G. In other words, either H acts trivially on ∆ or else H acts chamber
transitively on ∆.

Proof. Since H is normal, HB is a subgroup of G containing B; hence it is a
standard parabolic subgroup (Theorem 6.43). Thus

HB =
⋃

w∈WJ

C(w)

for some subset J ⊆ S. We claim that if s ∈ J and t ∈ S � J , then st = ts.
Since (W,S) is irreducible, this implies that J = ∅ or J = S. If J = ∅, then
HB = B, i.e., H ≤ B, and hence H ≤ Z by normality. If J = S, then
HB = G. It remains to prove the claim.
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Since s ∈ J , we have C(s) ⊆ HB and hence C(s) meets H. Choose
h ∈ C(s) ∩ H and g ∈ C(t). Then ghg−1 ∈ H ≤ HB, so ghg−1 ∈ C(w) for
some w ∈ WJ . On the other hand, basic facts about products of double cosets
(Section 6.2.2) imply that

ghg−1 ∈ C(t)C(s)C(t) = C(t)C(st) ⊆ C(tst) ∪ C(st) .

So either tst ∈ WJ or st ∈ WJ . Since s ∈ J and t /∈ J , we cannot have
st ∈ WJ , so the only possibility is that tst ∈ WJ . But also tst ∈ W{s,t},
so Proposition 2.16 implies that tst ∈ WK with K = J ∩ {s, t} = {s}, i.e.,
tst = s. This proves the claim. 	


We can immediately deduce the following simplicity theorem:

Theorem 6.62. Assume that G is perfect and B is solvable. Then every
proper normal subgroup of G is contained in Z. Hence G/Z is a simple group.

Proof. Let H be a proper normal subgroup of G. By the lemma, either H ≤ Z
or HB = G. But the second case is impossible, because it would imply that the
(nontrivial) perfect group G/H is isomorphic to the solvable group B/(B∩H).

	


This applies, for example, to G = SLn(k) unless n = 2 and k = F2 or F3.
Indeed, the upper-triangular subgroup B is solvable, and easy computations
show that G is perfect. [We will have occasion to do those computations in
Chapter 7; see Example 7.133 and Exercise 7.139.] So one concludes from the
theorem that PSLn(k) is simple.

With a little more work, we can improve Theorem 6.62 to a result that is
slightly more technical to state but has wider applicability. It is based on the
following lemma:

Lemma 6.63. Let U be a normal subgroup of B, and let G1 be the normal
closure of U in G. Assume that G1 is perfect and that U is solvable. Then
every normal subgroup of G either is contained in Z or contains G1.

Proof. Let H be a normal subgroup of G that is not contained in Z. Then
HB = G by Lemma 6.61. Since U is normal in B, HU is normal in HB = G,
so HU ≥ G1. We now have

U/(U ∩H) ∼= HU/H = HG1/H ∼= G1/(G1 ∩H) .

The group on the left is solvable and the one on the right is perfect, so these
groups are trivial. Hence G1 ∩H = G1, i.e., G1 ≤ H. 	


We are ready now for the main result. In Tits’s paper [244], he assumed
that B was part of a BN-pair, and he made use of the group T = B ∩ N .
In our more general setup, we will work instead with the (thick) build-
ing ∆ = ∆(G,B). Choose an apartment Σ (in the complete apartment sys-
tem) containing the fundamental chamber C, and suppose we are given a
subgroup T ≤ B that fixes Σ pointwise.
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Theorem 6.64. Let U be a normal subgroup of B such that B = UT , and
let G1 be the normal closure of U in G. Assume that G1 is perfect and that
U is solvable. Then every subgroup of G that is normalized by G1 either is
contained in Z or contains G1. In particular, G1/(G1 ∩Z) is a simple group.

Proof. Recall that by Weyl transitivity, ∆ =
⋃

b∈B bΣ (Proposition 6.11).
Since B = UT , this can be rewritten as

∆ =
⋃

u∈U

uΣ . (6.20)

In particular, U does not act trivially on ∆, since that would imply ∆ = Σ,
contradicting thickness. We now apply Lemma 6.61 with H = G1 to conclude
that G = G1B, i.e., that G1 acts chamber transitively on ∆. It then follows
from (6.20) and another application of Proposition 6.11 that G1 acts Weyl
transitively on ∆. Another consequence of the equation G = G1B is that G1,
which is generated by the G-conjugates of U , is actually generated by the
G1-conjugates of U .

Suppose now that H is a subgroup of G that is normalized by G1, and
consider the group G′ := G1H. It acts Weyl transitively on ∆, since it con-
tains G1, and G1 is the normal closure of U in G′ by the last sentence of the
previous paragraph. Setting B′ := G′ ∩ B, we can now apply Lemma 6.63
with (G,B) replaced by (G′, B′) (but with the same U and G1). Since H is
normal in G′, the result is that either H acts trivially on ∆ (hence H ≤ Z)
or else H ≥ G1. 	


The following further observations are taken directly from Tits [244, 2.9].

Remarks 6.65. (a) The assumption that G1 is perfect is equivalent to saying
that U is contained in the commutator subgroup of G1.

(b) Suppose Z∩U = {1}. Then, since Z and U normalize each other, it follows
that Z centralizes U and hence G1. The last sentence of the theorem therefore
implies that G1 modulo its center is simple.

(c) It is clear from the proof that we could weaken the assumption that U is
solvable; it suffices to assume that U has no nontrivial perfect quotients. In
classical examples, U is in fact solvable, but applications with nonsolvable U
have arisen recently in connection with Kac–Moody groups; see [74]. See also
[71, Theorem 19] for a related simplicity theorem.

Finally, it is instructive to see what Theorem 6.64 says about our standard
example. We noted above that we could apply Theorem 6.62 with G = SLn(k)
and deduce (with two exceptions) that PSLn(k) is simple. We get a stronger
result if we instead apply Theorem 6.64 with G = GLn(k), B equal to the
upper-triangular group, U equal to the strict upper-triangular group, and T
equal to the group of diagonal matrices. The normal closure G1 of U is SLn(k),
since the latter is generated by elementary matrices. So the conclusion is that
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(if we exclude the two exceptional cases) every subgroup of GLn(k) that is
normalized by SLn(k) either is contained in the center of GLn(k) or con-
tains SLn(k).

We will see further applications of the theorem later in this chapter, as
well as in the next chapter.

Exercise 6.66. Did the proof of Theorem 6.64 use the assumption that T
fixes Σ pointwise, or could we have just assumed that T stabilizes Σ?

*6.3 Twin BN-Pairs and Twin Buildings

Just as a strongly transitive group action on a building corresponds to a BN-
pair, we will see that a strongly transitive group action on a twin building
corresponds to a “twin BN-pair.” The first step is to figure out what we
should mean by a strongly transitive action on a twin building. We assume
that the reader is familiar with the material of Section 5.8 on twin buildings.

6.3.1 Group Actions on Twin Buildings

In the following, C = (C+, C−) denotes a twin building of type (W,S), and G is
a group. (As usual, we have suppressed the codistance δ∗ from the notation.)

Definition 6.67. We say that G acts on C if it acts simultaneously on the
two sets C+ and C− and preserves Weyl distances and the codistance. This
means that for all g ∈ G, all C,C ′ ∈ C+, and all D,D′ ∈ C−, we have

(1) δ+(gC, gC ′) = δ+(C,C ′).
(2) δ−(gD, gD′) = δ−(D,D′).
(3) δ∗(gC, gD) = δ∗(C,D).

Remark 6.68. In view of Lemma 5.143, (3) can be replaced by

(3′) C op D =⇒ gC op gD.

Assume that G acts on C, and fix a “fundamental” pair of chambers
(C+, C−), where C+ ∈ C+, C− ∈ C−, and C+ op C−. Let B± be the sta-
bilizer of C±:

B+ := {g ∈ G | gC+ = C+} ,

B− := {g ∈ G | gC− = C−} .

Next, the choice of (C+, C−) yields a “fundamental twin apartment” Σ =
(Σ+, Σ−) = Σ {C+, C−}, which is the unique twin apartment containing
(C+, C−) by Proposition 5.179. This leads to two more subgroups of G:

N := {g ∈ G | gΣ = Σ} ,

T := {g ∈ G | gC = C for all C ∈ Σ+ ∪Σ−} .
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Note, finally, that G acts on the apartment systemsA+, A−, andA introduced
in Definition 5.180, since it preserves distances and codistances.

The first results concerning the groups B+, B−, and N do not require any
transitivity assumptions.

Lemma 6.69. With the notation above, we have:

(1) N is the stabilizer of Σ+ as well as the stabilizer of Σ−.
(2) T is the pointwise fixer of each Σε, i.e.,

T = {g ∈ G | gC = C for all C ∈ Σ+} ,

= {g ∈ G | gC = C for all C ∈ Σ−} .

(3) B+ ∩B− = B+ ∩N = B− ∩N = T .

Proof. (1) follows immediately from the fact that Σε, for ε = + or −, has only
one twin partner with which it can form a twin apartment, namely Σ−ε (see
Proposition 5.179(2)). And if an element of N fixes Σε pointwise, then it also
has to fix Σ−ε pointwise, since the action preserves opposition. This yields (2).
Now the stabilizer in N of Cε fixes Σε pointwise by the standard uniqueness
argument. Therefore, B+ ∩ N = T = B− ∩ N . Finally, B+ ∩ B− stabilizes
Σ = Σ {C+, C−}, and hence B+ ∩ B− ⊆ T by the previous argument; the
opposite inclusion is trivial. 	


We remark in passing that T is the kernel of the canonical homomorphism
from N to W , where the latter is identified with the group of isometries of Σε

for ε = ±. Moreover, we get the same homomorphism N →W for each choice
of ε. Indeed, consider an element n ∈ N , and suppose that its action on Σ+

is given by w ∈W . Then δ+(C+, nC+) = w; hence

δ−(C−, nC−) = δ∗(C+, nC−) = δ+(C+, nC+) = w ,

since all the chambers that occur are in Σ {C+, C−} = Σ {nC+, nC−}. Thus
n also acts as w on Σ−, as claimed. If the action of G is strongly transi-
tive in the sense to be defined below, then N acts transitively on Σε, so the
homomorphism N → W is surjective and W ∼= N/T .

By analogy with the theory of Section 6.1, one might imagine several
reasonable transitivity conditions to impose on the action of G on C. It turns
out that they are all equivalent:

Lemma 6.70. The following conditions are equivalent:

(i) For any w ∈W , G acts transitively on

{(C,D) ∈ C+ × C− | δ∗(C,D) = w} .

(ii) For ε = + or −, G acts transitively on Cε, and Bε acts transitively on
{D ∈ C−ε | δ∗(Cε,D) = w} for each w ∈ W .
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(iii) G acts transitively on {(C,C ′) ∈ C+ × C− | C op C ′}.
(iv) G acts transitively on A, and N acts transitively on

{(C,C ′) ∈ Σ+ ×Σ− | C op C ′} .

(v) For ε = + or −, G acts transitively on Aε, and N acts transitively on Σε.

(Note that we are taking the W-metric point of view here, so Σε in (v) is a
set of chambers.)

Proof. The equivalence of (i) and (ii) is routine, and trivially (i) =⇒ (iii).
Suppose now that (iii) is satisfied. Then (by Proposition 5.179) G acts
transitively on A. And if g ∈ G satisfies g(C+, C−) = (C,C ′) for some
(C,C ′) ∈ Σ+ × Σ− with C op C ′, then g is automatically in N since
Σ {C,C ′} = Σ. Hence (iii) =⇒ (iv). Now if G acts transitively on A, then
by the definition of A, A+, and A−, it also acts transitively on A+ and A−.
And the transitive action of N on {(C,C ′) ∈ Σ+ ×Σ− | C op C ′} is, in view
of the definition of twin apartments, equivalent to the transitive action of N
on Σ+ or Σ−. So (v) follows from (iv). We verify, finally, that (v) implies (i),
where we may assume that ε = + in (v).

Suppose we are given C,C1 ∈ C+, D,D1 ∈ C−, and w ∈ W with
δ∗(C,D) = w = δ∗(C1,D1). We have to find a g ∈ G such that g(C1,D1) =
(C,D). Choose a twin apartment containing (C,D) and a twin apartment
containing (C1,D1); this is possible by Proposition 5.179(3). Note that G,
acting transitively on A+, also acts transitively on A, since each element
of A+ is part of a unique twin apartment. So we may assume that (C,D) and
(C1,D1) are both contained in the fundamental twin apartment Σ. Applying
the transitive action of N on Σ+, we can also achieve C1 = C. But in the
twin apartment Σ, there is only one chamber D satisfying δ∗(C,D) = w (see
Lemma 5.173(3)). Hence also D1 = D. 	

Definition 6.71. We say that the action of G on C is strongly transitive if it
satisfies the five equivalent conditions of Lemma 6.70.

In view of condition (i), it would also be reasonable to call the action Weyl
transitive. However, since all these conditions are equivalent in the present
situation, we will stick to the more common term “strongly transitive.”

Corollary 6.72. Suppose that G acts strongly transitively on C.
(1) For ε ∈ {+,−}, G acts strongly transitively on the building Cε with respect

to the apartment system Aε. In particular, G acts Weyl transitively on C+.
(2) If C is thick, then (B+, N) and (B−, N) are BN-pairs in G with common

Weyl group N/T ∼= W .

Proof. The first assertion of (1) is immediate from the definition of strong
transitivity via condition (v) of Lemma 6.70, and the second assertion follows
from the first by Corollary 6.12. We already remarked after Lemma 6.69 that
W can be identified with N/T if N acts transitively on Σε. Assertion (2) now
follows from Theorem 6.56(2). 	
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We close this subsection by recording an analogue of Proposition 6.6(2).

Lemma 6.73. Suppose a group G acts strongly transitively on a twin building.
Given two twin apartments Σ,Σ′, there is an element g ∈ G such that gΣ =
Σ′ and g fixes every chamber in Σ ∩Σ′.

Proof. This is immediate if Σ ∩ Σ′ = ∅, so we may assume without loss of
generality that Σ+ ∩Σ′

+ contains a chamber C. By strong transitivity, there
exists g ∈ G such that gΣ+ = Σ′

+ and gC = C. Then necessarily gΣ− = Σ′
−,

and it follows by a variant of the standard uniqueness argument that g fixes
Σ ∩Σ′ pointwise. [For chambers in Σ+ ∩Σ′

+, one can use the usual standard
uniqueness argument. To see that g fixes every chamber D ∈ Σ−∩Σ′

−, observe
that δ∗(C, gD) = δ∗(C,D); since gD and D are both in Σ′

− and C is in Σ′
+,

it follows from Lemma 5.173(3) that gD = D.] 	


The following immediate consequence will be needed in Chapter 8.

Corollary 6.74. Suppose a group G acts strongly transitively on a twin build-
ing, let α be a twin root, and let FixG(α) be the pointwise fixer of α in G.
Then FixG(α) acts transitively on the set A(α) of twin apartments contain-
ing α. 	


6.3.2 Group-Theoretic Consequences

We now proceed as in Sections 6.1.4–6.1.7 to interpret strong transitivity in
group-theoretic terms, involving double cosets. Our discussion can be briefer
here, since the arguments are identical to those we have already seen. First
of all, strong transitivity in the form of condition (ii) of Lemma 6.70 implies
that the B+-orbits in C− are in 1–1 correspondence with the elements of W ,
with the orbit of a chamber D ∈ C− corresponding to w = δ∗(C+,D). But the
B+-orbits in C− correspond to the B+-orbits in G/B−, so we get a bijection

B+\G/B− ∼−→W ,

given by
B+gB− �→ δ∗(C+, gC−) (6.21)

for g ∈ G. We claim that the inverse of this bijection is given by

w �→ B+wB−

for w ∈ W . To see this, recall that by the paragraph following the proof of
Lemma 6.69, we have δ∗(C+, nC−) = w if n ∈ N represents w ∈ W . Hence
the double coset B+wB− := B+nB− maps to w under the map in (6.21).

Obviously, we could have interchanged the roles of C+ and C− above. We
therefore obtain the following analogue of the Bruhat decomposition:
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Proposition 6.75. If a group G acts strongly transitively on a twin building,
then, with the notation introduced above,

G =
∐

w∈W

BεwB−ε (6.22)

for each ε = ±. Given g ∈ G and w ∈W , we have

g ∈ BεwB−ε ⇐⇒ δ∗(Cε, gC−ε) = w . 	


Equation (6.22) is called the Birkhoff decomposition. For reasons that will
become obvious in the next subsection, we call attention to the following
consequence of it:

Corollary 6.76. If G acts strongly transitively on a twin building, then

B+s ∩B− = ∅

for all s ∈ S.

Proof. This just says that the double cosets B+sB− and B+B− are different.
	


Our discussion so far has made very little use of the fact that δ∗ is the
codistance function of a twin building. As before (see Theorem 6.21 and Propo-
sition 6.24), we get results about products of double cosets from the properties
of δ∗:

Proposition 6.77. Assume that G acts strongly transitively on C. For ε = ±,
w ∈ W , and s ∈ S, we have:

(1) BεsBεwB−ε ⊆ Bε {sw,w}B−ε.
(2) If l(sw) < l(w), then BεsBεwB−ε = BεswB−ε.
(3) If C is thick and l(sw) > l(w), then

BεsBεwB−ε = Bε {sw,w}B−ε .

Proof. We may assume ε = +. Given h ∈ B+sB+ and g ∈ B+wB−, we have
δ+(C+, hC+) = s and δ∗(hC+, hgC−) = w. Hence δ∗(C+, hgC−) ∈ {sw,w}
by Lemma 5.139(1), so hg ∈ B+ {sw,w}B−; this proves (1). If l(sw) < l(w),
then δ∗(C+, hgC−) = sw by (Tw2), whence (2). If l(sw) > l(w), then both
sw and w are possible by Lemma 5.139(2) and thickness, so (3) holds. 	


We close this subsection by noting that we can reconstruct the twin build-
ing C from group-theoretic data, as in the discussion at the end of Section 6.1.4.
That discussion already showed how to reconstruct (Cε, δε) for ε = ±, so it
remains only to describe the codistance δ∗. If we make the identifications
Cε = G/Bε, then the result is that

δ∗(gBε, hB−ε) = w ⇐⇒ g−1h ∈ BεwB−ε (6.23)

for g, h ∈ G, w ∈W , and ε ∈ {+,−}.
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6.3.3 Twin BN-Pairs

We have seen that a strongly transitive action of a group G on a twin building
imposes certain conditions on G. We now wish to reverse the procedure and
give axioms on a group G from which we can construct a strongly transitive
action on a twin building. For simplicity, we will treat only the thick case; see
Exercise 6.92 for the general case.

Definition 6.78. Let B+, B−, and N be subgroups of a group G such that
B+ ∩N = B− ∩N =: T . Assume that T � N , and set W := N/T . The triple
(B+, B−, N) is called a twin BN-pair with Weyl group W if W admits a set S
of generators such that the following conditions hold for all w ∈ W and s ∈ S
and each ε ∈ {+,−}:
(TBN0) (G,Bε, N, S) is a Tits system.

(TBN1) If l(sw) < l(w), then BεsBεwB−ε = BεswB−ε.

(TBN2) B+s ∩B− = ∅.

In this situation we also say that the quintuple (G,B+, B−, N, S) is a twin
Tits system.

Note that the definition is symmetric with respect to + and −. In the case
of (TBN2), we see this by right-multiplying by a representative of s in N .

Our discussion so far has shown the following:

Corollary 6.79. If G acts strongly transitively on a thick twin building of
type (W,S), then, with the notation introduced in Section 6.3.1, the quintuple
(G,B+, B−, N, S) is a twin Tits system. 	


Here, of course, we identify the given W with N/T so that S can be viewed
as a set of generators of the latter. Note that as in the theory of ordinary
BN-pairs, the corollary is still valid if N is replaced by any subgroup that
surjects onto N/T .

We now proceed to show that conversely, a twin BN-pair in a group G
gives rise to a thick twin building on which G acts strongly transitively. The
crucial step is to derive a Birkhoff decomposition from the TBN axioms.

Lemma 6.80. Let (G,B+, B−, N, S) be a twin Tits system. For each ε = ±
and all s ∈ S and w ∈ W ,

BεsBεwB−ε ⊆ Bε {s, w}B−ε . (6.24)

Equality holds if l(sw) > l(w).



6.3 Twin BN-Pairs and Twin Buildings 331

Proof. We may assume that ε = + and that l(sw) > l(w). Since (B+, N) is
a BN-pair, we have B+sB+sB+ = B+ ∪ B+sB+. Combining this with the
assumption l(sw) > l(w) and using (TBN1), we obtain

B+sB+wB− = B+s(B+wB−)
= B+s(B+sB+swB−)
= (B+sB+sB+)swB−

= (B+ ∪B+sB+)swB−

= B+swB− ∪B+sB+swB−

= B+swB− ∪B+wB− . 	


We can now derive the Birkhoff decomposition.

Proposition 6.81. Let (G,B+, B−, N, S) be a twin Tits system with Weyl
group W . Then

G =
∐

w∈W

BεwB−ε

for each ε ∈ {+,−}.

Proof. We may assume that ε = +. The proof is similar to the proof of
the Bruhat decomposition in Section 6.2.2, except that we do not have an
assumption analogous to (Bru1). So we begin by proving that B+wB− �=
B+B− for w �= 1 in W . Choose s ∈ S such that l(sw) < l(w). Assume, to get a
contradiction, that B+wB− = B+B−. Multiplying by B+s and using (TBN1),
we obtain

B+swB− = B+sB+B− = B+ {s, 1}B− ,

where the second equation follows from Lemma 6.80 (applied to w = 1). The
left side is a single double coset, but the right side consists of two distinct
double cosets by (TBN2), so we have a contradiction.

Next, we show that B+vB− = B+wB− =⇒ v = w for v, w ∈ W . We
argue by induction on min {l(v), l(w)}, which we may assume is equal to l(v).
The case l(v) = 0 is provided by the previous paragraph, so assume l(v) > 0,
and choose s ∈ S such that l(sv) < l(v). If B+vB− = B+wB−, then we can
multiply by B+s and apply (TBN1) to obtain B+svB− = B+sB+wB−. Since
there is only one double coset on the left side of this equation, the right side
must be the single double coset B+swB−. We therefore have sv = sw by the
induction hypothesis, and hence v = w.

Finally, we show that G =
⋃

w∈W B+wB−. To this end, note that (by
Lemma 6.80) the union is closed under left multiplication by N and B+. So it
is closed under left multiplication by G = B+NB+ and is therefore the entire
group G. 	


Given a twin Tits system (G,B+, B−, N, S) with Weyl group W = N/T =
〈S〉, we can now construct a (thick) twin building C of type (W,S) in the
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obvious way (see the end of Section 6.3.2): First, we take (Cε, δε), for ε = ±,
to be the building associated to the BN-pair (Bε, N). Thus Cε := G/Bε, with
δε(gBε, hBε) = w (for g, h ∈ G) if and only if g−1h ∈ BεwBε. We now define
the codistance

δ∗ : C+ × C− ∪ C− × C+ →W

by equation (6.23). It is easy to verify that C = (C+, C−) satisfies the ax-
ioms (Tw1)–(Tw3); see Exercise 6.88. Note, for future reference, the following
characterization of the opposition relation. Given g, h ∈ G, we have

gB+ op hB− ⇐⇒ δ∗(gB+, hB−) = 1 ⇐⇒ g−1h ∈ B+B− . (6.25)

There is a natural action of G on C by left translation. It is obvious that this
is indeed an action in the sense of Definition 6.67. As fundamental chambers
we take the cosets C+ := B+ and C− := B−. [These are opposite by (6.25)
with g = h = 1.] If (gB+, hB−) (with g, h ∈ G) is any other pair of opposite
chambers, then g−1h ∈ B+B−, so we can find b ∈ B+ and b′ ∈ B− such
that gb = hb′ =: x. Then (gB+, hB−) = (xB+, xB−) = x(C+, C−), so G acts
strongly transitively on C(G,B+, B−).

Definition 6.82. If (G,B+, B−, N, S) is a twin Tits system with associated
Coxeter system (W,S), the (thick) twin building of type (W,S) constructed
above with C+ = G/B+ and C− = G/B− will be called the twin building
associated to (G,B+, B−, N, S) and denoted by C(G,B+, B−).

Remark 6.83. We will see below that the notation is legitimate, i.e., that
C(G,B+, B−) does not depend on N . To get started, note that the following
are independent of N :

• the simplicial buildings ∆± associated to (C±, δ±) [since these are the
buildings ∆(G,B±); see Section 6.2.6];

• the opposition relation [see (6.25)];
• the numerical codistance d∗ [see Lemma 5.143];
• the fundamental chambers C+ and C−;
• the apartment systems A, A+, and A− [since these depend only on the

complete apartment systems in ∆± and on the opposition relation between
C+ and C−; see Remark 5.92(a) and Definition 5.171];

• the fundamental twin apartment Σ = Σ {C+, C−} [since this is the unique
element of A containing C+ and C−].

On the other hand, the following appear to depend on the choice of N :

• the Coxeter system (W,S);
• the Weyl distances δ± or, equivalently, the canonical type functions on ∆±;
• the (Weyl) codistance δ∗.

One could deal with these last three items using the ideas of Remark 6.58(a).
But it turns out that there is a much easier way. In fact, we will see below
that N itself is almost determined by B+ and B−.
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Although the fundamental twin apartment Σ does not depend on N , we
can describe it using N , as in the theory of BN-pairs. Namely,

Σε = {nCε | n ∈ N}

for ε ∈ {+,−}. To see this, we need only note that by the definition of δε

and δ∗ we have
δε(Cε, nCε) = w = δ∗(C−ε, nCε)

for all n ∈ N , where w = nT ∈ W . Our claim now follows from the defini-
tion of Σ {C+, C−}. This shows, in particular, that N stabilizes Σ and acts
transitively on Σ+ and Σ−. But there is no reason to expect N to be the
full stabilizer of Σ (which is the same as the stabilizer of Σ+ as well as the
stabilizer of Σ−). As in the discussion near the end of Section 6.2.5, the full
stabilizer of Σ (or Σ+ or Σ−) is the group

Ñ := NT̃ ,

where T̃ = B+∩B− is the set of elements of G that fix Σ+ (or Σ−) pointwise.
Obviously we could replace N by Ñ and still have a twin BN-pair with the
same associated twin building. So to get a 1–1 correspondence between twin
BN-pairs and strongly transitive actions on thick twin buildings, we should
impose a further condition:

Definition 6.84. The twin BN-pair (B+, B−, N) is said to be saturated if it
satisfies

T = B+ ∩B−

or, equivalently, if N is the full stabilizer of the fundamental twin apartment
of C(G,B+, B−).

The discussion leading up to this definition shows that (B+, B−, N) is
saturated if and only if one (or both) of the BN-pairs (Bε, N) is saturated in
the sense of Definition 6.57.

It is now easy to understand how much freedom there is in the choice of N
for a given B+ and B−. The first statement of the following lemma should be
compared with Lemma 6.59. The second statement has no counterpart in the
theory of ordinary BN-pairs.

Lemma 6.85.

(1) Let (B+, B−, N) be a saturated twin BN-pair in a group G. If N ′ is an
arbitrary subgroup of G, then (B+, B−, N ′) is a twin BN-pair if and only
if N ′T = N .

(2) If a pair of subgroups B+, B− of G is part of a twin BN-pair, then there
is a unique subgroup N ≤ G such that (B+, B−, N) is a saturated twin
BN-pair.
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Proof. (1) If N ′T = N , it is trivial that (B+, B−, N ′) satisfies the TBN ax-
ioms. Conversely, suppose that (B+, B−, N ′) is a second twin BN-pair with
the same groups B±. By Remark 6.83, our two twin BN-pairs give rise to the
same (simplicial) buildings ∆± and the same fundamental twin apartment Σ.
Since N ′ stabilizes Σ and N is the full stabilizer, it follows that N ′ ≤ N . We
can now apply Lemma 6.59 to conclude that N ′T = N .

(2) The existence of N was discussed prior to Definition 6.84, and unique-
ness follows from (1). 	


Remark 6.86. It is now clear that the twin building C(G,B+, B−) associated
to a twin BN-pair is independent of N , since it does not change if we replace
the given N by the full stabilizer Ñ as above, and this is independent of N
by Lemma 6.85(2).

We summarize the main results of this section in the following theorem.

Theorem 6.87.

(1) Let G be a group that acts strongly transitively on a thick twin build-
ing C = (C+, C−) of type (W,S). Let (C+, C−) ∈ C+ × C− be a pair of
opposite chambers, and let Σ = Σ {C+, C−} be the associated twin apart-
ment. Then, if we denote by B+, B−, and N the stabilizers of C+, C−,
and Σ in G, the triple (B+, B−, N) is a saturated BN-pair in G with
Weyl group W . The twin building C(G,B+, B−) associated to this twin
BN-pair is canonically isomorphic to C.

(2) Let (G,B+, B−, N, S) be a twin Tits system with Weyl group W . Then
C(G,B+, B−) is a thick twin building of type (W,S) on which G acts
strongly transitively. If we set C+ := B+, C− := B−, and Σ :=
Σ {C+, C−}, then we recover B± as the stabilizer of C± in G. Further-
more, N(B+ ∩ B−) is the stabilizer of Σ in G, and hence we recover N
as this stabilizer if the twin BN-pair (B+, B−, N) is saturated. 	


Exercises

6.88. Verify the axioms (Tw1)–(Tw3) for C(G,B+, B−).

6.89. Let (W,S) be a Coxeter system with W finite, and let w0 be the longest
element of W . Prove the following:

(a) If (B,N) is a BN-pair with Weyl group W , then (B,w0Bw0, N) is a twin
BN-pair

(b) If (B+, B−, N) is a twin BN-pair with Weyl group W , then B− =
w0B+w0.

6.90. Let (G,B+, B−, N, S) be a twin Tits system with infinite Weyl group.

(a) Show that B+ and B− are not conjugate in G.
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(b) Suppose (W,S) is irreducible, and let J be a proper subset of S. Show
that B+ is not conjugate to a subgroup of B−WJB−. Equivalently, no
proper subgroup of G can be parabolic with respect to both B+ and B−.

6.91. If (B+, B−, N) is a twin BN-pair in G, show that G is generated by B+

and B−.

6.92. How should we modify the TBN axioms if we want an analogue of
Theorem 6.87 that does not require thickness?

6.4 Historical Remarks

We began Chapter 4 by writing down, with no motivation, the strange-
looking axioms for buildings. These were reformulated in Chapter 5 in terms
of W -metric spaces. We then showed in the present chapter how the axioms
lead in a fairly natural way to equally strange-looking axioms for groups. In
this brief section we will attempt to put all of these axiom systems in their
historical context. They may still seem strange when we are done, but at least
you will have some idea of where they came from.

Our starting point is a 1954 paper of F. Bruhat [58] on the representation
theory of complex Lie groups. Bruhat was especially interested in the four
classical families An, Bn, Cn, Dn of simple groups G. Readers who are not
familiar with these can just think about the group G = SLn(C) for now;
this is the group of type An−1. [The group SLn(C) is not really simple, but
it is “almost simple.” More precisely, its center Z is finite, and the quotient
PSLn(C) := SLn(C)/Z is simple, as we saw in Section 6.2.7.]

At the time of Bruhat’s work, it had been known for a long time how to
associate to G a finite reflection group W , called the Weyl group of G. It is
given by W := N/T , where T is a “maximal torus” and N is its normalizer.
And people were becoming aware of the importance of a certain subgroup B ≤
G (which eventually became known as the “Borel subgroup” of G as a result
of the fundamental work of Borel [38]). What was not yet known, however,
was the connection between B and W provided by the Bruhat decomposition
G =

∐
w∈W BwB.

Bruhat discovered this while studying so-called induced representations.
Questions about these led him to ask whether the set B\G/B of double cosets
was finite. He was apparently surprised to discover, by a separate analysis for
each of the four families of classical simple groups, that the set of double
cosets was not only finite but was in 1–1 correspondence with W .

The Bruhat decomposition was a fundamental fact that had previously
gone unnoticed. Chevalley [81,83] picked up on it immediately, and it became a
basic tool in his work on the construction and classification of simple algebraic
groups. He replaced Bruhat’s case-by-case proof by a unified proof that applied
not only to the classical groups (types A–D) but also to the five exceptional
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groups (types E6, E7, E8, F4, and G2). Moreover, he worked over an arbitrary
field k, not just k = C. In particular, since k could be finite, one now had
for each of the types A–G examples of finite simple groups that admitted
a Bruhat decomposition, with the Weyl group W being the finite reflection
group of the given type. Finally, Chevalley’s work included a study of the
basic properties of the parabolic subgroups of the groups he constructed, now
known as Chevalley groups.

Meanwhile, Tits had been trying since the mid 1950s to find geometric
interpretations for the exceptional simple Lie groups. “Geometric” here refers
to incidence geometry, as exemplified by the close relationship between pro-
jective geometry and the group SLn. See [254] for Tits’s own account of this
project. One of his motivations was the hope that, armed with geometric in-
terpretations of the exceptional simple Lie groups, he would be able to define
analogues of them over arbitrary fields, and in particular, he would have new
families of finite simple groups. (The cases G2 and E6 had previously been
done by Dickson.) But then Chevalley, as we noted above, constructed the
groups directly. So it was natural to turn the question around: Now that we
have the groups, can we construct the geometries? Although Tits had not yet
come up with the definitive notion of “building,” he knew that he needed re-
tractions to make the geometric theory work. So he studied Chevalley’s work
and, in the course of trying to construct geometries and retractions, arrived
at the axioms for a BN-pair.

This axiomatization can be found in a short 1962 paper [241], which con-
tains most of the results about BN-pairs that we have presented. [The only
serious omission from this paper is the proof that the Weyl group W associated
to a BN-pair is necessarily a Coxeter group; this fact was discovered a year
or two later by Tits [243] and, independently, by Matsumoto [160].] A second
paper [242] contains axioms for a class of incidence geometries, together with
an indication of how a group with a BN-pair leads to such a geometry.

The axioms given in that paper look very much like the three axioms for
buildings with which we began Chapter 4, except that they are stated in terms
of incidence geometries instead of simplicial complexes. One also finds in this
paper some of the fundamental ideas in the theory of buildings, such as re-
tractions onto apartments (phrased in the language of incidence geometry).
The paper makes extensive use of flags but does not explicitly talk about flag
complexes. It was only a matter of time before Tits focused on the flag com-
plexes themselves and restated his axioms in terms of simplicial complexes.
The first published account of this was given in a 1965 Bourbaki Seminar ex-
posé [243], where buildings were called “complexes with Weyl structure.” This
paper contains, among other things, an outline of much of the basic theory
of Coxeter complexes and buildings that we gave in Chapters 3 and 4. It also
contains the correspondence between BN-pairs and strongly transitive actions
on thick buildings.

Our story so far has described the development of the simplicial approach
to buildings, as in Chapter 4. Tits first introduced the newer approach in a
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1981 paper [255]. This definition also evolved over a period of years, and it
reached a mature form in the late 1980s. The final version, in which buildings
are thought of as W -metric spaces as in Chapter 5, was first published in [261,
Section 2.1]. Since apartments were no longer part of the definition, this made
it natural to replace strongly transitive actions by Weyl-transitive actions and
to replace BN-pairs by what we have called Tits subgroups. This is sketched
in [261, Section 3.1], but the basic ideas, formulated without the aid of δ,
can already be found in Bourbaki [44, Chapter IV, Section 2, Exercises 3, 10,
and 11]. Bourbaki attributes these exercises to Tits in a footnote on p. 39.

This completes our highly condensed account of the origin of buildings.
We hope it gives you some idea, admittedly vague, as to how Tits discovered
buildings by combining (a) years of work on incidence geometries associated
with groups and (b) ideas inspired by Chevalley’s theory.

Remark 6.93. Even though Tits did not succeed in his original goal of con-
structing exceptional algebraic groups via geometry, his geometric approach
to group theory did in fact yield some new groups. For example, in a 1959
paper [239] Tits gave a geometric construction of the group now known as
the twisted Chevalley group of type 3D4. Moreover, generalized m-gons (Def-
inition 4.20), which are essentially the rank-2 spherical buildings, made their
first appearance in this paper.

There is an interesting footnote to this story. We mentioned that the types
A–G of finite reflection groups all arose in Chevalley’s work as the Weyl
group W of a finite simple group with a BN-pair. What about the remaining
types H3, H4, and I2(m) (m = 5 or m ≥ 7)? The type I2(8) (dihedral group of
order 16) was observed fairly early; it arises, for instance, from a BN-pair in a
finite simple group called the Tits group, of order 17,971,200 = 211 ·33 ·52 ·13.
[See also Section 9.9 below for more examples of this type.] But it turns out
that this is the only “unusual” Weyl group that can arise from a finite group
(simple or not) with a BN-pair. This is a consequence of a theorem of Feit and
Higman [101], which can be restated as follows in the language of buildings:

Theorem 6.94. If ∆ is a finite thick building, then every connected compo-
nent of its Coxeter diagram is of type An, Cn, Dn, En, F4, G2, or I2(8).

Here are a few words about the proof. First, it suffices to consider the case
that ∆ is irreducible, by which we mean that its Coxeter diagram is connected.
For in the general case, ∆ can be decomposed as a join of irreducible buildings,
one for each component of the diagram. Next, it suffices to consider the case
that ∆ is of rank 2. For the only other cases to worry about are H3 and H4;
and if ∆ had either of these types, then a suitable link in ∆ would be a finite
thick building of the prohibited type I2(5).

We are therefore reduced to the following question: For which m ≥ 3 do
there exist finite generalized m-gons in which every point is on at least three
lines and every line contains at least three points? The bulk of the Feit–Higman
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paper is devoted to answering this question, and what they show is that the
only possibilities for m are 3, 4, 6, and 8. These correspond, respectively, to
the types A2, C2, G2, and I2(8), whence the theorem.

Finally, if we drop the finiteness assumption but instead impose a sym-
metry condition called the Moufang property, then it turns out that the con-
clusion of the Feit–Higman theorem remains true. It follows that there are no
thick buildings (finite or infinite) of type H3 or H4. We will explain this in the
next chapter (see Remark 7.60 and Corollary 7.61).

6.5 Example: The General Linear Group

Let G = GLn(k) (n ≥ 2), where k is an arbitrary field. [Everything we are
about to do goes through if we instead take G to be SLn(k), or PGLn(k),
or PSLn(k).] We have already obtained a BN-pair in G by using the action of G
on the complex ∆ of flags of proper nonzero subspaces of kn (Section 6.1.2).
This approach relies, of course, on the fact that ∆ is a building, which we
proved in Section 4.3.

In the present section we will give an alternative approach, which does not
depend on that result. Namely, we will simply verify the BN-pair axioms by
direct matrix computations. As a byproduct, we will obtain a new proof that
the flag complex ∆ is indeed a building.

Let B ≤ G be the upper-triangular group, i.e., the stabilizer of the stan-
dard flag

[e1] < [e1, e2] < · · · < [e1, . . . , en−1] ,

where e1, . . . , en is the standard basis of kn. Let N ≤ G be the monomial
group, i.e., the stabilizer of the set of lines {[e1], . . . , [en]}. Then N acts as a
group of permutations of this set, and we obtain a surjection from N onto the
symmetric group on n letters. The kernel of this homomorphism is T := B∩N ,
which is the diagonal subgroup of G. So N normalizes T , and W := N/T can
be identified with the symmetric group on n letters.

To see that B and N generate G, we need only note that the subgroup
〈B,N〉 contains the lower-triangular group, which is wBw−1 for a suitable
w ∈W ; hence it contains all elementary matrices. [Recall that an elementary
matrix is one that has 1’s on the diagonal and exactly one nonzero off-diagonal
entry; left multiplication (resp. right multiplication) by such a matrix corre-
sponds to an elementary row (resp. column) operation.] It now follows from
elementary linear algebra that 〈B,N〉 = G.

Let S ⊂ W be the standard set of generators {s1, . . . , sn−1}, where si is
the transposition that interchanges i and i + 1. To simplify the notation, we
will verify the axioms (BN1) and (BN2) only for s = s1; the other elements
of S are treated similarly. Our s, then, is represented by any monomial matrix
of the form
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⎛

⎜⎜⎜⎜⎜
⎝

0 ∗
∗ 0

∗
. . .

∗

⎞

⎟⎟⎟⎟⎟
⎠

,

where the blank regions are understood to be filled with zeros.
Axiom (BN1) says that sBw ⊆ BswB ∪ BwB. Multiplying on the right

by w−1, we can rewrite this as

sB ⊆ BsB′ ∪BB′,

where B′ = wBw−1. In other words, we must show that any matrix in sB is
reducible to either s or 1 via left multiplication by B and right multiplication
by B′. It turns out that we will need to use only the elementary matrices in
B and B′, so that we will simply be doing some elementary row and column
operations (also known as “pivoting”).

Note first that left multiplication by upper-triangular elementary matrices
allows us to pivot upward, i.e., to add a multiple of a row to any higher row.
Now a typical element of sB has the form

⎛

⎜⎜
⎜⎜⎜
⎝

0 ∗ ∗ . . . ∗
∗ ∗ ∗ . . . ∗

∗ . . . ∗
. . .

...
∗

⎞

⎟⎟
⎟⎟⎟
⎠

,

which is easily reduced to
⎛

⎜
⎜⎜⎜⎜
⎝

0 ∗
∗ ∗

∗
. . .

∗

⎞

⎟
⎟⎟⎟⎟
⎠

by pivoting upward. If the (2, 2)-entry is zero, then we have already reduced
the matrix to s. So we may assume that all three ∗’s in the upper left 2 × 2
block are nonzero.

Now let’s use right multiplication by B′. To avoid messing up what we
have already achieved, we will use only B′ ∩GL2; here GL2 is identified with
the subgroup

{g ∈ GLn | g[e1, e2] = [e1, e2] and gei = ei for i > 2} .

Note that B′ = wBw−1 is the stabilizer of the flag

[ew(1)] < [ew(1), ew(2)] < · · · < [ew(1), . . . , ew(n−1)] .
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It follows easily that B′ ∩ GL2 is the stabilizer in GL2 of the line spanned
by either e1 or e2, whichever occurs first in the list ew(1), . . . , ew(n). In other
words, B′ ∩GL2 is the upper-triangular subgroup of GL2 if w−1(1) < w−1(2)
and the lower-triangular subgroup otherwise.

Looking at the elementary matrices in B′ ∩GL2, we see that we now have
a column operation available: If w−1(1) < w−1(2), then we can add a multiple
of column 1 to column 2, and otherwise we can add a multiple of column 2 to
column 1. In the first case, we pivot on the (2, 1)-entry of our matrix above in
order to clear out the (2, 2)-entry; this reduces the matrix to s. In the second
case, we pivot on the (2, 2)-entry in order to clear out the (2, 1)-entry; the
resulting matrix is in B, and we are done. (Note that the proof of (BN1)
actually showed that sBw ⊆ BswB for half of the elements w ∈ W . This
should not be surprising.)

Finally, it is trivial to check that (BN2) holds; for we have

sBs =

⎛

⎜⎜⎜⎜
⎜
⎝

∗ 0 ∗ . . . ∗
∗ ∗ ∗ . . . ∗

∗ . . . ∗
. . .

...
∗

⎞

⎟⎟⎟⎟
⎟
⎠

� B .

Having verified the BN-pair axioms [with remarkably little effort], we ob-
tain a building ∆(G,B). Let’s show that this building is isomorphic to the
complex ∆ of flags of proper nonzero subspaces of kn. Consider the action
of G on ∆. If C is the standard flag, it is immediate that C := ∆≤C is a
simplicial fundamental domain for the action. Moreover, the stabilizers of the
faces of C are precisely the standard parabolic subgroups of G. Indeed, they
are standard parabolics, since they contain B, and it is trivial to verify that
they are all distinct. Since C has 2n−1 faces and G contains only 2n−1 stan-
dard parabolics (one for each subset of S), the stabilizers must exhaust the
standard parabolics. The desired isomorphism now follows easily. In partic-
ular, we have obtained a group-theoretic proof, independent of Section 4.3,
that the flag complex ∆ is a building.

Finally, we recall from Section 6.2.7 that the existence of this BN-pair
leads to results about the normal subgroups of G and, in particular, to the
result that PSLn(k) is simple (unless n = 2 and k = F2 or F3).

6.6 Example: The Symplectic Group

Let k continue to be an arbitrary field. Let 〈−,−〉 be the bilinear form on k2n

(n ≥ 1) defined as follows on the standard basis vectors:

〈ei, ej〉 =

⎧
⎪⎨

⎪⎩

0 if i + j �= 2n + 1,

1 if i + j = 2n + 1 and i < j,

−1 if i + j = 2n + 1 and i > j.
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If we denote the standard basis vectors by e1, e2, . . . , en, fn, fn−1, . . . , f1, then
the nonzero “inner products” above can be written more simply as

〈ei, fi〉 = 1 = −〈fi, ei〉 .

The bilinear form 〈−,−〉 is alternating, by which we mean that 〈v, v〉 = 0
for all v. [This implies skew-symmetry: 〈v, v′〉 = −〈v′, v〉. Conversely, skew-
symmetry of a bilinear form implies that the form is alternating, provided
char k �= 2.]

It is easy to explicitly compute 〈−,−〉 in terms of coordinates: If we write
a typical element of k2n as a pair (X,Y ) with X,Y ∈ kn, then we have

〈
(X,Y ), (Z,W )

〉
= X ·W ′ − Y · Z ′,

where the prime means “reverse the coordinates” and the dot denotes the
ordinary dot product of vectors in kn:

(x1, . . . , xn) · (y1, . . . , yn) :=
n∑

i=1

xiyi .

When n = 1, for instance, 〈v, w〉 is simply the determinant of the 2×2 matrix
with v and w as columns.

Definition 6.95. The symplectic group Sp2n(k) is the group of linear auto-
morphisms g of k2n that preserve 〈−,−〉, i.e., that satisfy 〈gv, gw〉 = 〈v, w〉
for all v, w ∈ k2n. It is enough to check this equation when v and w are ba-
sis vectors. So an element of Sp2n(k) is a 2n × 2n matrix g whose columns
v1, . . . , v2n satisfy the same inner product relations as the standard basis vec-
tors e1, . . . , e2n. When n = 1, this simply says that det g = 1; thus Sp2 = SL2.

For each i = 1, . . . , n there is a copy of Sp2 [= SL2] in Sp2n, which stabilizes
the plane [ei, fi] and fixes all basis vectors other than ei and fi. Taking n = 2
and i = 1, for instance, we obtain a copy of SL2 in Sp4 that looks like this:

⎛

⎜⎜
⎝

∗ ∗
1 0
0 1

∗ ∗

⎞

⎟⎟
⎠ .

In addition, there are various ways to embed GL2 in Sp2n. Namely, given
1 ≤ i < j ≤ n, there is a copy of GL2 that stabilizes [ei, ej ] and [fi, fj ] and
fixes all basis vectors other than these four; an automorphism g of this type
can do anything at all on [ei, ej ], but its effect on [fi, fj ] is then forced by the
requirement that g be symplectic. Suppose, for example, that we take n = 2
again and try to construct an element g ∈ Sp4 that is given by an elementary
matrix ( 1 a

0 1 ) on [e1, e2] and that stabilizes [f1, f2] = [e4, e3]. Then g must have
the form
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⎛

⎜
⎜
⎝

1 a
0 1

∗ ∗
∗ ∗

⎞

⎟
⎟
⎠ ,

and a simple computation shows that this will be symplectic if and only if the
lower right 2× 2 block is

(
1 −a
0 1

)
. Finally, for each i < j as above there is also

a copy of GL2 in Sp2n that stabilizes [ei, fj ] and [ej , fi].
Call a symplectic matrix elementary if it is the image of a 2 × 2 elemen-

tary matrix under one of the embeddings described in the three previous
paragraphs. The reader might find it a useful exercise to explicitly write down
all the types of elementary matrices in Sp4. (There are two copies of SL2 and
two copies of GL2, hence 8 types of elementary matrices.) One can also check
as an exercise that Sp2n is generated by elementary matrices. The idea is to
interpret multiplication by elementary matrices in terms of row and column
operations. It is then easy to use these operations to reduce any symplectic
matrix to the form (

I
A

)
,

where I and A are n× n matrices and I is the identity. But then A is forced
to be the identity also, since the matrix is symplectic.

We need one last bit of terminology before constructing a BN-pair.

Definition 6.96. A subspace V ≤ k2n is called totally isotropic if 〈v, v′〉 = 0
for all v, v′ ∈ V . This is equivalent to saying that V ≤ V ⊥, where V ⊥ is the
orthogonal subspace, defined in the usual way:

V ⊥ := {u ∈ V | 〈u, v〉 = 0 for all v ∈ V } .

For example, a subset of the standard basis spans a totally isotropic sub-
space provided it contains no pair {ei, fi}. The chain of totally isotropic sub-
spaces

[e1] < [e1, e2] < · · · < [e1, . . . , en]

will be called the standard isotropic flag in k2n. Note that the subspaces
orthogonal to these totally isotropic subspaces form a descending chain

[e1, . . . , e2n−1] > [e1, . . . , e2n−2] > · · · > [e1, . . . , en] ;

so if we take the standard isotropic flag together with the orthogonal sub-
spaces, we get the standard ordinary flag in k2n (with the subspace [e1, . . . , en]
counted twice). Incidentally, the set of nonzero totally isotropic subspaces,
with inclusion as the incidence relation, is an example of what is called an
n-dimensional polar space.

Now let B be the group of upper-triangular symplectic matrices, i.e., the
stabilizer in G = Sp2n(k) of the standard flag in k2n. If a symplectic matrix
stabilizes a subspace V , then it stabilizes V ⊥ too; hence B can also be de-
scribed as the stabilizer in G of the standard isotropic flag. Let N ≤ G be the
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group of symplectic monomial matrices, i.e., the stabilizer in G of the set of
lines {L1, . . . , Ln, L′

n, . . . , L′
1}, where Li = [ei] and L′

i = [fi]. Then T := B∩N
is the group of diagonal symplectic matrices, i.e., the group of matrices of the
form diag(λ1, . . . , λn, λ−1

n , . . . , λ−1
1 ). In particular, N normalizes T . Note that

T is isomorphic to the product of n copies of k∗; in the language of the theory
of algebraic groups, T is a torus of rank n. Although we will not need that
theory, the interested reader can refer to Appendix C for an explanation of
the terminology.

The quotient W := N/T can be identified with a group of permutations
of the set of 2n lines above. We will show that W is equal to the group W ′

consisting of all permutations that map each pair {Li, L
′
i} to another such

pair. The inclusion W ≤W ′ is immediate, since W preserves the orthogonality
relations among the given lines. To prove the opposite inclusion, note first that
W ′ is generated by the following set S := {s1, . . . , sn} of permutations: si for
i < n is the product of the two transpositions Li ↔ Li+1 and L′

i ↔ L′
i+1; and

sn is the transposition Ln ↔ L′
n. So the inclusion W ′ ≤ W follows from the

easy observation that each s ∈ S can be represented by a symplectic monomial
matrix in one of our embedded SL2’s or GL2’s.

One can now use elementary row and column operations, exactly as in the
case of GLn, to complete the proof that we have a BN-pair. Details are left to
the reader. [You might want to check (BN1) for n = 2 and s = s1, for instance,
just to convince yourself that the same method really does work.] The crucial
thing that keeps the proof from becoming unpleasant is that each si is in a
GL2 or SL2; one is thereby able to reduce (BN1) to a 2×2 computation before
ever having to think about what the group B′ := wBw−1 looks like.

One can now check that the associated building ∆ = ∆(G,B) is isomorphic
to the flag complex of the set of nonzero totally isotropic subspaces. The
proof is essentially the same as the proof of the analogous statement for GLn,
provided one knows the basic linear algebra of alternating forms. This can
be found in many places, such as Artin [22, Chapter III] and Aschbacher [24,
Chapter 7].

Exercise 6.97. Draw a picture of the fundamental apartment in ∆ when
n = 2; it is a barycentrically subdivided quadrilateral, whose 8 vertices consist
of the totally isotropic subspaces spanned by subsets of the standard basis.

Remark 6.98. Note that the Weyl group W is isomorphic to the “signed
permutation group on n letters,” which is the finite reflection group of type Cn

(see Section 1.3). [Strictly speaking, type Cn was defined only for n ≥ 2 in
Section 1.3; but we make the convention that C1 = A1.] This calculation of W
is consistent with the fact that Sp2n is a classical group of type Cn.

Remark 6.99. The “inner product” 〈−,−〉 that we worked with may have
seemed arbitrary. But in fact, one can show that it is the typical nondegener-
ate alternating bilinear form, in the following sense: If V is a finite-dimensional
vector space with a nondegenerate alternating bilinear form 〈−,−〉, then
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dim V is even and V has a basis e1, . . . , en, fn, . . . , f1 whose inner products
look like those of our example. Proofs can be found in the books of Artin and
Aschbacher cited above.

Finally, we mention that the simplicity results of Section 6.2.7 imply
that the group PSp2n(k) := Sp2n(k)/ {±1} is simple for n ≥ 2, except
for PSp4(F2). The latter has a simple subgroup of index 2. [In fact, PSp4(F2)
happens to be isomorphic to the symmetric group S6, and its simple subgroup
of index 2 is the alternating group.] We have excluded the case n = 1 only
because Sp2 = SL2, which has already been treated. One needs to check, of
course, that Sp2n(k) [or its subgroup of index 2 in the exceptional case] is
perfect for n ≥ 2; see, for example, [22, Chapter V; 24, Section 22; 123, Chap-
ter 3].

Remark 6.100. We will see in Chapter 7 (see especially Sections 7.7.2
and 7.9) that there is a conceptual explanation for the fact that groups asso-
ciated with buildings often turn out to be perfect.

6.7 Example: Orthogonal Groups

Throughout this section we assume for simplicity that k is a field of char-
acteristic �= 2, although the theory extends to characteristic 2 with suitable
modifications.

6.7.1 The Standard Quadratic Form

The “standard” quadratic form, for us, is the one associated to the symmetric
bilinear form 〈−,−〉 on km (m ≥ 2) defined as follows on the standard basis
vectors e1, . . . , em:

〈ei, ej〉 =

{
1 if i + j = m + 1,

0 otherwise.

We will write m = 2n (resp. m = 2n + 1) if m is even (resp. odd), and we
will denote the last n basis vectors by fn, . . . , f1. The nonzero inner products,
then, are

〈ei, fi〉 = 1 = 〈fi, ei〉

and, if m = 2n + 1,

〈en+1, en+1〉 = 1 .

It is easy to explicitly compute 〈−,−〉 in terms of coordinates: Write a
typical vector v ∈ km as (X,Y ) if m is even and as (X,λ, Y ) if m is odd, with
X,Y ∈ kn and λ ∈ k; then we have
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〈
(X,Y ), (Z,W )

〉
= X ·W ′ + Y · Z ′ ,

〈
(X,λ, Y ), (Z, µ,W )

〉
= X ·W ′ + Y · Z ′ + λµ ,

where the prime and the dot product have the same meaning as in Section 6.6.
In particular, the associated quadratic form Q is given by

Q(X,Y ) = 2X · Y ′ or Q(X,λ, Y ) = 2X · Y ′ + λ2 .

This form is equivalent, under change of coordinates, to the form Q′ given by

Q′(z1, . . . , zm) = −z2
1 − · · · − z2

n + z2
n+1 + · · ·+ z2

m .

And if k contains
√
−1, then it is equivalent to the familiar quadratic form∑m

i=1 z2
i .

Definition 6.101. The orthogonal group Om(k,Q) is the group of linear au-
tomorphisms g of km that preserve 〈−,−〉 or, equivalently, Q. The special
orthogonal group SOm(k,Q) is defined to be the group of orthogonal ma-
trices of determinant 1. We will suppress Q from the notation and simply
write Om(k) and SOm(k) whenever it is clear from the context that we are
considering the standard quadratic form.

Note that SO2 is the “rank-1 torus” consisting of diagonal matrices
diag(λ, λ−1). It has index 2 in O2, the nontrivial coset being the set of matrices

(
0 λ−1

λ 0

)
,

which have determinant −1.
Let’s focus now on G = SOm, returning to the case of Om afterward. For

each i = 1, . . . , n we have a copy of SO2 in G that stabilizes [ei, fi] and fixes
all the other basis vectors. In case m = 2n + 1, we can extend this to an
embedding O2 ↪→ G using the “extra” basis vector v = en+1: For if g ∈ O2

has determinant −1, then we can copy g on [ei, fi] and then send v to −v in
order to make the determinant 1.

Next, given 1 ≤ i < j ≤ n, there are two ways of embedding GL2 in G =
SOm, exactly analogous to the two embeddings used for Sp2n. In particular,
this gives us many elementary matrices to work with.

We now construct the BN-pair in the usual way: B is the upper-triangular
subgroup of G, and N is the monomial subgroup. Then T := B ∩N consists
of the diagonal elements of G. If m = 2n, these elements necessarily have the
form

diag(λ1, . . . , λn, λ−1
n , . . . , λ−1

1 ) ,

and if m = 2n + 1 they have the form

diag(λ1, . . . , λn, 1, λ−1
n , . . . , λ−1

1 ) .
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In both cases, T is a “rank-n torus.” The Weyl group W := N/T can be
identified with a group of permutations of the 2n lines Li := [ei] and L′

i := [fi],
i = 1, . . . , n. This is clear if m = 2n, but it is also true if m = 2n+1; for en+1

is the only nonisotropic basis vector, so W necessarily fixes the line it spans.
If m = 2n + 1, then W is the permutation group called W ′ in our treat-

ment of Sp2n. One proves this by exhibiting elements of N that represent the
generators si of W ′ (i = 1, . . . , n) constructed in Section 6.6. For i < n, the
required element of N can be found in the embedded GL2 acting on [ei, ei+1]
and [fi, fi+1]. And for i = n, the required element can be found in the embed-
ded O2 acting on [en, en+1, fn]. Hence W is the reflection group of type Cn,
also said to be of type Bn (see Section 1.3). This calculation of W is consistent
with the fact that SO2n+1 is a classical group of type Bn.

If m = 2n, however, it is impossible to represent sn by an orthogonal
monomial matrix of determinant 1. The group W in this case turns out to be
a subgroup of index 2 in W ′. This subgroup is generated by the si for i < n
together with one additional element t, which is the product of the transposi-
tions Ln−1 ↔ L′

n and Ln ↔ L′
n−1. Note that t is in the embedded GL2 acting

on [en−1, fn] and [en, fn−1]. (We are assuming here that n ≥ 2; if n = 1, then
G = SO2, and we have already said everything there is to say about that
group.)

In both cases, we now have a set of n generators for W , and it is a routine
(although somewhat tedious) matter to verify the BN-pair axioms, using the
same methods as in Sections 6.5 and 6.6. We have already identified the Weyl
group in case m = 2n + 1. In case m = 2n, one can check, by computing
orders of products of generators, that W is of type Dn. [Strictly speaking, Dn

was defined only for n ≥ 4; but the appropriate convention is that D3 = A3

and that the diagram of type D2 is the union of two copies of the diagram
of type A1.] This calculation of W is consistent with the fact that SO2n is a
classical group of type Dn.

Remark 6.102. Did the definition of t above seem ad hoc? Was there a
different choice of t that seemed more natural to you? If so, you would have
struggled in vain to verify the BN-pair axioms for your choice. Indeed, we
know from the general theory that given B and N , there can be only one set
S for which the BN-pair axioms hold (Theorem 6.56).

Let’s try now to figure out what the building ∆(G,B) is. The näıve guess
is that it is the flag complex ∆ of nonzero totally isotropic subspaces of km.
This guess is correct if m is odd, and the proof is the same as the proofs of
the analogous assertions in Sections 6.5 and 6.6. But it is wrong if m is even,
as one can see in a variety of ways. For one thing, the flag complex ∆ has the
wrong type. [It is the flag complex of a polar space and hence has type Cn;
but we’ve already seen that the Weyl group of SO2n has type Dn.] For another
thing, one can show that the action of SO2n on C(∆) is not transitive. [There
are precisely two orbits.] Yet a third thing that goes wrong is that ∆ is not
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thick. [A simple computation shows that there are only two ways of extending
the flag

[e1] < · · · < [e1, . . . , en−1]

to a maximal flag.]
The correct answer, when m is even, turns out to be that ∆(G,B) is the

flag complex of the following so-called oriflamme geometry P : The elements
of P are the nonzero totally isotropic subspaces of k2n of dimension �= n− 1;
two such subspaces are called incident if one is contained in the other or if
both have dimension n and their intersection has dimension n − 1. As an
example of a flag in P we have the following chamber C:

[e1, . . . , en−1, en]
<

[e1] < [e1, e2] < · · · < [e1, . . . , en−2]
<

[e1, . . . , en−1, fn]

We can get some feeling for this by thinking about the case n = 2 and
describing P in the language of projective geometry: An isotropic line in k4 is
simply a point in the 3-dimensional projective space P

3 over k that lies on the
quadric surface X defined by Q = 0. And an isotropic plane in k4 is simply a
line in P

3 that is contained in X. Our geometry P , then, consists of lines in the
surface X, two such being called incident if they intersect. If you believe, as
asserted above, that the flag complex of P is a building of type D2 = A1×A1,
then it must be true that there are two types of lines in X, and that every
line of one type intersects every line of the other type (see Example 4.16).
One can actually see this directly, by exhibiting an isomorphism between X
and the direct product P

1 × P
1 of two copies of the projective line; the two

types of lines in X, then, are simply the two types of slices of the product.
Details can be found in van der Waerden [263, Section I.7], which contains an
interesting discussion of the groups SOm for 3 ≤ m ≤ 6.

Next, what happens if we look at the full orthogonal group Om instead
of SOm? For m odd, everything goes through with no essential change. In
particular, we again get a BN-pair, with the associated building being the
same as the building for SOm. This is not surprising, since Om = SOm×{±1}
if m is odd, so there is virtually no difference between the two groups.

When m is even, on the other hand, the situation is more complicated. One
still has an action of G = O2n on the oriflamme complex ∆, but the action
is not type-preserving. For it is easy to give examples of orthogonal matrices
that stabilize the flag C constructed above but do not fix it pointwise. So the
action of G on this building does not yield a BN-pair in G. We obtain, in-
stead, something called a generalized BN-pair. See Bourbaki [44, Section IV.2,
Exercise 8] to find out precisely what this means.

One further comment about G = O2n: In addition to the building ∆ of
type Dn, one still has the nonthick building of type Cn, consisting of flags of
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totally isotropic subspaces. The action of G on this building is type-preserving
and strongly transitive, so all of the results of Sections 6.1 and 6.2 are ap-
plicable except those that used thickness. In particular, we get a Bruhat de-
composition, with B equal to the upper-triangular subgroup of O2n [which
happens to be the same as the upper-triangular subgroup of SO2n] and with
the Weyl group being of type Cn. One thus has a choice of two geometries
associated to G, one of type Dn [which yields a generalized BN-pair] and one
of type Cn [which yields what could be called a “weak” BN-pair]. The former
might seem more natural, since G is the classical group of type Dn, but the
latter has had applications also; see, for instance, Vogtmann [276].

Finally, we remark that the results of Section 6.2.7 can be used to give a
simple subquotient of SOm(k), whose description is more complicated than in
the cases of GLn and Sp2n treated in the two previous sections. We will be
brief in our statement of the results, referring to [22, Chapter V; 24, Section 22;
123, Chapters 6 and 9] for more details. (See also Remark 6.100.) We assume
m ≥ 5 to avoid uninteresting cases or cases in which the orthogonal groups
can be described in terms of other classical groups. Recall also that we have
excluded fields of characteristic 2 from our discussion.

It turns out that SOm(k) is quite often not perfect, but its commutator
subgroup Ωm(k) is perfect, and the theory of Section 6.2.7 then shows that
Ωm(k)/Ωm(k)∩{±1} is simple. Moreover, SOm(k)/Ωm(k) ∼= k∗/(k∗)2. Thus,
for example, Ωm(k) = SOm(k) if k is algebraically closed. On the other hand,
Ωm(k) has index 2 in SOm(k) if k is finite. To complete the picture, we
need to know when −1 ∈ Ωm(k). This obviously cannot happen if m is odd,
since −1 /∈ SOm(k), so assume m = 2n. Then if

√
−1 ∈ k, we always have

−1 ∈ Ω2n(k), and otherwise −1 ∈ Ω2n(k) if and only if n is even. If k is a
finite field Fq, for example, then we can combine the two cases and say that
−1 ∈ Ω2n(k) if and only if qn ≡ 1 mod 4.

6.7.2 More General Quadratic Forms

Everything in the previous subsection goes through with very little change
if we replace our standard quadratic form by an arbitrary nondegenerate
quadratic form Q on a finite-dimensional vector space V (still assuming
char k �= 2). We describe the situation briefly, assuming that the reader has
some familiarity with quadratic forms. See, for instance [150, 181, 208, 215];
see also [24] for a treatment emphasizing the case that k is a finite field.

Choose a maximal totally isotropic subspace [e1, . . . , en], and choose vec-
tors f1, . . . , fn that are paired with the ei as in the standard form. In other
words, if 〈−,−〉 is the symmetric bilinear form associated with Q, then
〈ei, fi〉 = 1 and all other inner products among the ei and fi are zero. It
may happen that n = 0, i.e., that Q(v) = 0 only if v = 0; in this case Q
is said to be anisotropic and the building is empty. Otherwise Q is said to
represent 0 and is called isotropic. The integer n is independent of the choices
and is called the Witt index of Q.
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Let V0 be the orthogonal complement of [e1, . . . , en, f1, . . . , fn]. If V0 = 0,
then Q is the standard form on k2n. If V0 �= 0, the theory is similar to the case
of the standard form on k2n+1, with V0 playing the role of the line spanned
by en+1, and one gets a building of type Cn. Details are left to the interested
reader.

Remarks 6.103. (a) The theory even goes through, with minor modifica-
tions, if V is infinite-dimensional, provided the Witt index n is still finite.
Thus V0 is infinite-dimensional, but this is harmless.

(b) As in the case of the standard quadratic form, there is a (somewhat com-
plicated) simplicity theorem, whose statement we omit.

We close by spelling out in more detail what happens in case the field k
is finite. In this case a nondegenerate quadratic form on km is completely
determined up to equivalence by its discriminant, i.e., by the determinant
of any representing symmetric matrix. The discriminant is well defined as
an element of k∗/(k∗)2, which is a group of order 2. Concretely, suppose we
diagonalize the form and write it in suitable coordinates as

Q(x1, . . . , xm) =
m∑

i=1

λix
2
i

with λi ∈ k∗; then the discriminant is the product λ1 · · ·λm, viewed as an
element of k∗/(k∗)2. Convention: It will be convenient in what follows to use
angle bracket notation 〈λ1, . . . , λm〉 for a diagonal form as above.

In particular, there are precisely two equivalence classes of quadratic forms
for any fixed m ≥ 1. They can be represented, for instance, as 〈1, . . . , 1〉 and
〈1, . . . , 1, a〉, where a is any nonsquare. If the dimension m is odd, these two
forms are equivalent to scalar multiples of one another, as one can see by
checking the discriminant. (If one multiplies a form by any nonsquare, then
the discriminant changes if m is odd.) So there is only one orthogonal group in
this case, which is therefore the standard one discussed in Section 6.7.1. When
m is even, however, the two forms are fundamentally different. In fact, one
of them has Witt index n := m/2, as we already know, and this is generally
denoted by O+

m(k), while the other has Witt index m/2 − 1 and is denoted
by O−

m(k). The latter, then, gives rise to a thick building of type Cn, where
n = m/2− 1. (We assume n > 0, i.e., m > 2, so that the form is isotropic.)

6.8 Example: Unitary Groups

Let K be a field with an automorphism of order 2 called conjugation and
denoted by λ �→ λ̄. The motivating example is K = C with ordinary complex
conjugation. By a Hermitian form on a K-vector space V we mean a function
V ×V → K, denoted by v, w �→ 〈v, w〉, which is linear in the first variable and



350 6 Buildings and Groups

satisfies 〈w, v〉 = 〈v, w〉 for v, w ∈ V . This implies that the form is conjugate-
linear in the second variable, i.e., it is additive and satisfies 〈v, λw〉 = λ̄〈v, w〉
for v, w ∈ V and λ ∈ K. We assume that our form is nondegenerate.

There is a standard Hermitian form on Km, which should look familiar
by now. It is defined as follows on the standard basis vectors e1, . . . , em:

〈ei, ej〉 =

{
1 if i + j = m + 1,

0 otherwise.

We will write m = 2n (resp. m = 2n + 1) if m is even (resp. odd), and we
will denote the last n basis vectors by fn, . . . , f1. The nonzero inner products,
then, are

〈ei, fi〉 = 1 = 〈fi, ei〉

and, if m = 2n + 1,

〈en+1, en+1〉 = 1 .

Remark 6.104. Let k be the fixed field of the conjugation, so that K/k is a
Galois extension of degree 2. If the norm map N : K∗ → k∗ is surjective, then
every nondegenerate Hermitian form is equivalent to the standard one. This
is not the case for the canonical example with K = C, but it does hold if K
is a finite field. In this case we can write k = Fq, K = Fq2 , and λ̄ = λq. The
norm is then given by N(λ) = λq+1, and the surjectivity is easily verified.
[Use the fact that the multiplicative groups are cyclic.]

Definition 6.105. The unitary group U(V ) is the group of K-linear automor-
phisms of V that preserve 〈−,−〉. The special unitary group SU(V ) ≤ U(V ) is
the subgroup consisting of automorphisms of determinant 1. The groups de-
pend on the particular conjugation on K, which we have omitted from the no-
tation. If V = Km with the standard form, we will write Um(K) and SUm(K).

The construction of a BN-pair in U(V ) (or SU(V )) now proceeds as in the
case of the orthogonal groups, except that it is easier. In particular, U(V )
works as well as SU(V ), and they both yield the same thick building of
type Cn, where n is the Witt index, again defined to be the common dimen-
sion of the maximal totally isotropic subspaces. (In the case of the standard
form, the Witt index is the same number n that occurred in the definition
of the form.) The building can be identified with the flag complex of totally
isotropic subspaces of V . Details are left to the interested reader.

Finally, we remark that one can use the simplicity theorems of Section 6.2.7
to deduce that PSU(V ), which is defined to be SU(V ) modulo its center [con-
sisting of multiples of the identity by scalars of norm 1], is simple if dimV ≥ 2
and the Witt index is > 0, except for PSU2(F4), PSU2(F9), and PSU3(F4).
As usual, one must first show that PSU(V ) is perfect; see [24, Section 22;
123, Chapter 11]. See also Remark 6.100.
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6.9 Example: SLn over a Field with Discrete Valuation

Up to now, all of our examples of BN-pairs have had finite Weyl groups (and
hence spherical buildings). It turns out that many of the same groups that
occurred in those examples admit a second BN-pair structure whenever the
ground field comes equipped with a discrete valuation. This was first noticed
by Iwahori and Matsumoto [137] and was later generalized to a much larger
class of groups by Bruhat and Tits [59]. The Weyl group for this second BN-
pair is an infinite Euclidean reflection group, and the associated building has
apartments that are Euclidean spaces. We will illustrate this by treating the
groups SLn. But first we must review discrete valuations.

6.9.1 Discrete Valuations

Let K be a field and K∗ its multiplicative group of nonzero elements.

Definition 6.106. A discrete valuation on K is a surjective homomorphism
v : K∗ � Z satisfying the following inequality:

v(x + y) ≥ min {v(x), v(y)}

for all x, y ∈ K∗ with x + y �= 0. It is convenient to extend v to a function
defined on all of K by setting v(0) = +∞; the inequality then remains valid
for all x, y ∈ K. Note that we necessarily have v(−1) = 0, since Z is torsion-
free; hence v(−x) = v(x). It follows from this and the inequality above that
the set A := {x ∈ K | v(x) ≥ 0} is a subring of K; it is called the valuation
ring associated to K. And any ring A that arises in this way from a discrete
valuation is called a discrete valuation ring.

The group A∗ of units of A is precisely the kernel v−1(0) of v. So if we
pick an element π ∈ K with v(π) = 1, then every element x ∈ K∗ is uniquely
expressible in the form x = πnu with n ∈ Z and u ∈ A∗. In particular, K is
the field of fractions of A.

The principal ideal πA generated by π can be described in terms of v as
{x ∈ K | v(x) > 0}. It is a maximal ideal, since every element of A not in πA
is a unit. The quotient ring k := A/πA is therefore a field, called the residue
field associated to the valuation v.

Example 6.107. Let K be the field Q of rational numbers, and let p be a
prime number. The p-adic valuation on Q is defined by setting v(x) equal
to the exponent of p in the prime factorization of x. More precisely, given
x ∈ Q

∗, write x = pnu, where n is a (possibly negative) integer and u is a
rational number whose numerator and denominator are not divisible by p;
then v(x) = n. The valuation ring A is the ring of fractions a/b with a, b ∈ Z

and b not divisible by p. [The ring A happens to be the localization of Z at p,
but we will not make any use of this.] The residue field k is the field Fp of
integers mod p; one sees this by using the homomorphism A � Fp given by
a/b �→ (a mod p)(b mod p)−1, where a and b are as above.
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The valuation ring A in this example can be described informally as the
largest subring of Q on which reduction mod p makes sense. It is thus the
natural ring to introduce if one wants to relate the field Q to the field Fp.
This illustrates our point of view toward valuations: We will be interested in
studying objects (such as matrix groups) defined over a field K, and we wish
to “reduce” to a simpler field k as an aid in this study; a discrete valuation
makes this possible by providing us with a ring A to serve as intermediary
between K and k:

A K

k

Examples 6.108. Let K = k(t), the field of rational functions in one variable
over a field k.

(a) Let v = v0 be the valuation on K that gives the order of vanishing at 0 of
a rational function. In other words, if f(t) = tng(t), where t does not divide
the numerator or denominator of g(t), then v(f) = n. This is the analogue of
the p-adic valuation, with the polynomial ring k[t] playing the role of Z and
t playing the role of p. The valuation ring A is the set of rational functions
such that f(0) is defined, the maximal ideal is generated by π := t, and the
residue field A/πA can be identified with the original field k via f �→ f(0) for
f ∈ A.

(b) Now take v = v∞, the order of vanishing of a rational function at infinity.
In other words, if f(t) = g(t)/h(t) with g and h polynomials, then

v∞(f) := deg h− deg g .

Note that v∞(f(t)) = v0(f(1/t). The valuation ring A is the set of rational
functions such that f(∞) is defined, i.e., the degree of the numerator is less
than or equal to the degree of the denominator. We can take π = 1/t, and we
can identify the residue field with k via f �→ f(∞).

Returning now to the general theory, we note that the study of the arith-
metic of A (e.g., ideals and prime factorization) is fairly trivial:

Proposition 6.109. A discrete valuation ring A is a principal ideal domain,
and every nonzero ideal is generated by πn for some n ≥ 0. In particular, πA
is the unique nonzero prime ideal of A.

Proof. Let I be a nonzero ideal and let n := min {v(a) | a ∈ I}. Then I con-
tains πn, and every element of I is divisible by πn; hence I = πnA. 	


One consequence of this is that we can apply the basic facts about modules
over a principal ideal domain (e.g., a submodule of a free module is free). Let’s
recall some of these facts, in the form in which we’ll need them later.
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Definition 6.110. Let V be the vector space Kn. By a lattice (or A-lattice)
in V we will mean an A-submodule L < V of the form L = Ae1 ⊕ · · · ⊕ Aen

for some basis e1, . . . , en of V . In particular, L is a free A-module of rank n.
If we take e1, . . . , en to be the standard basis of V , then the resulting lattice
is An, which we call the standard lattice.

If L′ is a second lattice in V , then we can choose our basis e1, . . . , en for L
in such a way that L′ admits a basis of the form λ1e1, . . . , λnen for some
scalars λi ∈ K∗. This fact should be familiar for the case L′ ≤ L, and the
general case follows easily. [Choose a large integer M such that πML′ ≤ L,
and apply the usual theory to L′′ := πML′.] The scalars λi can be taken to
be powers of π, and they are then unique up to order. They are called the
elementary divisors of L′ with respect to L.

All of this follows from well-known results about modules over principal
ideal domains. But we will sketch the proof of part of it (namely, the existence
of the ei and λi) in the case at hand, where A is a discrete valuation ring; for
the proof involves ideas that will be needed later anyway.

Start with arbitrary bases of L and L′, and express the basis elements
of L′ as linear combinations of those of L; this yields an element of GLn(K).
It is easy to see that this matrix can be reduced to a monomial matrix by
means of integral row and column operations, where “integral” means that
the operation is given by multiplication by an elementary matrix in SLn(A).
[In other words, when we add a scalar multiple of one row or column to
another, the scalar is required to be in A.] To see that this is possible, choose a
matrix entry aij with v(aij) minimal. Then pivot to clear out everything other
than aij in the ith row and jth column, noting that this pivoting requires only
integral row and column operations. Now ignore the ith row and jth column
and repeat the process, using an element of minimal valuation in the rest of
the matrix. It is clear that we will eventually obtain a monomial matrix by
continuing in this way.

The row and column operations above correspond to changes of basis in
L and L′. So what we have just done is to replace the given bases of L and L′

by new ones, such that the new basis elements of L′ are scalar multiples of
the new basis elements of L. This completes the proof.

Note that if the matrix in GLn(K) that we started with above happened
to be in SLn(K), then the same would be true of the monomial matrix that
we ended with. So we obtain, as a byproduct of the proof, the following:

Proposition 6.111. SLn(K) is generated by its monomial subgroup together
with the elementary matrices in SLn(A). 	


We end this review of discrete valuations by commenting briefly on the
notion of completeness. A discrete valuation v induces a real-valued absolute
value on K, defined by

|x| := e−v(x) .

We then have



354 6 Buildings and Groups

|xy| = |x| · |y| and |x + y| ≤ max {|x|, |y|} .

This inequality is a very strong form of the triangle inequality. In particular,
we get a metric on K by setting d(x, y) := |x − y|. It therefore makes sense
to ask whether K is complete, in the sense that every Cauchy sequence con-
verges. If not, then one can form the completion K̂ of K by formally adjoining
limits of Cauchy sequences, in exactly the same way that one constructs R in
elementary analysis by completing Q. The only difference is that the construc-
tion is actually easier in the present context, because of the strong form of the
triangle inequality. In fact, one can build the completion purely algebraically
using inverse limits; see, for instance, Atiyah–MacDonald [27, Chapter 10].

The field operations and the function v extend to K̂ by continuity, and K̂
is again a field with a discrete valuation. Its valuation ring is the completion Â
of A (i.e., the closure of A in K̂), and its residue field is the same as that of K.
In case the residue field k is finite, one can show that Â is compact; since Â
is the closed unit ball in K̂, the latter is locally compact in this case.

The canonical example for all this is the p-adic valuation on Q discussed
above. The completion is the field Qp of p-adic numbers. It is a complete,
locally compact, discretely valued field, with residue field Fp. Its valuation
ring is called the ring of p-adic integers. Another familiar example is K = k(t)
with v = v0 as in Example 6.108(a). The completion can be identified with
the field k((t)) of formal Laurent series

∑
n∈Z

antn with an ∈ k and an = 0
for n � 0. [The point here is that the partial sums of such a series form a
Cauchy sequence because v (

∑m
i=n aiti) ≥ n.] Similarly, the completion with

respect to v∞ (Example 6.108(b)) is k((1/t)).

6.9.2 The Group SLn(K)

Let K continue to denote a field with a discrete valuation v, and let A, π,
and k be as in Section 6.9.1. We then have a diagram of matrix groups

SLn(A) SLn(K)

SLn(k)

which we will use to construct a BN-pair in SLn(K) by “lifting” the BN-pair
in SLn(k) that we studied in Section 6.5. More precisely, we will take B to
be the inverse image in SLn(A) of the upper-triangular subgroup of SLn(k),
but we will take N , as before, to be the monomial subgroup of SLn(K).
[It would not make sense to also construct N as an inverse image, since B
and N would then both be subgroups of SLn(A) and hence could not possibly
generate SLn(K).]

Note that B contains the upper-triangular subgroup of SLn(A); the sub-
group generated by B and N therefore contains both the upper-triangular
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and lower-triangular subgroups of SLn(A) and hence all elementary matrices
in SLn(A). So this subgroup is the whole group SLn(K) by Proposition 6.111.
The intersection T := B ∩ N is the diagonal subgroup of SLn(A), which is
easily checked to be normalized by N ; in fact, the conjugation action of N
on T simply permutes the diagonal entries of a matrix in T .

We need some notation in order to describe the group W := N/T . For any
commutative ring R, let N(R) (resp. T (R)) denote the monomial (resp. diag-
onal) subgroup of SLn(R). Then our N and T above are N(K) and T (A), so
W = N(K)/T (A). Let W = N(K)/T (K), identified as usual with the sym-
metric group on n letters. Then W is a quotient of W , and we have a short
exact sequence

1 → T (K)/T (A) →W → W → 1 .

This sequence splits, since the subgroup N(A)/T (A) of W maps isomorphi-
cally to the quotient W ; so we have

W ∼= F � W ,

where F := T (K)/T (A) ∼= (K∗/A∗)n−1. Note that the valuation v induces an
isomorphism K∗/A∗ ∼−→ Z, so the normal subgroup F above is free abelian
of rank n − 1. In order to understand the action of W on this free abelian
group, identify F with {(x1, . . . , xn) ∈ Z

n |
∑n

i=1 xi = 0}. [The isomorphism
of F with this group is obtained by applying v to the n diagonal entries
of an element of T (K).] The action of W on F , then, simply permutes the n
coordinates. We now need to find a suitable set of generators for W and verify
the BN-pair axioms. Let’s start with the case n = 2, deferring the general case
to Section 6.9.3.

When n = 2, we have W ∼= Z � {±1}, with the nontrivial action of {±1}
on Z; this is the infinite dihedral group. It is generated by s1 and u, where s1

is the nontrivial element of the {±1} factor and u is a generator of the infinite
cyclic normal subgroup F := T (K)/T (A) < W . So W is generated by the
set S := {s1, s2} of elements of order 2, where s2 := s1u. Let’s take u to be
represented by the element diag(π, π−1) ∈ T (K); then s1 is represented by

(
0 −1
1 0

)

and s2 is represented by
(

0 −1
1 0

)(
π 0
0 π−1

)
=
(

0 −π−1

π 0

)
.

Note that it is by no means clear, a priori, that we have made the right
choice of u—we could replace u by u−1 and still get a set of two generators
of W of order 2. But, as we noted when discussing SO2n in Section 6.7, at most
one of these choices can be “right” (in the sense that the BN-pair axioms hold).
We have, in fact, made the right choice, and one can easily verify the axioms.
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The verification of (BN1) is slightly tedious, since it requires consideration of
several cases. As an example, let’s take s = s2 and w = (s1s2)r, where r > 0.
In this case we will show that sBw ⊆ BswB, which is what should be true,
since l(sw) = l(w) + 1.

Note first that the subgroup B of SL2(K) can be described by the following
conditions on the valuations of the matrix entries:

(
v = 0 v ≥ 0
v ≥ 1 v = 0

)

.

Computing sBw, we find that its elements satisfy
(

v ≥ r v = −r − 1
v = r + 1 v ≥ −r + 1

)

.

The unique entry with minimal valuation is in the upper right-hand corner,
so we pivot at this position to clear out the diagonal entries. This requires
multiplication by elementary matrices of the form

(
1 0

π2a 1

)

with a ∈ A. Elementary matrices of this form are in B, so the pivoting op-
erations are legal and we have reduced our matrix to a monomial matrix
in SL2(K) whose upper right-hand corner has valuation −r − 1. This mono-
mial matrix is equivalent mod T to the matrix

(
0 −π−r−1

πr+1 0

)
,

which represents sw. This completes the verification of our special case
of (BN1). The other cases are equally easy.

Now let’s try to describe the building ∆(G,B). Note first that one of the
standard parabolics is SL2(A), since this is a subgroup containing B. Since
SL2(A) is the stabilizer in SL2(K) of the standard A-lattice A2 in K2, this
suggests that the vertices of ∆(G,B) should correspond to lattices in K2.
[There is, of course, an obvious action of SL2(K), and even GL2(K), on the
set of lattices.] On the other hand, our experience in Section 6.5 suggests that
∆ should admit an action of PGL2(K) := GL2(K)/Z, where Z is the group of
scalar multiples of the identity. So it is more reasonable to expect the vertices
to correspond to Z-orbits of lattices. With this as motivation, we proceed to
describe the building.

Call two A-lattices L,L′ in K2 equivalent if L = λL′ for some λ ∈ K∗.
Note that the scalar λ can then be taken to be a power of π. Let [L] denote
the equivalence class of a lattice L. If L is given as Af1 ⊕Af2 for some basis
f1, f2 of K2, then we will also write [[f1, f2]] for the class [L].
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We want to assign a type to a lattice class. To this end, consider the obvious
action of GL2(K) on the set of lattice classes. This action is transitive, and
the stabilizer of [A2] is Z ·GL2(A), where Z is as above. It follows that v(det g)
is an even integer for every g in this stabilizer. We can now say that a lattice
class Λ is of type 0 (resp. type 1) if v(det g) is even (resp. odd) for every
g ∈ GL2(K) such that g[A2] = Λ. In other words, the type of [[f1, f2]] is
v
(
det(f1, f2)

)
mod 2, where det(f1, f2) is the determinant of the matrix with

f1 and f2 as columns.
Call two distinct lattice classes Λ,Λ′ incident if they have representa-

tives L,L′ that satisfy
πL < L′ < L .

Note that the representatives πL,L′ then satisfy πL′ < πL < L′, so the
incidence relation is symmetric. Note also that in this situation, the elementary
divisors of L′ with respect to L are necessarily 1 and π, so we have Λ = [[f1, f2]]
and Λ′ = [[f1, πf2]] for some basis f1, f2 of K2. It follows that Λ and Λ′ are
of different types, so we have a plane incidence geometry.

Let’s show now that the flag complex ∆ of this geometry is isomorphic
to ∆(G,B) for G = SL2(K) as above. We will prove this, as usual, by finding
a fundamental domain and computing stabilizers. Let C be the edge with
vertices [[e1, e2]] and [[e1, πe2]], where e1, e2 is the standard basis of K2. Let
C ′ = {Λ,Λ′} be an arbitrary edge, with Λ of type 0. Then there is a basis
f1, f2 such that Λ = [[f1, f2]], Λ′ = [[f1, πf2]], and det(f1, f2) = π2ru for
some r ∈ Z and u ∈ A∗. Replacing f1 by π−ru−1f1 and f2 by π−rf2, we
still have Λ = [[f1, f2]] and Λ′ = [[f1, πf2]], but now det(f1, f2) = 1. So the
matrix g with f1 and f2 as columns is an element of G such that gC = C ′.
Since the action of G is type-preserving, it follows easily that C is a simplicial
fundamental domain.

The stabilizer of [A2] in G is SL2(K) ∩ (Z · GL2(A)) = SL2(A). And the
stabilizer of [[e1, πe2]] is the conjugate g SL2(A)g−1, where g := diag(1, π).
This conjugate is the subgroup of G defined by

(
v ≥ 0 v ≥ −1
v ≥ 1 v ≥ 0

)

.

The stabilizer of C, then, which is the intersection of the stabilizers of its two
vertices, is precisely B. The desired isomorphism ∆ ∼= ∆(G,B) follows easily.

The fundamental apartment Σ is obtained by applying the elements of the
monomial group N to C; it is a line, with vertices [[πae1, π

be2]], a, b ∈ Z. An
arbitrary apartment gΣ is the same sort of line, but with e1, e2 replaced by
an arbitrary basis of K2.

Remarks 6.112. (a) Since ∆(G,B) is a building of type ∞ , we know
from Section 4.4 that the flag complex ∆ is a tree. We could have simply
proven this directly (see Serre [217, Chapter II]) and deduced the BN-pair
structure in G without any matrix computations. (We would then have had
to check strong transitivity, but this is easy.)



358 6 Buildings and Groups

(b) This example shows that incomplete apartment systems arise naturally.
In fact, it is not hard to see that the apartment system GΣ := {gΣ | g ∈ G} is
complete if and only if the field K is complete with respect to the valuation v.
One can show further that if an arbitrary K is replaced by its completion K̂,
then the building ∆ remains the same—all that changes is the apartment
system, which gets replaced by the complete system of apartments. These
assertions, and their analogues for SLn with n > 2, will be proved in Sec-
tion 11.8.6. See also Serre [217, Section II.1]. Consider, for example, the case
that K is the field Q2 of 2-adic numbers. Then one can show that ∆ is the
regular tree of degree 3 (Figure 6.3), with uncountably many apartments.∗

If we instead take K = Q (with the 2-adic valuation), then we get the same

Fig. 6.3. The building for SL2(Q2).

tree, equipped with a certain countable apartment system.

(c) The isomorphism type of the tree ∆ associated to SL2(K) depends only
on the cardinality of the residue field k = A/πA. If k = F2, for instance,
then every vertex is on exactly 3 edges, so the tree is necessarily the one in
Figure 6.3. This shows that many different choices of (K, v) can yield the same
tree ∆, even if we stick to the case that K is complete. Thus there is no hope
of recovering the group G, or even the quotient Ḡ defined in Remark 6.30,

∗ Figure 6.3 was drawn by Kai-Uwe Bux; we are grateful to him for permission to
reproduce it here.
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from the tree ∆. In particular, one cannot expect that Ḡ is the group of
type-preserving automorphisms of ∆; see Exercise 6.114.

This discussion might seem to suggest that there is a very poor corre-
spondence between groups with a BN-pair and buildings, unlike the situation
for Coxeter groups and Coxeter complexes. But the tree case is atypical in
this regard, and the correspondence is much better for some other classes of
buildings; see Chapter 9 and Section 11.9.

Before moving on to SLn for n > 2, we look briefly at what happens
if we replace SL2(K) by GL2(K). It is clear that GL2(K) acts on the flag
complex ∆; but the action does not preserve types. This is the same situation
that we saw at the end of Section 6.7, so we obtain some kind of generalized
BN-pair structure in GL2(K). We illustrate this by proving one result about
double cosets in GL2(K).

Let (G,B,N, S) continue to have the same meaning as above, with G =
SL2(K), etc. The result to be proved is that

sBm ⊆ BsmB ∪BmB (6.26)

for any s ∈ S and any monomial matrix m ∈ GL2(K). Note first that m
stabilizes the fundamental apartment, so mC = wC for some w ∈ W . This
implies that mB′ = wB′, where B′ is the stabilizer of C in GL2(K). Now we
know that

sBw ⊆ BswB ∪BwB ,

so we can right-multiply by a suitable element of B′ to get

sBm ⊆ BswB′ ∪BwB′ = BsmB′ ∪BmB′ .

Since all elements of Bsm ∪ Bm have the same determinant as the elements
of sBm, we can replace B′ by B′ ∩ SL2(K) = B to get (6.26).

Exercises

6.113. Show that the canonical map SLn(A) → SLn(k) is surjective.

6.114. The purpose of this exercise is to show, by three different methods,
that the action of PSL2(Qp) on the tree ∆ constructed above is very far from
giving all automorphisms of ∆. Let G = PSL2(Qp) and let H be the full group
of type-preserving automorphisms of ∆.

(a) For any vertex u ∈ ∆, show that the stabilizer Hu induces all possible
permutations of the neighbors of u. Show that this is not true of Gu, on
the other hand, except for some small values of p.

(b) If g ∈ G is any element that stabilizes an apartment and acts as a reflec-
tion on it, show that g2 is the identity on the entire tree ∆. But it is easy
to construct elements h ∈ H of order �= 2 such that h acts as a reflection
on an apartment.
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(c) Show that the set of ends of ∆ can be identified with the projective line
over K, with its natural action of G = PSL2(K). On the other hand, H
induces many more automorphisms of the set of ends than those given
by elements of G.

6.115. Let Λ be the vertex [A2]. Recall that its stabilizer in SL2(K) is SL2(A).

(a) Show that the set of vertices of the link of Λ can be identified with the
projective line over k, on which SL2(A) acts via the canonical homomor-
phism SL2(A) � SL2(k).

(b) Let K = k(t) with the valuation v0 of Example 6.108(a). Show that
SL2(A) contains a subgroup U that fixes the vertex [[e1, πe2]] and per-
mutes the remaining vertices of the link of Λ simply transitively.

6.9.3 The Group SLn(K), Concluded

We continue with the notation of Section 6.9.2, but we now assume that
n ≥ 3. Recall that W = F � W , where F = T (K)/T (A) ∼= Z

n−1 and W =
N(A)/T (A). We need a set S = {s1, . . . , sn} of generators of W . For the first
n − 1 of these we use the standard generators of the symmetric group W ;
thus si for i < n is represented by a monomial matrix in the embedded
SL2(A) < SL2(K) ↪→ SLn(K) acting on [ei, ei+1]. And for sn we take the
element of W represented by

s̃n =

⎛

⎜⎜⎜⎜
⎜
⎝

0 −π−1

1
. . .

1
π 0

⎞

⎟⎟⎟⎟
⎟
⎠

.

This monomial matrix is in the embedded SL2(K) acting on [en, e1]. To see
that S generates W , note first that the subgroup W ′ := 〈S〉 contains W . Mul-
tiplying sn by a suitable element of W , we conclude that W ′ also contains the
element of F represented by diag(π, 1, . . . , 1, π−1). Conjugating this element
by W , we obtain a set of generators for F , so W ′ = W .

The verification of (BN2) presents no problem. To check (BN1), one pro-
ceeds as in Sections 6.5–6.7, the idea being to use row operations to reduce
to a 2× 2 matrix computation. As an illustration, here are the details for the
case n = 3 and s = s3.

The statement to be proved is that sB ⊆ BsB′∪BB′, where B′ := mBm−1

for some monomial matrix m of determinant 1. Motivated by what we just
did at the end of Section 6.9.2, let’s prove this inclusion more generally for an
arbitrary monomial matrix. Now an element of sB has the form

⎛

⎜
⎝

v ≥ 0 v ≥ 0 v = −1
v ≥ 1 v = 0 v ≥ 0
v = 1 v ≥ 1 v ≥ 1

⎞

⎟
⎠ ,
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so we start by pivoting at the upper right-hand corner to clear out the two
entries below it. (The row operations required for this are given by left mul-
tiplication by lower-triangular elements of B.) This leaves us with

⎛

⎜
⎝

v ≥ 0 v ≥ 0 v = −1
v ≥ 1 v = 0 0
v = 1 v ≥ 1 0

⎞

⎟
⎠ .

We can also make the middle entry (the one with v = 0) equal to 1; for this
can be achieved by multiplication by an element of T .

Now pivot on this middle entry to clear out the entries above and below
it. This yields ⎛

⎜
⎝

v ≥ 0 0 v = −1
v ≥ 1 1 0
v = 1 0 0

⎞

⎟
⎠ .

Pivoting at the lower left-hand corner, finally, reduces us to a matrix in the
copy of SL2 that contains s = s3:

⎛

⎜
⎝

v ≥ 0 0 v = −1
0 1 0

v = 1 0 0

⎞

⎟
⎠ .

For the rest of the proof we ignore the middle row and middle column
and work entirely in the SL2 that remains. We need some notation. Let
G3 := SL3(K) and let G2 be the embedded SL2(K) that we have just re-
duced to, i.e., G2 = {g ∈ G3 | ge2 = e2, g[e1, e3] = [e1, e3]}. Let B3 and B2

be the corresponding B’s. The matrix above, then, is an element of sB3 ∩G2,
and we wish to reduce it to 1 or s by multiplying on the left by B3 ∩G2 and
on the right by B′ ∩G2.

It is easy to check that B3∩G2 = B2 and that sB3∩G2 = s̃B2, where s̃ is
the monomial matrix s̃3 that we wrote down above. So we will have reduced
our problem about G3 to the same sort of problem for G2 [which we solved in
Section 6.9.2], provided B′ ∩G2 is a “B′-type” subgroup of G2. To finish the
proof, then, we need to understand what kind of subgroup of G3 can arise as
a B′, and we need to show that B′∩G2 is the “same kind” of subgroup of G2.

Let L be the standard lattice in K3, with basis e1, e2, e3. Then we can
identify L/πL with the vector space k3 over the residue field k. Note that any
g ∈ SL3(A) stabilizes L and hence acts on L/πL = k3; indeed, this is one way
of describing the homomorphism SL3(A) → SL3(k) that we wrote down at
the beginning of Section 6.9.2. We can now describe B = B3 as follows: Given
g ∈ G3, we have

g ∈ B3 ⇐⇒ gL = L and gC = C ,

where C is the standard flag in k3. Consequently, B′ = mBm−1 admits a
similar description:
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g ∈ B′ ⇐⇒ gL′ = L′ and gC ′ = C ′ ,

where L′ = mL and C ′ is the flag in L′/πL′ corresponding to C under the
isomorphism L/πL→ L′/πL′ induced by m.

Now the lattice L′ has a basis πae1, π
be2, π

ce3 for some a, b, c ∈ Z. So
the k-vector space L′/πL′ comes equipped with a “standard basis,” and C ′

is simply the “permuted standard flag” obtained from a permutation of that
standard basis. [The permutation that arises is the one corresponding to the
monomial matrix m.] It is now easy to describe B′ ∩G2: Let L′

2 be the lattice
in [e1, e3] with basis πae1, π

ce3; given g ∈ G2, we have

g ∈ B′ ∩G2 ⇐⇒ gL′
2 = L′

2 and gC ′
2 = C ′

2 ,

where C ′
2 is a certain permuted standard flag in L′

2/πL′
2. This characterization

of B′ ∩G2 as a subgroup of G2 is the exact analogue of the characterization
of B′ as a subgroup of G3, so we are done.

Remark 6.116. If we had simply tried to prove (BN1) instead of a general-
ization of it, then we would have assumed detm = 1. The only difference this
would have made is that we would have had a + b + c = 0 in the description
of L′. But the analogous sum a + c for L′

2 would not necessarily have been 0,
so we would still have needed the generalized (BN1) for the 2 × 2 case. In
other words, we needed to understand GL2, and not just SL2, in order to deal
with SLn for n ≥ 3.

The building ∆ associated to SLn(K) is a flag complex as in the case
n = 2: One considers classes of lattices in Kn, one assigns a type to any such
class by taking the valuation of a determinant and reducing mod n, and one
defines incidence exactly as before. The fundamental chamber is the simplex
with vertices [[e1, . . . , ei, πei+1, . . . , πen]], i = 1, . . . , n. Further details are left
to the interested reader.

There are a number of interesting things to say about this example, and
they motivate much of what we will do in Chapter 11 when we develop the
theory of Euclidean buildings. Consider first the Weyl group W = Z

n−1
� W .

[Recall from Section 6.9.2 that Z
n−1 is identified with the subgroup of Z

n

defined by x1 + · · ·+ xn = 0, and the symmetric group W acts by permuting
the n coordinates.] This Coxeter group is not one that we have seen before.
Computing the orders of the products sisj , one finds that its Coxeter dia-
gram is

. . .

where there are n vertices altogether. [This is the diagram when n ≥ 3; the
diagram for n = 2 is of course different.] We will see in Section 10.1.7 that
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W is a Euclidean reflection group acting on R
n−1. More precisely, it is the

affine Weyl group associated to the root system of type An−1, and W itself
is said to have type Ãn−1. If n = 3, for instance, W is the group of isome-
tries of the plane generated by the reflections in the sides of an equilateral
triangle. The apartments in this case are planes tiled by equilateral triangles;
see Example 3.7 and Figure 3.1. These planes are glued together to form the
building ∆, which can then be viewed as a 2-dimensional analogue of a tree.
(A tree is constructed by gluing lines together.)

If we delete a vertex from the Coxeter diagram above, we obtain the di-
agram of type An−1. So the link of a vertex in our building ∆ is a spherical
building of type An−1. (This is true if n = 2 also.) If we take, for instance, the
vertex [[e1, . . . , en]] whose stabilizer is SLn(A), this link is some building of
type An−1 that comes equipped with an action of SLn(A). The obvious guess
is that the link is the spherical building associated to SLn(k) as in Section 6.5,
and it is easy to check that this guess is correct.

There is, of course, another building of type An−1 that one would naturally
think of, namely, the building ∆′ obtained by forgetting that K has a valuation
and applying Section 6.5 to SLn(K). This building admits an action of the
full group SLn(K). Is it somehow related to our building ∆ also? The answer
is that ∆′ is the spherical building “at infinity” in ∆, obtained by attaching a
sphere at infinity to each apartment of ∆. Details will be given in Chapter 11.

This connection between ∆ and ∆′ provides a nice geometric explanation
of the fact that both of our BN-pairs in SLn(K) used the same N . For N
is the stabilizer of the fundamental apartment in both ∆ and ∆′; the use of
the same N therefore yields a 1–1 correspondence between the apartments
in ∆ and those in ∆′. The previous paragraph explains this correspondence
geometrically.

All of this is easy to understand when n = 2 in terms of ends of trees. The
building ∆′ in this case is 0-dimensional, so it is simply the discrete set G/B
[with B equal to the upper-triangular group], in which the two-element subsets
have been called apartments. This set can be identified with a set of ends of the
tree ∆ [217, Section II.1.3], so ∆′ is clearly a building “at infinity” associated
to ∆. And the 1–1 correspondence between apartment systems simply reflects
the fact that a line in a tree gives rise to a pair of ends and that, conversely,
a pair of ends determines a unique line.

Remark 6.117. The construction of a Euclidean building associated to the
group SLn over a field with discrete valuation is a special case of the theory
of Bruhat and Tits [59], and the corresponding buildings are often called
Bruhat–Tits buildings. The method of Bruhat and Tits involves constructing
something called a “root datum with valuation” and showing that this gives
rise to a BN-pair. But it is possible to construct the buildings associated to
the classical groups explicitly in terms of lattices, as we have done for SLn;
see Abramenko–Nebe [13] and Garrett [106, Chapters 19 and 20].
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*6.10 Example: Weyl-Transitive Actions

We are now in a position to give examples of Weyl-transitive actions that
are not strongly transitive with respect to any apartment system. In group-
theoretic language, the examples exhibit Tits subgroups B that do not come
from BN-pairs. A method for constructing such examples was outlined by Tits
[261, Section 3.1, Example (b)]. Namely, start with a strongly transitive action
of a group G on a building ∆. Assume that G is a topological group and that
the stabilizer of some (and hence every) chamber is an open subgroup. (This
is the case, for instance, if G = SLn(Qp) as in Section 6.9.) Then the action
of any dense subgroup G′ ≤ G will still be Weyl transitive but not necessarily
strongly transitive. The details follow.

6.10.1 Dense Subgroups

Lemma 6.118. Let G be a topological group and G′ a dense subgroup.

(1) If U is an open subgroup of G, then G′ maps onto G/U under the quotient
map G → G/U .

(2) If G acts transitively on a set X and the stabilizer of some x ∈ X is an
open subgroup, then the action of G′ on X is transitive.

(3) If G acts on an arbitrary set X and the stabilizers are open subgroups,
then the G′-orbits in X are the same as the G-orbits.

Proof. For (1), observe that every coset gU is a nonempty open set, so it
meets G′. (2) is a restatement of (1), and (3) follows from (2). 	


Proposition 6.119. Suppose a group G acts Weyl transitively on a build-
ing ∆. Assume that G is a topological group and that the stabilizer B of some
chamber is an open subgroup. If G′ is a dense subgroup of G, then the action
of G′ on ∆ is also Weyl transitive.

Proof. Consider the diagonal action of G on C × C, where C = C(∆). Note
that every stabilizer is an open subgroup of G, being an intersection of two
conjugates of B. To show that the action of G′ is Weyl transitive, we must show
that the G′-orbits in C × C are the sets of the form {(C,C ′) | δ(C,C ′) = w},
one for each w ∈ W . But these are precisely the G-orbits by assumption, so
the result follows from Lemma 6.118(3). 	


Notice that the action of G might well be strongly transitive, but there is
no reason to think that the same is true of the action of G′.

6.10.2 Dense Subgroups of SL2(Qp)

Start with the ring Z[1/p], consisting of all rational numbers of the form a/pn

(a, n ∈ Z). This is dense in Qp because its closure is a subring containing Zp
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and 1/p. It follows that the group SL2(Z[1/p]) is dense in G := SL2(Qp), since
its closure contains the elementary subgroups ( 1 ∗

0 1 ) and ( 1 0
∗ 1 ).

Now fix an integer q ≥ 3 and relatively prime to p, and consider the sub-
group G′ < SL2(Z[1/p]) consisting of matrices that are congruent to the iden-
tity mod q. In other words, G′ is the kernel of the canonical homomorphism
SL2(Z[1/p]) → SL2(Z/qZ). Then G′ is still dense in G by the same argument
as above, since it contains all elementary matrices whose off-diagonal entry is
in qZ[1/p], and qQp = Qp. (Note: G′ is an example of a congruence subgroup.)

Consider the action of G on the tree constructed in Section 6.9.2. It is
strongly transitive with respect to the complete apartment system (see Re-
mark 6.112(b)). The action of G′ on this tree is therefore Weyl transitive by
Proposition 6.119. But a very simple argument will show that this action is
not strongly transitive with respect to any apartment system.

Recall that in the action of G = SL2(Qp) on the tree, the stabilizer of the
fundamental apartment Σ is the monomial group, with the diagonal matrices
acting as translations and the nondiagonal matrices acting as reflections. In
particular, any g ∈ G that acts as a reflection on Σ satisfies g2 = −1. Since G
acts transitively on the complete apartment system, it follows that any g ∈ G
that stabilizes any apartment and acts as a reflection on it satisfies g2 = −1.
But our group G′ does not contain the matrix −1; hence, a fortiori, it does
not contain any such g. Thus the stabilizer of an apartment in G′ cannot
be chamber transitive on that apartment, and hence, by Proposition 6.14,
the action of G′ on the tree is not strongly transitive with respect to any
apartment system.

*6.11 Example: Norm-1 Groups of Quaternion Algebras

The examples in the previous section may have seemed artificial, though they
should at least provide convincing evidence that Weyl-transitive actions are
much more abundant than strongly transitive actions. In this section we study
a family of examples that “arises in nature” and so may seem less ad hoc.
These examples were first worked out in Abramenko–Brown [10]. A surprising
feature is that although we are in a setting where we might expect strong
transitivity to be rare, it turns out to hold roughly half of the time.

6.11.1 Quaternion Algebras

In this subsection we will use standard facts about quadratic forms that can
be found in many places, such as [150, 181, 208, 215]. The first three of these
books also contain treatments of quaternion algebras. All results that we state
without proof can be found in at least one of these references. See also Sec-
tion 6.7.2 above for some of the terminology and notation that we use in
connection with quadratic forms.
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The well-known quaternion algebra constructed by Hamilton in the nine-
teenth century is a 4-dimensional division algebra D over R with basis 1, i, j, k,
where 1 is the identity element, i2 = j2 = −1, and ij = −ji = k. (The rules for
multiplying other pairs of basis elements then follow. For example, k2 = −1,
jk = −kj = i.) Given a quaternion x = x1 + x2i + x3j + x4k, its conjugate is
x̄ := x1−x2i−x3j−x4k, and its norm is N(x) := xx̄ = x2

1 +x2
2 +x2

3 +x2
4 ∈ R.

Note that D is indeed a division algebra, as claimed above, because the
quadratic form N is anisotropic: The inverse of an element x �= 0 is x̄/N(x).
Note further that the norm is multiplicative [N(xy) = N(x)N(y) for x, y ∈ D],
so the set of elements of norm 1 is a multiplicative group, called the norm-1
group of D. It is a Lie group, whose underlying topological space is the
3-sphere.

One can identify D with a real subalgebra of M2(C), the algebra of 2× 2
matrices over C, via

x1 + x2i + x3j + x4k �→
(

z −w̄
w z̄

)
; (6.27)

here z = x1 + x2i, w = x3 − x4i, and the bar denotes complex conjugation.
To derive this, view D as a 2-dimensional right vector space over the subfield
C = R+Ri < D, with basis 1, j, and let D act on itself by left multiplication;
see [150, pp. 53–54] for more details. One can check that the map in (6.27)
induces an isomorphism from the norm-1 group of D to the special unitary
group SU2(C).

Hamilton’s construction generalizes as follows: Let F be an arbitrary field
of characteristic �= 2, and let α, β be nonzero elements of F . There is a 4-dimen-
sional associative F -algebra D with basis e1, e2, e3, e4, where e1 is the identity
element, e2

2 = α, e2
3 = β, and e2e3 = −e3e2 = e4. [Here α and β are identified

with αe1 and βe1.] As in the classical case, these relations yield rules for multi-
plying all pairs of basis elements. For example, e2

4 = e2e3e2e3 = −e2
2e

2
3 = −αβ,

and e3e4 = e3e2e3 = −βe2. The algebra D is called the quaternion algebra
determined by F, α, β, and we will denote it by (α, β)F . Thus the classical
quaternion algebra of Hamilton is (−1,−1)R .

If α does not have a square root in F , then we can form the quadratic
extension F (

√
α) of F and identify D with an F -subalgebra of M2(F (

√
α)).

This is done as in the derivation of (6.27): View D as a 2-dimensional right
vector space over the subfield F + Fe2, which is isomorphic to F (

√
α), and

let D act on itself by left multiplication. The resulting map is given by

x1 + x2e2 + x3e3 + x4e4 �→
(

x1 + x2
√

α β (x3 + x4
√

α)

x3 − x4
√

α x1 − x2
√

α

)

. (6.28)

In spite of our use of the letter D, quaternion algebras are not always
division algebras. In fact, the argument given above for the classical case can
be used to show that D is a division algebra if and only if its norm form N is
anisotropic. Here the norm of x = x1 + x2e2 + x3e3 + x4e4 is
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N(x) := xx̄ = x2
1 − αx2

2 − βx2
3 + αβx2

4 ∈ F ,

where x̄ := x1−x2e2−x3e3−x4e4 as before. Moreover, if D is not a division
algebra, then it is isomorphic to the algebra M2(F ) of 2×2 matrices, with the
norm form corresponding to the determinant; D is said to split in this case.

For example, D splits if α has a square root in F . In this case there is an
isomorphism of D with M2(F ) given by the same formula as in (6.28), where√

α now denotes a square root of α in F rather than in an extension field.
There are several useful criteria for a quaternion algebra to split [150,

Theorem III.2.7; 181, 57:9; 208, Corollary 2.11.10]. We have already mentioned
one: D = (α, β)F splits if and only if the norm form N is isotropic. Here is
a second criterion that we will have occasion to use, which we call Hilbert’s
criterion following Lam [150, p. 59]: D splits if and only if the binary quadratic
form 〈α, β〉 over F represents 1. (Here, as in Section 6.7.2, 〈α, β〉 denotes the
quadratic form Q(x, y) = αx2 +βy2; it represents 1 if and only if the equation
αx2 + βy2 = 1 has a solution x, y over F .)

Next, we show that quaternion division algebras are less special than they
might seem at first glance:

Proposition 6.120. Let D be a noncommutative 4-dimensional division alge-
bra over a field F of characteristic �= 2. Then D is isomorphic to a quaternion
algebra.

This is proved in Bourbaki [43, Section 11.2, Proposition 1] and Lam [150,
Theorem III.5.1]. Since we will need to refer to the proof in Exercise 6.121
below, we sketch it here. We follow Bourbaki’s proof, which uses standard
facts from Wedderburn theory. Lam’s proof is slightly more elementary.

Sketch of proof. The hypotheses easily imply that F is the center of D. Let
K be a maximal commutative subfield of D. Then K is a quadratic extension
of F and hence has the form K = F (e2), where e2

2 = α for some α ∈ F ∗. By the
Skolem–Noether theorem, the nontrivial Galois automorphism of K over F ,
taking e2 to −e2, extends to an inner automorphism of D. In other words,
there is an element e3 ∈ D∗ such that e3e2e

−1
3 = −e2, or e3e2 = −e2e3. Then

e3 /∈ K because conjugation by e3 is nontrivial on K, so D is a 2-dimensional
left K-vector space with basis 1, e3, i.e., D = K ⊕ Ke3. It follows that D
has an F -basis 1, e2, e3, e4, where e4 = e2e3, and the proof will be complete if
we show that e2

3 ∈ F . To this end we need only note that conjugation by e2
3

induces the trivial automorphism of K. Thus e2
3 commutes with K and e3, so

e2
3 is central and hence is in F . 	


Finally, we collect, in the form of exercises, some facts that will be used
in the next subsection.
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Exercises

6.121. Show that the proof of Proposition 6.120 yields the following more
precise conclusion: There is an element α ∈ F ∗ such that α has a square root
in D but not in F . For any such α, there is a β ∈ F ∗ such that D ∼= (α, β)F .

6.122. (Cf. [150, Exercise III.5]) Let D be an arbitrary quaternion algebra.
If −1 has a square root in D but not in F , show that D is isomorphic to a
quaternion algebra (γ,−1)F for some γ ∈ F .

6.123. Let F be the field Qp of p-adic numbers, where p is an odd prime. If
α and β are p-adic units, i.e., vp(α) = vp(β) = 0, show that (α, β)Qp

splits.

6.124. Let D := (α, β)Q be a quaternion algebra over Q, and, for any prime p,
let Dp be the Qp-algebra obtained from D by extension of scalars; equivalently,
Dp = (α, β)Qp

. Assume that p �= 2 and that α and β are p-adic units, so that
Dp splits by Exercise 6.123. Show that D ∼= (α′, β)Q for some α′ ∈ Q

∗ such
that α′ is a p-adic unit and has a square root in Qp .

6.11.2 Density Lemmas

We now specialize to the case that the ground field F is Q. Choose α, β ∈ Q
∗

such that D := (α, β)Q is a division algebra. We can ensure this, for example,
by taking α, β < 0. If −1 has a square root in D, then we will assume,
without loss of generality, that β = −1 (see Exercise 6.122). Choose a prime
p �= 2 such that vp(α) = vp(β) = 0. (Note that all but finitely many primes
satisfy these conditions.) Then Dp := (α, β)Qp

splits by Exercise 6.123. Finally,
we assume, again without loss of generality, that α has a square root in Qp

(Exercise 6.124).
It is obvious that D is dense in Dp , where the latter is topologized as

a 4-dimensional Qp-vector space. It is also true, but not obvious, that the
density persists when one passes to elements of norm 1. These elements form
a multiplicative group, sometimes denoted by SL1(D).

Lemma 6.125. G := SL1(D) is dense in Gp := SL1(Dp).

Proof. This is a special case of the weak approximation theorem [188, Chap-
ter 7], but we will give a direct proof. The main point is to construct many
elements of G, which we do by the following “normalization”: Given x ∈ D∗,
let x′ = xx̄−1 = x2/N(x); then x′ has norm 1. Using this construction, we see
that the closure of G in Gp contains all elements of the form y2/N(y) with
y ∈ D∗

p . In particular, it contains all squares of elements of Gp , so the proof
will be complete if we show that Gp is generated by squares. This follows, for
instance, from the fact that Gp

∼= SL2(Qp); the latter is generated by strictly
triangular matrices, all of which are squares. 	
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Since α has a square root in Qp , we have a specific isomorphism Gp
∼−→

SL2(Qp) given by (6.28), as we noted in Section 6.11.1; we use this to iden-
tify Gp with SL2(Qp). Let T be the “torus” in G = SL1(D) consisting of
quaternions of the form x = x1 + x2e2 with N(x) = 1, and let Tp be the sim-
ilarly defined subgroup of Gp. Under our identification of Gp with SL2(Qp),
the subgroup Tp is simply the standard torus that we have considered before,
consisting of the diagonal matrices of determinant 1.

Lemma 6.126. T is dense in Tp .

Proof. We use the same normalization trick as in the proof of Lemma 6.125.
Namely, we construct elements of T by starting with an arbitrary x =
x1 + x2e2 ∈ D∗ and forming x′ := x2/N(x). Computing the images of such
elements x′ in SL2(Qp), we find that they are the diagonal matrices with
diagonal entries λ, λ−1, where

λ =
x1 + x2

√
α

x1 − x2
√

α
(6.29)

for some x1, x2 ∈ Q that are not both zero. [Note that the denominator is not
zero, since in view of our assumption that D is a division algebra, α does not
have a square root in Q.] The closure of T in Gp therefore contains all diagonal
matrices of the same form, where now x1, x2 ∈ Qp and the numerator and
denominator are assumed to be nonzero. To complete the proof, we will show
that every λ ∈ Q

∗
p can be expressed in this way. Given λ ∈ Q

∗
p, let’s first try

to achieve this with x2 = 1, i.e., we try to solve

λ =
x +

√
α

x−√α
(6.30)

for x ∈ Qp with x �= ±√α . Formally solving (6.30) for x, we obtain

x =
√

α
λ + 1
λ− 1

,

so we are done if λ �= 1. But we can take care of λ = 1 by putting x2 = 0
in (6.29). 	


6.11.3 Norm-1 Groups over Q and Buildings

We continue with the hypotheses and notation of the previous subsection. In
particular, D = (α, β)Q is a quaternion division algebra, p is an odd prime such
that vp(α) = vp(β) = 0, G = SL1(D), and Gp = SL1(Dp). Moreover, β = −1
if −1 has a square root in D. Let ∆p be the tree associated to the BN-pair
in Gp discussed in Section 6.9. The action of Gp on ∆p is strongly transitive
with respect to the complete apartment system (see Remark 6.112(b)).

Proposition 6.127. The action of G on ∆p is Weyl transitive.



370 6 Buildings and Groups

Proof. Since G is dense in Gp by Lemma 6.125, and since the B of the BN-pair
in Gp is an open subgroup, this follows from Proposition 6.119.

Remark 6.128. Note that just from the fact that G is transitive on the cham-
bers, the theory of groups acting on trees gives a decomposition of G as an
amalgamated free product [217], as in the better-known case of SL2(Q) (or a
p-adically dense subgroup, such as SL2(Z[1/p])).

As we recalled in Section 6.10.2, the stabilizer of the fundamental apart-
ment Σ in Gp is the monomial group, with the diagonal matrices acting as
translations and the nondiagonal matrices acting as reflections. The transla-
tion action of the diagonal group Tp is given by a surjective homomorphism
Tp � Z whose kernel is Tp ∩ B, which is an open subgroup of Tp . In view
of Lemma 6.126 and Lemma 6.118(1), it follows that all of the translations
can be achieved by elements of T . But as we are about to see, one cannot in
general realize the reflections by elements of G.

Proposition 6.129. The following conditions are equivalent:

(i) −1 has a square root in D.
(ii) G contains an element that stabilizes the fundamental apartment Σ and

acts as a reflection on it.
(iii) The action of G on ∆p is strongly transitive with respect to some apart-

ment system.

Proof. If (i) holds, then β = −1 by our choices at the beginning of this
subsection. The quaternion e3 is therefore in G = SL1(D) and maps to(

0 −1
1 0

)
∈ SL2(Qp). This proves (ii). The latter implies (iii) by Proposition 6.14,

since the dihedral group of type-preserving automorphisms of an apartment
is generated by the translations and any one reflection. Finally, suppose (iii)
holds. Then G contains an element g that stabilizes an apartment and acts
as a reflection on it. But we already noted in Section 6.10.2 that any such g
satisfies g2 = −1, so (i) holds. 	


To get specific examples of actions that are Weyl transitive but not strongly
transitive, we need to choose α, β in such a way that −1 /∈ D2. Now direct
calculation shows that −1 ∈ D2 if and only if the ternary quadratic form
〈α, β,−αβ〉 represents −1. Hence

−1 /∈ D2 ⇐⇒ 〈1, α, β,−αβ〉 is anisotropic. (6.31)

Let l be a prime such that l ≡ 1 mod 4, so that −1 ∈ Q
2
l . Set β = −l, and

let α be any negative integer such that α is not a square mod l. Then the
quaternary form in (6.31) is equivalent over Ql to the form 〈1, α, l, αl〉, which
is anisotropic over Ql. In fact, it is the essentially unique anisotropic quater-
nary form over Ql [150, Theorem VI.2.2(3); 181, 63:17; 215, Section IV.2.3,
Corollary to Theorem 7]. The form is therefore anisotropic over Q, so −1 does
not have a square root in D := (α,−l)Q. For a concrete example, take l = 5
and α = −2.
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Corollary 6.130. Let D = (−2,−5)Q and let G = SL1(D). Then for all
primes p �= 2, 5, there is a Weyl-transitive action of G on ∆p that is not
strongly transitive with respect to any apartment system, where ∆p is the reg-
ular tree of degree p + 1. 	


Readers familiar with the language of algebraic groups (see Appendix C)
can check that SL1(D) is the group G(Q) of Q-points of a linear algebraic
group G defined over Q (still called the norm-1 group), and Gp = G(Qp). So
Proposition 6.129 yields the following dichotomy:

Corollary 6.131. Let D be a quaternion division algebra over Q, and let G be
its norm-1 group, viewed as a linear algebraic group over Q. For each prime p
such that Dp splits, let ∆p be the tree associated to G(Qp). Then one of the
following conditions holds:

(a) For almost all primes p, the action of G(Q) on ∆p is strongly transitive
with respect to some apartment system.

(b) For almost all primes p, the action of G(Q) on ∆p is not strongly transi-
tive with respect to any apartment system. 	


The conclusion in case (b) can also be phrased in group-theoretic terms:
For almost all primes p, we have a Tits subgroup B in G(Q) that does not
come from a BN-pair.

Remark 6.132. What we have done in this section, following [10], is to work
out the simplest possible case of a suggestion of Tits [261, Section 3.1, Exam-
ple (b)] involving anisotropic algebraic groups. We were surprised that such
groups act strongly transitively as often as they do. Norm-1 groups are not the
only examples in which this happens, but we have some evidence to suggest
that the phenomenon is still relatively rare, as Tits suggested.

Exercise 6.133. With D as in Corollary 6.130, verify directly that −1 /∈ D2.

*6.12 Example: A Twin BN-Pair

In this section we assume that the reader is familiar with twin buildings and
twin BN-pairs (Sections 5.8 and 6.3). Let K be the rational function field
k(t) over a field k, and let v+ (resp. v−) be the valuation that gives the
order of a function at 0 (resp. ∞); see Examples 6.108(a) and (b). Let A± be
the corresponding valuation rings, and let R be the ring k[t, t−1] of Laurent
polynomials. Informally, A+ consists of the functions that are defined at 0,
A− consists of the functions that are defined at ∞, and R consists of the
functions that are defined except possibly at 0 and ∞. In this section we will
sketch the construction of a twin BN-pair in the group

G := SLn(R) .
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Let ∆± be the Bruhat–Tits buildings associated to SLn(K) and the val-
uations v± (see Section 6.9). We have a strongly transitive action of SLn(K)
on each ∆ε (ε = ±), so we get actions of the subgroup G. We claim that these
actions are also strongly transitive. To see this, one checks first that R is dense
in K with respect to the topology induced by the valuation vε for each ε. It
follows that G is dense in SLn(K) and hence that the action of G on ∆ε is
Weyl transitive (see Proposition 6.119). Now let N be the group of monomial
matrices in G, i.e., N is the stabilizer in G of the fundamental apartment Σε

of ∆ε. Then it is easily checked that N contains representatives of all elements
of the Weyl group W discussed in Section 6.9. Hence N is transitive on the
chambers of Σε. Our claim that G acts strongly transitively on ∆ε therefore
follows from Proposition 6.14.

Recall from Section 6.9 that the buildings ∆± can be described in terms
of lattice classes. We will use the same notation as in that section. Let C+ be
the chamber in ∆+ whose vertices are the A+-lattice classes

[[e1, . . . , ei, tei+1, . . . , ten]] ,

i = 1, . . . , n. This is the fundamental chamber that we used before; its sta-
bilizer in SLn(K) is the set of matrices in SLn(A+) that are upper trian-
gular mod t. As our fundamental chamber C− in ∆− we take the chamber
whose vertices admit the same formal description as those of C+, i.e., they
are the A−-lattice classes [[e1, . . . , ei, tei+1, . . . , ten]], i = 1, . . . , n. This is not
the fundamental chamber that we used in Section 6.9. The latter has ver-
tices [[e1, . . . , ei, t

−1ei+1, . . . , t
−1en]], since the “π” for A− is t−1, whereas the

present vertices are

[[e1, . . . , ei, tei+1, . . . , ten]] = [[t−1e1, . . . , t
−1ei, ei+1, . . . , en]] .

One can check that the stabilizer of C− in SLn(K) is the set of matrices
in SLn(A−) that are lower triangular mod t−1.

We now get our candidate (B+, B−, N) for a twin BN-pair by letting Bε

be the stabilizer of Cε in G. Since R ∩ A+ = k[t] and R ∩ A− = k[t−1], B+

is the set of matrices in SLn(k[t]) that are upper triangular mod t, and B− is
the set of matrices in SLn(k[t−1]) that are lower triangular mod t−1.

In view of the way we got (B+, B−, N) from strongly transitive actions, we
know that (TBN0) is satisfied. The interested reader can now verify (TBN1)
and (TBN2) by direct matrix calculations. This yields a twinning of the two
buildings ∆± via Section 6.3.3. Alternatively, one could construct the twin-
ning directly and verify that the G-action on the resulting twin building is
strongly transitive; the TBN axioms then follow from Sections 6.3.1 and 6.3.2.
This second approach is carried out in detail in [16, Section 4], based on the
characterization of twin buildings that we mentioned in Remark 5.154. We will
confine ourselves here to describing the twin apartments and the opposition
relation.

Let M be the free R-module in Kn generated by the standard basis vec-
tors e1, . . . , en. For each R-basis f1, . . . , fn of M , there is a twin apartment
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Σ = (Σ+, Σ−) whose vertices are the lattice classes [[ta1f1, . . . , t
anfn]] with

a1, . . . , an ∈ Z. Here, of course, we use A+-lattices for Σ+ and A−-lattices
for Σ−. The opposition involution opΣ : Σε → Σ−ε is the obvious map on ver-
tices: It takes the A+-lattice class [[ta1f1, . . . , t

anfn]] to the A−-lattice class
described by the same symbol. Finally, we declare two chambers (or, more gen-
erally, two simplices) to be opposite if they are contained in a twin apartment
and are related by the opposition involution. See [16] for further details.

Remark 6.134. Note that our example involved function fields rather than
number fields. This is no accident. In fact, we will show in Section 11.10 that
the Bruhat–Tits building associated to SLn(Qp) cannot be part of a twin
building if n ≥ 3.
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Root Groups and the Moufang Property

In this chapter we will be concerned mostly with thick spherical buildings ∆.
The Moufang property, very roughly, says that ∆ has a great deal of symmetry;
in particular, ∆ arises from a group with a BN-pair. A remarkable theorem
of Tits says that every thick, irreducible, spherical building of rank at least 3
(dimension at least 2) has the Moufang property. Moreover, thick spherical
buildings with the Moufang property have turned out to be classifiable [262].
This explains the importance of the concept. The Moufang property has also
become useful in connection with certain classes of nonspherical buildings
that arise in the theory of Kac–Moody groups. We will treat this general
(nonspherical) theory in the next chapter.

We begin slowly, by describing a situation in which one can construct
a BN-pair from a building. When we impose the Moufang property on the
building, we will get a refinement of the BN-pair, involving a system of “root
groups.” The properties of these root groups motivate the algebraic theory of
“RGD systems,” to be developed in Section 7.8. By the end of the chapter
we will have, essentially, a 1–1 correspondence between groups with an RGD
system and buildings with the Moufang property.

7.1 Pre-Moufang Buildings and BN-Pairs

In this section ∆ denotes a (simplicial) building, not necessarily spherical. We
assume for simplicity that ∆ is thick, though some of what we do is valid
without this assumption. Choose a “fundamental apartment” Σ and a “fun-
damental chamber” C0 ∈ Σ, and let Φ be the set of roots of Σ (see Sections
3.4 and 5.5.4). We denote by Φ+ (resp. Φ−) the set of positive (resp. negative)
roots. Here a root is positive if it contains the fundamental chamber and neg-
ative otherwise. Given a root α and a panel P ∈ ∂α, the set of chambers of ∆
that are “attached to α along P” will play an important role in this chapter.
We recall some notation that was introduced in Section 4.11.1. Let C := C(∆),
and let CP be the set C≥P of chambers having P as a face.
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Definition 7.1. Given a root α of ∆ and a panel P ∈ ∂α, we set

C(P, α) := CP � {C} ,

where C is the unique chamber in α having P as a face.

Note that any automorphism of ∆ that fixes α pointwise induces a permu-
tation of C(P, α) for every panel P ∈ ∂α. These permutations will be used in
the next definition. Recall that Aut0 ∆ denotes the group of type-preserving
automorphisms of ∆.

Definition 7.2. A family (Xα)α∈Φ of subgroups of Aut0 ∆ is called a system
of pre–root groups if it satisfies the following three conditions:

(1) Xα fixes α pointwise for each α ∈ Φ.
(2) For each α ∈ Φ and each panel P ∈ ∂α, the action of Xα on C(P, α) is

transitive.
(3) For each α ∈ Φ there is an element nα in the subgroup 〈Xα,X−α〉 such

that nα(α) = −α and nα(−α) = α. In other words, nα stabilizes Σ and
acts on Σ as the reflection sα.

We say that ∆ is a pre-Moufang building if it admits a system of pre–root
groups.

Remark 7.3. Pre-Moufang buildings have some (but not all) of the features
of Moufang buildings, which will be defined in Section 7.3 along with root
groups. The root groups in a (spherical) Moufang building satisfy conditions
(1)–(3) above; this explains the terminology “pre–root groups.”

Conditions (2) and (3) take a little time to digest. We begin by reformu-
lating (2) in the spherical case. For any root α of ∆, we denote by A(α) the
set of apartments of ∆ containing α. Recall from Lemma 4.118 that for any
panel P ∈ ∂α, there is a canonical bijection between C(P, α) and A(α). This
leads immediately to the following result:

Lemma 7.4. Assume that ∆ is spherical and that (Xα)α∈Φ is a system of
subgroups of Aut0 ∆ satisfying condition (1) of Definition 7.2. Then the fol-
lowing conditions are equivalent:

(i) The system (Xα)α∈Φ satisfies condition (2).
(ii) For each α ∈ Φ there exists a panel P ∈ ∂α such that the action of Xα

on C(P, α) is transitive.
(iii) For each α ∈ Φ, the action of Xα on A(α) is transitive.

Proof. Let α be a root and let P be a panel in ∂α. Then Lemma 4.118 implies
that the action of Xα is transitive on C(P, α) if and only if it is transitive
on A(α). Thus (ii) =⇒ (iii) =⇒ (i), and the implication (i) =⇒ (ii) is
trivial. 	
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Next, we attempt to demystify condition (3) in Definition 7.2 by showing
that in the spherical case, it actually follows from (1) and (2). Moreover, we
will see that it has some geometric content. Our standing assumption that ∆
is thick is crucial here.

Lemma 7.5. If ∆ is spherical and (Xα)α∈Φ is a system of subgroups of
Aut0 ∆ satisfying (1) and (2), then it also satisfies (3).

Proof. Choose a panel P ∈ ∂α, and let C and D be the chambers of Σ
having P as a face, with C ∈ α and D ∈ −α. By thickness and condition (2),
we can find an element x ∈ Xα such that xD �= D; see Figure 7.1. We

Σ
CD

x

α−α

P

Fig. 7.1. Constructing nα; step 1.

claim now that there are elements x′, x′′ ∈ X−α such that the composite
m(x) := x′xx′′ interchanges C and D. Indeed, it suffices to choose, by (2),
an element x′′ ∈ X−α such that x′′C = x−1D [so that xx′′C = D] and an
element x′ ∈ X−α such that x′(xD) = C. The claim now follows from the fact
that x′ and x′′ fix D. See Figure 7.2.

Σ
CD

x

α−α

x−1D

xD

x

x′

x′′

Fig. 7.2. Constructing nα; step 2.

Note that we have not yet used the assumption that ∆ is spherical, and
indeed, without that assumption there is no reason to expect m(x) to in-
terchange ±α just because it interchanges C and D. In the presence of
sphericity, however, we know that α is the convex hull of C and ∂α (see
Example 3.133(d)), and similarly −α is the convex hull of D and ∂α. Since
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m(x) fixes ∂α, it must therefore interchange ±α, so it is the desired element
nα ∈ 〈Xα,X−α〉. 	


For future reference, we record the following corollary of the proof:

Corollary 7.6. Under the hypotheses of Lemma 7.5, let α be a root of Σ, let
D ∈ −α be a chamber with a panel in ∂α, and let x ∈ Xα be an element such
that xD �= D. Then there is an element m(x) ∈ X−αxX−α such that m(x)
interchanges ±α. 	


Remark 7.7. It often happens that the action of Xα on C(P, α) not only is
transitive, but is in fact simply transitive for each α. In this case the elements
x′, x′′ in the proof of the lemma are uniquely determined by x; hence so
is x′xx′′. We used the notation m(x) in order to emphasize this dependence
on x, which will be important later.

With Lemmas 7.4 and 7.5 at our disposal, we can now show that systems
of pre–root groups are extremely common:

Proposition 7.8. If ∆ is spherical and G is a strongly transitive group of
type-preserving automorphisms of ∆, then G contains a system of pre–root
groups.

Proof. For each α ∈ Φ, let Xα be the pointwise fixer of α in G, i.e.,

Xα = FixG(α) := {g ∈ G | gA = A for all A ∈ α} .

Then Xα acts transitively on A(α) by Corollary 6.7, so the proposition follows
from Lemmas 7.4 and 7.5. 	


The main goal of the rest of the section is to prove a converse of Proposition
7.8, i.e., to construct a strongly transitive action from a system of pre–root
groups. This works in general; ∆ does not have to be spherical. The following
lemma is the crucial step. Assume that we have a system (Xα)α∈Φ of pre–root
groups in Aut0 ∆, and set

U := 〈Xα | α ∈ Φ+〉 . (7.1)

Lemma 7.9. ∆ =
⋃

u∈U uΣ.

Proof. It suffices to show that the union on the right contains every chamber
C ∈ C(∆). We argue by induction on d(C, C(Σ)), which may be assumed > 0.
Choose a gallery D0, . . . , Dl = C of minimal length l := d(C, C(Σ)) with
D0 ∈ Σ. Let P := D0 ∩ D1, let D′

0 be the chamber of Σ adjacent to D0

along P , and let α be the root of Σ containing D0 but not D′
0; see Figure 7.3.

If α is a positive root, choose x ∈ Xα such that xD1 = D′
0. Otherwise choose

x ∈ X−α such that xD1 = D0. In either case we have x ∈ U with xD1 ∈ Σ,
and the gallery xD1, . . . , xDl = xC shows that d(xC, C(Σ)) < l. So we may
apply the induction hypothesis to find u′ ∈ U with u′xC ∈ Σ; hence C is
in
⋃

u∈U uΣ. 	
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D0D′
0 α−α

D1

Σ
P

Fig. 7.3. A gallery leaving Σ.

We can now prove the main result of this section. Suppose we have a
subgroup G ≤ Aut0 ∆ containing a system of pre–root groups (Xα)α∈Φ. Let
B be the stabilizer in G of the fundamental chamber C0, and set

N := 〈nα | α ∈ Φ〉

for some choice of elements nα as in Definition 7.2.

Theorem 7.10.

(1) The action of G on ∆ is strongly transitive with respect to the apartment
system GΣ := {gΣ | g ∈ G}.

(2) The subgroups B and N defined above form a BN-pair in G, and ∆ ∼=
∆(G,B).

Proof. Note that N stabilizes Σ and acts transitively on the chambers of Σ.
Note further that U ≤ B, where U is the group defined in (7.1). Using
Lemma 7.9, we conclude, first, that the action of G on ∆ is chamber transi-
tive, and then that the action is Weyl transitive (Proposition 6.11) and hence
strongly transitive (Proposition 6.14). This proves (1). Assertion (2) follows
from (1) and the fact that a strongly transitive action on a thick building
yields a BN-pair (see Theorem 6.56). 	


We close this section by proving the following result of Tits [247], which
shows that (certain) buildings have much more symmetry than one would
expect from the definition. (Tits actually proved a stronger theorem of this
type, which we will treat in Section 7.6 below.)

Proposition 7.11. If ∆ is a thick, irreducible, spherical building of rank at
least 3, then ∆ is pre-Moufang. In particular, ∆ ∼= ∆(G,B) for some group
G with a BN-pair.

Proof. Let G = Aut0 ∆. As in the proof of Proposition 7.8, it suffices to show,
for each root α of Σ, that Xα := FixG(α) acts transitively on the set of
apartments containing α. This is precisely what we proved in Corollary 5.211,
as an application of Tits’s extension theorem. 	
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Exercise 7.12.

(a) Let g be a type-preserving automorphism of a building ∆, let Σ be an
apartment of ∆, and let C0 ∈ Σ be a chamber fixed by g. If A is a simplex
of Σ such that gA ∈ Σ, show that gA = A.

(b) Deduce that in the setting of Lemma 7.9, Σ is a simplicial fundamental
domain for the action of U on ∆.

7.2 Calculation of Fixers

Suppose ∆ is a spherical building and G is a strongly transitive group of type-
preserving automorphisms. Our purpose in this section is to present some
results of Tits [247, Chapter 13], calculating the fixer FixG(K) for suitable
subsets K ⊆ ∆. We will phrase the results in terms of a system of pre–root
groups Xα. (Tits considered the special case that Xα is the full fixer FixG(α).)
The calculation of fixers will be useful in our study of root groups later in this
chapter. For example, it leads to a simple proof of some important commutator
relations among the root groups (Section 7.7.2).

7.2.1 Preliminaries: Convex Sets of Roots

Let Σ be a spherical Coxeter complex and Φ its set of roots. If K is any set
of simplices in Σ, we define a set of roots Ψ(K) by

Ψ(K) := {α ∈ Φ | α ⊇ K} . (7.2)

Definition 7.13. A set of roots Ψ ⊆ Φ is said to be convex if it has the form
Ψ = Ψ(K) for some set of simplices K ⊆ Σ containing at least one chamber.

(Tits [247] calls such sets Ψ strictly convex.)

The following lemma explains the terminology:

Lemma 7.14. There is an order-reversing 1–1 correspondence between convex
chamber subcomplexes of Σ and convex sets of roots. It associates to a convex
chamber subcomplex K ⊆ Σ the set of roots Ψ(K). Its inverse is given by
Ψ �→

⋂
α∈Ψ α for any convex set of roots Ψ .

Proof. For any subset K ⊆ Σ, the set Ψ(K) does not change if we replace
K by its convex hull, which is a convex chamber subcomplex of Σ (see Sec-
tion 3.6.6). So the function K �→ Ψ(K) is a surjection from the set of convex
chamber subcomplexes of Σ to the set of convex subsets of Φ. This function
is injective and has the inverse described in the lemma, since every convex
chamber subcomplex of Σ is an intersection of roots by Theorem 3.131. 	
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Note that the empty set of roots is convex (corresponding to K = Σ), but
the set of all roots Φ is not convex. Indeed, a convex set of roots Ψ contains at
most half of the roots. (Write Ψ = Ψ(K), and take the fundamental chamber
to be in K; then Ψ ⊆ Φ+.)

Example 7.15. Given two chambers C,D ∈ Σ, set

Φ(C,D) := {α ∈ Φ | C ∈ α, D /∈ α} .

Then Φ(C,D) = Ψ
(
{C,D′}

)
, where D′ := opΣ D is the chamber of Σ oppo-

site D. [Recall that a spherical Coxeter complex Σ has an opposition involu-
tion opΣ , which is just multiplication by −1 if we think of Σ as the complex
associated to a finite reflection group; see Sections 1.6.2 and 5.7.3.] Hence
Φ(C,D) is a convex set of roots. It contains precisely d = d(C,D) roots, one
for each wall of Σ that separates C from D. We can enumerate these roots
by choosing a minimal gallery C = C0, . . . , Cd = D from C to D. If αi is the
root containing Ci−1 but not Ci (1 ≤ i ≤ d), then Φ(C,D) = {α1, . . . , αd}.

Note that the ordering of the roots α1, . . . , αd in Example 7.15 has the
property that the set {αi, . . . , αd} is convex for each 1 ≤ i ≤ d. Indeed, this
set is Φ(Ci−1,D). This motivates the following definition:

Definition 7.16. Let Ψ be a convex set of roots. An ordering α1, . . . , αm of Ψ
will be called admissible if the set {αi, . . . , αm} is convex for each 1 ≤ i ≤ m.

Lemma 7.17. Every convex set of roots admits an admissible ordering.

Proof. Let Ψ be convex, and write Ψ = Ψ(K) with K a convex chamber
subcomplex. We may assume that Ψ �= ∅, so that K �= Σ. Choose a pair of
adjacent chambers D,D′ with D ∈ K and D′ /∈ K, and let α1 be the root
containing D but not D′. Then we have α1 ∈ Ψ (see the proof of Propo-
sition 3.94). Moreover, Ψ � {α1} = Ψ(K ∪ {D′}), since α1 is the only root
containing D but not D′. Hence Ψ �{α1} is convex, and an obvious induction
on |Ψ | completes the proof. 	


We close this subsection by mentioning that the theory of convex sets of
roots has a useful generalization to Coxeter complexes that are not necessarily
spherical.

Definition 7.18. Let Σ be an arbitrary Coxeter complex, and let Φ be its
set of roots. A subset Ψ ⊆ Φ is said to be convex if it has the form

Ψ = {α ∈ Φ | K ⊆ α and K ′ ⊆ (−α)} , (7.3)

where K and K ′ are subsets of Σ that each contain at least one chamber.

Note that the set Ψ in (7.3) contains one element for each wall of Σ that
separates K from K ′. In particular, a convex set Ψ is always finite. A simple
example of a convex set is Φ(C,D), defined exactly as in Example 7.15, for
two chambers C,D ∈ Σ.
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Remark 7.19. In the spherical case, Definition 7.18 is consistent with Def-
inition 7.13. Indeed, if Σ is spherical and Ψ = Ψ(K) (where K is a subset
of Σ containing at least one chamber), then Ψ has the form (7.3) with K ′ :=
opΣ(K). Conversely, if Ψ is defined as in (7.3), then Ψ = Ψ(K ∪ opΣ(K ′)).

The theory of convex sets in the nonspherical case is best understood from
the point of view of twin buildings. We will return to it in Section 8.2.

7.2.2 Fixers

Assume now that ∆ is a spherical building and that G is a group of type-
preserving automorphisms of ∆ that contains a system (Xα)α∈Φ of pre–root
groups. As usual, Φ is the set of roots of a chosen fundamental apartment Σ.
For any subset Ψ ⊆ Φ we set

XΨ := 〈Xα | α ∈ Ψ〉 .

We also set
T := FixG(Σ) .

The following proposition is the main result of this section.

Proposition 7.20. Let Ψ be a convex set of roots in the fundamental apart-
ment Σ, let α1, . . . , αm be an admissible ordering of Ψ , and set Xi := Xαi

for
i = 1, . . . , m.

(1) XΨT is a subgroup of G, and

XΨT = X1 · · ·XmT . (7.4)

(2) If x1 · · ·xmt = x′
1 · · ·x′

mt′ with xi, x
′
i ∈ Xi for i = 1, . . . , m and t, t′ ∈ T ,

then there are elements t1, . . . , tm ∈ T such that

x′
1 = x1t1 ,

x′
2 = t−1

1 x2t2 ,

...

x′
m = t−1

m−1xmtm ,

t′ = t−1
m t .

(3) If Ψ = Ψ(K) for some subset K ⊆ Σ containing at least one chamber,
then the pointwise fixer of K is given by

FixG(K) = XΨT .

Remarks 7.21. (a) In examples that arise in practice, each group Xα is nor-
malized by T , and hence XΨT is a subgroup for any set of roots Ψ . Thus the
important part of (1) is equation (7.4).
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(b) If Xα is the full fixer of α for each root α, then Xα contains T and we
can simplify the statement of the proposition. In particular, T can be deleted
from the statements of (1) and (3), except in the trivial case Ψ = ∅. At the
other extreme, suppose Xα ∩ T = {1} for each α. (This situation will arise
when we consider root groups; see Section 7.7.) Then the statement of (2) can
be simplified, since we necessarily have ti = 1 for each i = 1, . . . , m. So the
content of (2) in this case is that every element of XΨT is uniquely expressible
as x1 · · ·xmt with xi ∈ Xi for i = 1, . . . ,m and t ∈ T .

Proof of Proposition 7.20. We prove (1) and (3) simultaneously, by induction
on m = |Ψ |. We may assume that the subset K in (3) is a convex cham-
ber subcomplex. To see this, let L be the convex hull of K in ∆ (Defini-
tion 4.116). Then L is a convex chamber subcomplex of Σ, and we claim that
FixG(L) = FixG(K). Indeed, if g is an element of G that fixes K pointwise,
then g stabilizes L and fixes at least one chamber of L, so it fixes L pointwise
by the standard uniqueness argument. This proves the claim and justifies our
assumption that K is a convex chamber complex. We may further assume
that m > 0. (If m = 0, then K = Σ and FixG(K) = T .)

Since Ψ ′ := Ψ � {α1} = {α2, . . . , αm} is a convex set of roots, we have
Ψ ′ = Ψ(K ′) for a convex chamber subcomplex K ′

� K. Choose adjacent
chambers D,D′ with D ∈ K and D′ ∈ K ′

�K, and let α be the root containing
D but not D′. Then

Ψ � {α1} = Ψ ′ = Ψ(K ′) ⊆ Ψ(K ∪ {D′}) = Ψ � {α} ,

where the last inequality follows from the proof of Lemma 7.17. So α = α1,
and Ψ ′ = Ψ(K ∪ {D′}). We now obtain, by the induction hypothesis,

FixG(K ∪ {D′}) = XΨ ′T = X2 · · ·XmT . (7.5)

Now consider an arbitrary element g ∈ FixG(K). Setting P := D∩D′, we have
gD′ ∈ C(P, α1); so xgD′ = D′ for some x ∈ X1, and hence xg ∈ Fix(K∪{D′}).
In view of (7.5), this proves that

FixG(K) ⊆ X1X2 · · ·XmT ⊆ XΨT . (7.6)

On the other hand, it is trivial that XΨT ⊆ FixG(K), so both inclusions
in (7.6) are equalities, and the proof of (1) and (3) is complete.

To prove (2), note that Xα ≤ FixG(α) for any root α, so it suffices to
prove (2) in the case that Xi = FixG(αi) for all i. In particular, Xi ≥ T for
all i. We again argue by induction on m, which may be assumed ≥ 2. Let Ψ ′

and D′ be as in the previous paragraph, and recall that XΨ ′ = FixG(K∪{D′}).
The equation

x1 · · ·xmt = x′
1 · · ·x′

mt′

therefore implies that x−1
1 x′

1 ∈ X1 ∩ XΨ ′ = FixG(α1 ∪ {D′}) = T , since the
convex hull of α1 ∪ {D′} is the entire apartment Σ. [α1 contains the chamber
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of Σ opposite D′.] So we may take t1 := x−1
1 x′

1. We now have x2x3 · · ·xm =
(t1x′

2)x3 · · ·xm, and an application of the induction hypothesis completes the
proof. 	


We close this section by interpreting part (1) of the proposition in terms of
galleries in case Ψ = Φ(C,D) as in Example 7.15. The result in this case will
be useful to us when ∆ is not necessarily spherical, so we give an independent
proof under weaker assumptions. Assume for the rest of this section that ∆ is
an arbitrary building with a chosen fundamental apartment Σ. We can still
talk about the set of roots Φ of Σ, as well as the sequence of roots α1, . . . , αd

associated to a minimal gallery as in Example 7.15. Assume that we are given
a family (Xα)α∈Φ of subgroups of Aut∆ satisfying conditions (1) and (2) of
Definition 7.2, which we recall here:

(1) Xα fixes α pointwise for each α ∈ Φ.
(2) For each α ∈ Φ and each panel P ∈ ∂α, the action of Xα on C(P, α) is

transitive.

We will also consider the following strengthening of (2):

(2+) For each α ∈ Φ and each panel P ∈ ∂α, the action of Xα on C(P, α) is
simply transitive.

Lemma 7.22. Assume that the Xα satisfy (1) and (2). Let Γ : C0, . . . , Cl be a
minimal gallery in Σ. For 1 ≤ i ≤ l let αi be the root of Σ such that Ci−1 ∈ αi

and Ci /∈ αi, and set Xi := Xαi
. Suppose Γ ′ : C ′

0, . . . , C
′
l is a gallery in ∆ of

the same type as Γ and having C ′
0 = C0. Then there are elements xi ∈ Xi

(1 ≤ i ≤ l) such that x := xk · · ·x1 satisfies xC ′
l = Cl. We then have xΓ ′ = Γ .

If, in addition, the Xα satisfy (2+), then the xi are unique.

Proof. Since Γ is minimal, it crosses each wall separating C0 from Cl exactly
once. Hence C0, . . . , Ci−1 ∈ αi and Ci, . . . , Cl /∈ αi for each 1 ≤ i ≤ l. In
particular, C0 ∈ αi for all i, so C0 is stabilized by each Xi. Similarly, C1 is
stabilized by Xi for i ≥ 2, and so on.

We now prove existence of the xi by induction on l, which may be as-
sumed > 0. This part of the proof is similar to the proof of Lemma 7.9. Let
P := C0 ∩ C1 = C0 ∩ C ′

1, where the equality follows from the fact that Γ
and Γ ′ have the same type. We then have C1, C

′
1 ∈ C(P, α1), so condition (2)

implies that there is an element x1 ∈ X1 such that x1C
′
1 = C1; see Figure 7.4.

Now consider the galleries Γ1 : C1, . . . , Cl and Γ ′
1 : x1C

′
1, . . . , x1C

′
l . We can

apply the induction hypothesis to these galleries to obtain elements xi ∈ Xi

(2 ≤ i ≤ l) such that xk · · ·x2(x1C
′
l) = Cl. This completes the existence proof.

Note that we could have proved, as part of the induction, that xΓ ′ = Γ ,
where x := xk · · ·x1. But we did not need to do this because the equations
xC ′

0 = C0 and xC ′
l = Cl imply that xΓ ′ = Γ . Indeed, xΓ ′ and xΓ are

galleries of the same reduced type and the same extremities, so they are equal
by Corollary 4.42.
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x1

C1C0α1
Σ

P

C ′
1

Fig. 7.4. Constructing x1.

We now assume (2+) and prove uniqueness of the xi by induction on l,
which again may be assumed > 0. Suppose we have a second sequence
y1, . . . , yl satisfying the conditions of the lemma. Then, as we just observed,
yΓ ′ = Γ = xΓ ′, where y := yk · · · y1. In particular, yC ′

1 = C1 = xC ′
1. Since

the xi and yi with i ≥ 2 fix C1, it follows that y1C
′
1 = x1C

′
1 and hence

that y1 = x1 by (2+). (Recall that C ′
1 ∈ C(P, α1) with P as in the existence

proof.) Now consider the galleries Γ1 : C1, . . . , Cl and Γ ′
1 : x1C

′
1, . . . , x1C

′
l and

the sequences x2, . . . , xl and y2, . . . , yl. By the induction hypothesis, xi = yi

for i ≥ 2. 	


Exercise 7.23. Returning to the hypotheses stated at the beginning of this
subsection, show that XΨ ∩XΨ ′ ≤ XΨ∩Ψ ′T for all convex sets Ψ, Ψ ′ ⊆ Φ.

7.3 Root Groups and Moufang Buildings

Throughout this section ∆ denotes a thick spherical building unless the con-
trary is explicitly stated.

7.3.1 Definitions and Simple Consequences

Recall that the star of a simplex A ∈ ∆, denoted by st∆ A, is the set of
simplices joinable to A.

Definition 7.24. For any root α of ∆, the root group Uα is defined to be the
set of automorphisms g of ∆ such that (a) g fixes α pointwise and (b) g fixes
st∆ P pointwise for every panel P ∈ α � ∂α.

Note that Uα ≤ Aut0 ∆. Note also that (a) follows from (b), and hence
could be omitted, if ∆ has rank at least 2. See Exercise 7.30 below for the
rank-1 case. The reader anxious to see examples of root groups can look ahead
at Section 7.3.4. Here are some simple properties of these groups:

Lemma 7.25.

(1) For any root α and any g ∈ Aut ∆,

gUαg−1 = Ugα .
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(2) Let α be a root and let P be a panel in ∂α. Then the root group Uα acts
on the sets A(α) and C(P, α), and these two actions are equivalent.

(3) If the Coxeter diagram of ∆ has no isolated nodes, then the actions in (2)
are free, i.e., for every u ∈ U∗

α := Uα � {1}, the action of u has no fixed
points.

Proof. Assertion (1) is straightforward and is left to the reader, and (2) is an
immediate consequence of Lemma 4.118. To prove (3), recall from Example
3.128 that α contains a chamber C having no panel in ∂α. So every element
u ∈ U∗

α fixes every chamber adjacent to C. The rigidity theorem (Corollary
5.206) now implies that u cannot fix any apartment containing α. 	


Remark 7.26. The assumption that the Coxeter diagram has no isolated
nodes cannot be removed. See Exercise 7.30.

Definition 7.27. We say that ∆ is Moufang, or is a Moufang building, if the
actions in Lemma 7.25(2) are transitive for every root α of ∆. If, in addition,
these actions are simply transitive, then we say that ∆ is strictly Moufang, or
is a strictly Moufang building.

Note that by part (3) of the lemma, a Moufang building whose Coxeter dia-
gram has no isolated nodes is strictly Moufang.

The following proposition is an immediate consequence of the results of
Section 7.1 (see Lemma 7.5 and Theorem 7.10). It also justifies the terms
“pre–root group” and “pre-Moufang.”

Proposition 7.28. If ∆ is Moufang, then it is pre-Moufang. More precisely,
if we choose an apartment Σ and let Φ be its set of roots, then (Uα)α∈Φ is a
system of pre–root groups. Hence G := 〈Uα | α ∈ Φ〉 acts strongly transitively
on ∆, and ∆ ∼= ∆(G,B), where B is the stabilizer in G of any chamber. 	


Remarks 7.29. (a) If we want to check that a spherical building is Moufang,
it suffices to choose a fundamental apartment as in the proposition and check
that Uα is transitive on A(α) for every α ∈ Φ. Indeed, that implies that G
is strongly transitive, and then we can use the G-action to transport what
we know about the Uα for α ∈ Φ to the case of an arbitrary root of ∆. [The
point here is that G is transitive on the apartments of ∆, so every root of ∆
is G-equivalent to a root of Σ.]

(b) The same argument, along with Lemma 7.25(1), implies that the group G
in the proposition contains Uα for every root of ∆, so we have

G = 〈Uα | α is a root of ∆〉 .

In particular, G does not depend on the choice of Σ.
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(c) Let the hypotheses and notation be as in the proposition. Since ∆ is pre-
Moufang, we know that for each α ∈ Φ, there is an element nα ∈ 〈Uα, U−α〉
that stabilizes Σ and induces the reflection sα on it. In view of Lemma 7.25(1),
we have the following additional property of nα in the Moufang case:

nαUβn−1
α = Usα(β)

for all β ∈ Φ. If ∆ is strictly Moufang, we can say still more about nα (see
Remark 7.7 and Lemma 7.25(3)): For any u ∈ U∗

α, there are unique elements
u′, u′′ ∈ U−α such that m(u) := u′uu′′ interchanges ±α and hence can serve
as nα.

(d) One needs to be careful in reading the literature, since there are various
definitions of “Moufang” that differ slightly from one another. In particu-
lar, some authors require from the start that the Coxeter diagram have no
isolated nodes (in which case there is no need for the concept of “strictly
Moufang building”), and some even require irreducibility. The definition that
we have chosen, which is Tits’s original definition in [247, p. 274], has the
advantage that links in Moufang buildings are again Moufang (see Proposi-
tion 7.32 below). The disadvantage, however, is that some results require the
explicit assumption that the Coxeter diagram has no isolated nodes.

Exercises

7.30. If ∆ is a building of type A1 or A1 × A1, show that the actions in
Lemma 7.25(2) are not necessarily free.

7.31. Suppose ∆ is reducible, so that it is a join ∆′ ∗∆′′ (see Exercise 4.17).

(a) Describe the root groups of ∆ in terms of those of ∆′ and ∆′′.
(b) Show that ∆ is Moufang (resp. strictly Moufang) if and only if ∆′ and ∆′′

are both Moufang (resp. strictly Moufang).

7.3.2 Links

For any A ∈ ∆, the link ∆′ := lk∆ A is again a thick spherical building.
Its apartments are the intersections Σ′ := Σ ∩∆′, where Σ ranges over the
apartments of ∆ containing A (see Proposition 4.9 and its proof). Combining
this fact with Proposition 3.79, we see that the roots of ∆′ are the intersections
α′ := α∩∆′, where α ranges over the roots of ∆ with A ∈ ∂α. The bounding
wall ∂α′ is ∂α ∩∆′.

With α and α′ as above, note that the root group Uα fixes A; hence it
stabilizes ∆′. Moreover, it fixes st∆′ P ′ pointwise for every ∆′-panel P ′ in
α′

� ∂α′, since P := P ′ ∪ A is a panel of ∆ in α � ∂α. Hence we have a
restriction homomorphism

ρ : Uα → Uα′ .
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Now consider a boundary panel P ′ of α′ and let P := P ′ ∪ A be the corre-
sponding boundary panel of α. Then there is a bijection

C(P ′, α′) ∼−→ C(P, α)

given by C ′ �→ C ′ ∪ A for C ′ ∈ C(P ′, α′), so the action of Uα on C(P, α) is
equivalent to an action of Uα on C(P ′, α′). And this is the same action one
would get by composing ρ with the natural action of Uα′ on C(P ′, α′). These
considerations lead to the following result:

Proposition 7.32. Let A be a simplex of ∆ and let ∆′ := lk∆ A.

(1) If ∆ is Moufang, then so is ∆′.
(2) If ∆ is strictly Moufang, then the restriction map ρ : Uα → Uα′ is injective

for any root α of ∆ with A ∈ ∂α.
(3) If ∆ is strictly Moufang and the Coxeter diagram of ∆′ has no isolated

nodes, then ∆′ is strictly Moufang, and ρ : Uα → Uα′ is an isomorphism.

Proof. (1) Consider a root α′ of ∆′ and a panel P ′ ∈ ∂α′, and set D :=
C(P ′, α′). With α as above, we have a transitive action of Uα on D that
factors as

Uα

ρ
Uα′ SymD .

Here SymD is the symmetric group, consisting of all permutations of D. Hence
the action of Uα′ on D is also transitive.

(2) Since the action of Uα is free, the composite above is injective. The
first map ρ is therefore also injective.

(3) Our hypothesis implies that the action of Uα′ on D is simply transitive,
so no proper subgroup of Uα′ can act transitively. Hence ρ(Uα) = Uα′ . 	


Finally, while we are on the subject of links, we make one further obser-
vation about root groups (Corollary 7.34 below), in which we use the rigidity
theorem of Section 5.9 to deduce that Uα often fixes more simplices than those
explicitly required by Definition 7.24. We give this application of the rigid-
ity theorem in the following lemma, in which we allow ∆ to be nonspherical.
Recall that E1(C), for C ∈ C(∆), is the set of chambers having a panel in
common with C.

Lemma 7.33. Let ∆ be an arbitrary thick building, let α be a root of ∆, let
C be a chamber of α, and let A be a face of C such that A /∈ ∂α. Assume
that ∆′ := lk∆ A is spherical. If g is an automorphism of ∆ that fixes α
and E1(C) ∩ st∆ A pointwise, then g fixes ∆′ pointwise, hence also st∆ A.

Proof. Note that α∩∆′ is an apartment of ∆′, since α∩∆′ = Σ ∩∆′ for any
apartment Σ of ∆ containing α. So g fixes an apartment of ∆′ pointwise as
well as E1(C ′), where C ′ is the chamber C � A of ∆′. The lemma therefore
follows from the rigidity theorem (see Corollary 5.206) applied to the action
of g on ∆′. 	
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Returning to the spherical case and root groups, we deduce the following:

Corollary 7.34. Suppose the Coxeter diagram of ∆ has no isolated nodes.
Then for every root α of ∆ and every vertex v ∈ α � ∂α, the root group Uα

fixes lk∆ v pointwise. In other words, Uα fixes every vertex that is joinable to
an interior vertex of α.

Proof. The hypothesis on the Coxeter diagram implies that there is a chamber
C ∈ α such that v is a vertex of C and C has no panel in ∂α (Example 3.128).
Now apply the lemma, with A being the vertex v. 	


Remark 7.35. The technique of applying the rigidity theorem to links is very
powerful, and we will give other applications of it in Section 7.5.

Exercise 7.36. Let ∆ be a Moufang building whose Coxeter diagram has no
isolated nodes. For every root α of ∆, show that there is a simplex A ∈ ∂α
whose link ∆′ is a rank-2 irreducible Moufang building. Hence Uα

∼= Uα′ ,
where α′ is the root α ∩∆′ of ∆′.

7.3.3 Subbuildings

Our goal in this subsection is to prove that under mild hypotheses, subbuild-
ings of Moufang buildings are again Moufang. Readers may wish to review
Section 4.6 for the basic facts about subbuildings before proceeding.

Proposition 7.37. Let ∆ be a Moufang building whose Coxeter diagram has
no isolated nodes. If ∆′ is a thick subbuilding of ∆, then ∆′ is also Moufang.
If, moreover, Σ is an apartment of ∆′, α is a root of Σ, and Uα is the
corresponding root group of ∆, then U ′

α := {u ∈ Uα | u(∆′) = ∆′} is the root
group of ∆′ associated to α.

Our proof is inspired by the proof of [264, Lemma 5.2.2], which treats the
rank-2 case. We will use the following lemma:

Lemma 7.38. Let ∆ be a thick spherical building, and let ∆′ be a thick sub-
building. If C and C ′ are opposite chambers of ∆′, then ∆′ is the convex hull
in ∆ of E1(C) ∩∆′ and C ′.

Proof. This follows from Corollary 5.207 applied to ∆′, together with the fact
that ∆′ is convex in ∆ (see Theorem 4.66). 	


Proof of Proposition 7.37. Let Vα be the root group of ∆′ associated to α (in
the sense of Definition 7.24). We have a homomorphism U ′

α → Vα induced by
restriction. This homomorphism is injective in view of the simply transitive
action of Uα on A(α). So all claims will be proved if we show that U ′

α acts
transitively on the set A′(α) of apartments of ∆′ containing α. Let Σ′ ∈ A′(α)
be given. Since ∆ is Moufang, there exists u ∈ Uα with u(Σ) = Σ′. Choose a
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chamber C of α having no panel in ∂α. (This is possible by Example 3.128.)
Then u fixes E1(C) pointwise, so u maps the convex hull of (E1(C)∩∆′)∪Σ
onto the convex hull of (E1(C)∩∆′)∪Σ′. By Lemma 7.38, both these convex
hulls are equal to ∆′. Hence u is in U ′

α. 	


Corollary 7.39. Suppose a Moufang building ∆′ can be embedded as a sub-
complex of a Moufang building ∆ of the same type. If the Coxeter diagram
has no isolated nodes, then the root groups of ∆′ are isomorphic to subgroups
of the root groups of ∆.

Proof. ∆′ is a subbuilding of ∆ by Proposition 4.63, so we may apply Propo-
sition 7.37. 	


Remark 7.40. We will see in Chapter 9 that “most” Moufang buildings have
an associated field (possibly noncommutative). A simple example is the build-
ing associated to a vector space. (We will show in the next subsection that
this building is Moufang.) Moreover, one can recover the characteristic of the
field from the structure of the root groups. In the situation of Corollary 7.39,
it follows that the fields associated to ∆ and ∆′ have the same characteristic.
Using results of Tits–Weiss [262], one can even show that the field associated
to ∆′ has to be a subfield of the field associated to ∆; but we will not need
this stronger result.

7.3.4 The Building Associated to a Vector Space

Let ∆ = ∆(V ) be the building associated to an n-dimensional vector space
(n ≥ 2) over a possibly noncommutative division ring D. (See Section 4.3 and
Exercise 4.32.) For definiteness, we take V = Dn, which we view as a right
vector space. Thus we have a natural left action of GLn(D) on Dn by matrix
multiplication (where vectors are viewed as column vectors). This induces an
action of GLn(D) on ∆, which we will use as an aid in constructing enough
automorphisms of ∆ to prove the Moufang property.

Recall that the vertices of ∆ are the nonzero proper subspaces of V and
that the simplices are the chains of such subspaces. Recall further that ∆ has
one apartment Σ = Σ(F) for every frame F = {L1, . . . , Ln}. The standard
basis e1, . . . , en for V yields a standard frame, with Li := eiD for all i, and
hence a standard apartment Σ. It has one vertex for each nonempty proper
subset I ⊂ {1, . . . , n}, that vertex being the subspace Y :=

⊕
i∈I Li. Using

Exercise 3.58, we get the following description of the roots of Σ: There is one
root αij for each ordered pair of indices 1 ≤ i, j ≤ n with i �= j. The vertices
of αij are the vertices Y of Σ such that

Lj ≤ Y =⇒ Li ≤ Y .

The vertices of ∂αij are those Y such that

Lj ≤ Y ⇐⇒ Li ≤ Y ,
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and the interior vertices of αij are those such that

Li ≤ Y and Lj � Y .

To verify the Moufang property, we will use the group

Uij := {Eij(λ) | λ ∈ D} ,

where Eij(λ) is the elementary matrix with 1’s on the diagonal, λ in the
(i, j) position, and 0’s elsewhere. The explanation of why this works will be
conceptually clearer if we describe the automorphism of V given by Eij(λ) in
a coordinate-free way.

Let τ be a linear automorphism of V . Then τ is called a transvection if
there exist e ∈ V and f ∈ V ∗ such that f(e) = 0 and

τ(v) = v + ef(v)

for all v ∈ V . Here V ∗ is the dual of V . [Recall, in order to make sense of
the expression for τ , that scalars operate on the right of vectors in V .] We
then write τ = τe,f . For example, the automorphism given by an elementary
matrix Eij(λ) is the transvection τeiλ,e∗

j
, where e∗1, . . . , e

∗
n is the basis of V ∗

dual to e1, . . . , en. Given a transvection τ = τe,f , set L := eD ≤ V and
H := ker f ≤ V . Then one checks immediately that a subspace Y ≤ V is
invariant under τ if and only if either L ≤ Y or Y ≤ H. [Observe that Y is
invariant under τ if and only if Y is mapped into itself by the rank-1 operator
v �→ ef(v).]

Returning now to our root αij , we will prove the following lemma, which
implies the Moufang property:

Lemma 7.41.

(1) Uij fixes every vertex of ∆ that is joinable to an interior vertex of αij.
In particular, Uij fixes αij pointwise.

(2) Let P be a panel in ∂αij. Then Uij acts simply transitively on C(P, αij).

Proof. (1) Let Y be a vertex of ∆ that is joinable to an interior vertex Y ′

of αij , and consider a nontrivial element τ ∈ Uij . Thus τ = τe,f with eD = Li

and ker f =
⊕

k 
=j Lk. According to our description of the vertices of αij

above, we have Li ≤ Y ′ and Lj � Y ′; hence eD ≤ Y ′ ≤ ker f . [To rewrite
Lj � Y ′ as Y ′ ≤ ker f , use the fact that Y ′ is a vertex of Σ.] Since Y is
joinable to Y ′, we therefore have either Y ≤ Y ′ ≤ ker f or Y ≥ Y ′ ≥ eD.
In either case, τ(Y ) = Y by our discussion of subspaces invariant under a
transvection.

(2) Recall that a simplex of ∆ is a chain Y1 < · · · < Yq of nonzero proper
subspaces of V . As in Section 4.3, it is convenient to enlarge the chain by
setting Y0 = 0 and Yq+1 = V . In particular, a panel P is a chain of the form

0 = Y0 < · · · < Yk−1 < Yk+1 < · · · < Yn = V
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for some 0 < k < n, where dim Yl = l for all l. If P ∈ ∂αij , then Yk+1 contains
both Li and Lj , while Yk−1 contains neither. The chambers of ∆ containing P
are obtained by inserting a k-dimensional subspace Yk into the chain, and the
chamber C of this form that is in αij is the one with Yk = Yk−1 + Li. For
all the others, we have Yk = Yk−1 + vD, where v = eiλ + ej for a uniquely
determined λ ∈ D. This says precisely that Uij acts simply transitively on the
Yk �= Yk−1 + Li and hence on the corresponding chambers. 	


Remark 7.42. It follows from the lemma that Uij acts faithfully on ∆ and
so can be viewed as a subgroup of Aut∆. Part (1) then says that Uij ≤ Uαij

.
[In fact, we proved that Uij fixes more simplices than Definition 7.24 requires;
but this should not be surprising in view of Corollary 7.34.] It then follows
from part (2) that Uij is the full root group if n ≥ 3; indeed, the full group
acts freely on C(P, αij) by Lemma 7.25(3), so a proper subgroup cannot act
transitively. If n = 2, however, Uij is not the full group unless k = F2; see
Exercise 7.30.

In case n = 3, we can give a concrete geometric interpretation of the
lemma. Recall that ∆ in this case is the incidence graph of the projective
plane over D. Suppose we are given a line L in this plane and a point p ∈ L;
these will play the role of the interior vertices of a root α. Choose a point q �= p
on L and a line M �= L containing p; these will be the boundary vertices of α.
See Figure 7.5, where the root α is on the left and the corresponding picture
in the projective plane is on the right. [Note in passing that if we wanted
to complete α to an apartment, as indicated by the dashed line on the left,
we would have to pick another line through q or, equivalently, another point
on M .] What Lemma 7.41 says about the root group Uα is the following:

M

p

q

M

q

L

p
L

Fig. 7.5. A root in the incidence graph of a projective plane.

(1) Uα stabilizes every point on L and every line through p.
(2) Uα acts simply transitively on the points of M different from p and on

the lines through q different from L.
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This is a very strong symmetry property of a projective plane, and planes
satisfying it are called Moufang planes in honor of Ruth Moufang [168, 169,
225]. This is the origin of the term “Moufang building.” See Tits–Weiss [262,
p. 176] for more details about Moufang’s contributions.

We remark, finally, that the Moufang planes we have studied here, coming
from division rings, are those that are Desarguesian. A general Moufang plane
arises from an “alternative division ring,” which need not be associative. The
nonassociative alternative division rings are called Cayley division algebras.
For example, many readers will have heard of the Cayley numbers, also called
the octonions, which form an 8-dimensional nonassociative division algebra
over the field R of real numbers. There is then a corresponding Moufang
projective plane.

7.4 k-Interiors of Roots

Our next major goal is to prove that thick, irreducible, spherical buildings
of rank at least 3 are always Moufang. We will do this in Section 7.6. The
proof will use a result of Tits [251] about Coxeter complexes, which we prove
in the present section (Theorem 7.51). This result could have been proved
in Chapter 3, but it is quite special, and we know of no use for it except
in connection with the theory of Moufang buildings. The proof is somewhat
technical. Readers anxious to get back to the theory of Moufang buildings
may wish to just take Theorem 7.51 on faith and move ahead to the next
section.

Throughout this section Σ denotes a fixed but arbitrary Coxeter complex.
We will view Σ as a collection of finite subsets of a vertex set, as in the
standard definition of “simplicial complex,” rather than as an abstract poset
with certain properties. As usual, we identify a vertex v with the corresponding
simplex {v}. For any simplex A ∈ Σ and any wall H of Σ, we abuse notation
slightly and write A ∩ H for the maximal face of A in H. Thus the vertices
of A ∩H are the vertices of A fixed by the reflection sH .

Let α ⊆ Σ be a root with bounding wall ∂α, and let C(α) be the set of
chambers of α.

Definition 7.43. For any integer k ≥ 0, the k-interior of α, denoted by α(k),
is defined by

α(k) := {C ∈ C(α) | codim(C ∩ ∂α) > k}
= {C ∈ C(α) | C has at least k + 1 vertices not in ∂α} .

We can also describe α(k) in terms of the “neighborhoods” Ek(C) defined in
Section 5.9. Namely, one can check that

α(k) = {C ∈ C(α) | Ek(C) ⊆ α} . (7.7)
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If we set n := rankΣ, then we have

C(α) = α(0) ⊇ α(1) ⊇ · · · ⊇ α(n−1) ⊇ α(n) = ∅ .

Note that α(n−1) is simply the set of chambers of α disjoint from ∂α.
We have already proven some results about the sets α(k) in Section 3.6.5,

without using that notation. For example, we showed that α(n−1) �= ∅ if Σ is
irreducible (Proposition 3.125). And we showed that α(1) �= ∅ if the Coxeter
diagram of Σ has no isolated nodes (Example 3.128), a result that we have
already used in this chapter. Our main goal in this section is to prove that
α(k) is always gallery connected if Σ is 2-spherical in the sense of the following
definition.

Definition 7.44. A Coxeter system is said to be 2-spherical if every rank-2
standard subgroup is finite, or, equivalently, if every entry m(s, t) of the Cox-
eter matrix is finite. A Coxeter complex Σ or a building ∆ is said to be
2-spherical if its Weyl group is 2-spherical or equivalently, if the link of every
codimension-2 simplex is spherical, or, equivalently, if every rank-2 residue is
spherical.

We need a few preparatory lemmas, whose proofs will make extensive use
of some of the basic results about convex subcomplexes of Coxeter complexes
proved in Chapter 3. We begin by restating, for ease of reference, two such
results.

Lemma 7.45.

(1) Let K be a convex subcomplex of Σ and let A be a maximal simplex of K.
Then K ⊆ suppA.

(2) If A and B are simplices of Σ such that dim A = dim B and A ∈ suppB,
then suppA = suppB. 	


Both parts of this lemma have easy proofs using the Tits cone, and
they also have easy combinatorial proofs that we gave in Section 3.6.6
(Lemma 3.140(2) and Corollary 3.141(2)).

Corollary 7.46. Suppose K is a convex subcomplex of Σ, and let A and B
be simplices of K such that dim A = dimB = dim K. Then suppA = suppB.

	

Next, we need some observations about links of simplices. For any simplex

A ∈ Σ, we set
LA := lkΣ A .

It is a Coxeter complex of rank equal to codimΣ A. Recall from Proposi-
tion 3.79 that the walls of LA are the intersections H ′ := H ∩ LA, where H
ranges over the walls of Σ containing A. For any such H, if α is a root of Σ
bounded by H, then α′ := α ∩ LA is a root of LA bounded by H ′.

We will also have occasion to consider intersections with LA of walls H
that do not contain A. The following simple observation will be crucial in this
connection:
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Lemma 7.47. If H is a wall of Σ and A is a simplex disjoint from H, then
LA ∩H is a convex subcomplex of Σ.

Proof. Consider the star of A, as defined in Example 3.133(b). According to
that example, st A is a convex subcomplex of Σ, hence so is st A ∩ H. Now
note that st A ∩H = LA ∩H, since A is disjoint from H. 	


We now specialize to links of codimension-2 simplices. If A is such a sim-
plex, then LA is a 1-dimensional Coxeter complex; hence either LA is a line or
else it is a circle decomposed into an even number of arcs. In the former case,
it has one wall for each vertex, and the corresponding roots are half-lines.
In the latter case, it has one wall for each pair of opposite vertices, and the
corresponding roots are semicircles.

Our next two lemmas will be used only in order to avoid appealing to the
optional Section 2.6 on the Tits cone. Readers familiar with the Tits cone can
skip ahead to Lemma 7.50.

Lemma 7.48. Let A be a simplex in Σ of codimension 2. Suppose K is a
0-dimensional subcomplex of LA such that K is convex as a subcomplex of Σ.
If K has more than one vertex, then we have:

(1) LA is finite, and K contains exactly two vertices x, y, which are opposite
in LA.

(2) The two roots of LA bounded by x and y are convex subcomplexes of Σ.

Proof. (1) Let x be a vertex of K, and consider the wall H of Σ containing the
panel A∪{x}. Then H ⊇ suppx ⊇ K, so H∩LA is a wall of LA containing K;
see Figure 7.6. Since K has more than one vertex, the same is true of this wall.
Hence LA is a circle, H ∩ LA has exactly two vertices (which are opposite),
and K = H ∩ LA.

(2) Let β′ be one of the roots of LA bounded by x and y, and let E be the
edge of β′ containing x. We will show that β′ is the convex hull of E and y
in Σ. Let γ be this convex hull. Since γ is connected (by Proposition 3.136)
and contains E and y, it suffices to show that γ ⊆ β′.

Note first that suppE contains suppx; hence it contains y. Since suppE
is convex in Σ, it follows that suppE ⊇ γ; in particular, γ is 1-dimensional.
Similarly, since stA is a convex subcomplex of Σ containing E and y, we
have st A ⊇ γ. Observe next that no vertex v of A can be in γ. For if v
were in γ, then we would have E ∪ {v} ∈ γ. [This follows, for instance, from
Remark 3.138.] But this would contradict the fact that γ is 1-dimensional.
Hence γ ⊆ LA. Finally, if we write β′ = β ∩ LA with β a root of Σ, then we
have γ ⊆ β and hence γ ⊆ β′, as required. 	


Lemma 7.49. Let Σ′ be a Coxeter complex, and let u, v be vertices of Σ′

such that suppu = supp v and d(u, v) = 1, where d(−,−) denotes gallery
distance in Σ′. Then Σ′ is the join L ∗M , where L = lkΣ′ u = lkΣ′ v and
M = suppu = supp v = {u, v, ∅}. In particular, L is the only wall of Σ′ not
containing u and v, and this wall strictly separates u and v.
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x
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y

Fig. 7.6. Roots in LA.

Proof. To deduce the second statement from the first, one need only check
that in a join Σ1 ∗ Σ2 of Coxeter complexes, the walls are the subcomplexes
of the form H1 ∗Σ2 and Σ1 ∗H2, where Hi is a wall of Σi for i = 1, 2. We now
prove the first statement. We have uv = u, so any chamber C containing u
can start a minimal gallery from u to v. Since d(u, v) = 1, this means that
any chamber containing u is adjacent to a chamber containing v. A similar
statement holds with the roles of u and v reversed. It follows easily that
stΣ′ u ∪ stΣ′ v is a thin chamber subcomplex of Σ′ and hence is equal to Σ′.
The remaining details are routine and are left to the reader. 	


We come, finally, to the key lemma.

Lemma 7.50. Let A ∈ Σ be a simplex of codimension 2, and let α be a root
of Σ such that A ∈ α � ∂α. Then for the intersection I := LA ∩ ∂α we have
precisely the following four possibilities:

(1) I has at most one vertex, so that I = {∅} or I = {∅, x} for some vertex x.
(2) diam LA = 2, and I = {∅, x, y} for two vertices x, y that are opposite

in LA.
(3) I is a path of length 1 or 2 (i.e., having 2 or 3 vertices).
(4) I = LA.

Proof. The first step is to reduce to the case that A is disjoint from ∂α.
Let A′ be the face of A given by the vertices not in ∂α, and let A′′ be the
complementary face A ∩ ∂α. Set Σ′ := lkΣ A′′, and let α′ := α ∩Σ′. Then A′

is a codimension-2 simplex of Σ′, and LA = lkΣ′ A′. Moreover, α′ is a root
of Σ′ whose bounding wall ∂α′ = ∂α ∩ Σ′ is disjoint from A′, and we have
I = (lkΣ′ A′) ∩ ∂α′. Thus we may replace Σ, α, and A by Σ′, α′, and A′,
thereby reducing to the case that A is disjoint from ∂α.
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Assuming now that A is disjoint from ∂α, our intersection I is a convex
subcomplex of Σ by Lemma 7.47. In particular, I is connected if it has di-
mension 1 (Proposition 3.136). The lemma now reduces to the following two
claims:

Claim I. If I contains more than two edges, then I = LA.

Claim II. If dim I = 0 and I has more than one vertex, then the conditions
of case (2) are satisfied.

To prove Claim I, consider a path of length 3 in I, given by consecutive
edges E1, E2, E3. Let E4 be the LA-edge adjacent to E3 and different from E2.
It suffices to show that E4 ∈ I. Let Ci := Ei ∪ A for i = 1, 2, 3, 4, so that
we have a gallery C1, C2, C3, C4 in Σ; see Figure 7.7, in which we have also
indicated the wall of Σ separating C2 and C3. Consider the reflection r of Σ

C4

A

LA
E1

C1 C2 C3

E2 E3 E4

Fig. 7.7. A path in LA.

with respect to this wall. Then r interchanges C2 and C3 as well as C1 and C4.
It follows that r interchanges E2 and E3 as well as E1 and E4. Now the edges
E1, E2, E3 are maximal simplices of the convex subcomplex I of Σ, so they
all have the same support by Corollary 7.46. Since the automorphism r of Σ
maps {E1, E2, E3} to {E2, E3, E4}, it follows that E2, E3, and E4 all have
the same support; hence the four edges E1, E2, E3, E4 have the same support.
Since some of these edges are contained in the wall ∂α, we conclude from the
definition of “support” that all of them are contained in ∂α. In particular, E4

is in ∂α; hence E4 is in I. This completes the proof of Claim I.
Turning now to Claim II, we give two proofs. The first, which is essentially

the proof given by Tits [251, Lemma 1], makes use of the Tits cone, while the
second is purely combinatorial and is based on Lemmas 7.48 and 7.49.

Proof 1: By Lemma 3.143 and Remark 3.144, I has exactly two ver-
tices x, y, which are opposite in Σ in the sense that they are strictly sepa-
rated by every wall of Σ not containing them. Moreover, LA is a 2m-gon with
2 ≤ m < ∞. Our task is to show that m = 2. Consider a path of length 2
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in LA starting at x. Let the edges of this path be E and F , and set C := E∪A
and D := F ∪A; see Figure 7.8. Let r be the reflection of Σ that interchanges

x

E

y

C D

v

A

F

u

Fig. 7.8. The case dim I = 0, first proof.

C and D. Then r maps LA to itself and sends x, y to another pair of ver-
tices u, v of LA such that u and v are opposite in Σ. Now u and v are both
in α, since they are joinable with A, which is in α � ∂α. In particular, ∂α
does not strictly separate u from v, so we must have u, v ∈ ∂α; hence u, v ∈ I.
Thus {u, v} = {x, y}, and it follows at once that m = 2. See Figure 7.8, which
shows why {u, v} �= {x, y} if m = 3.

Proof 2: By Lemma 7.48, LA is a 2m-gon with 2 ≤ m < ∞, and I =
{∅, x, y}, where x and y are opposite vertices of LA. Moreover, x and y cut LA

into two halves β′
1, β

′
2 that are convex subcomplexes of Σ; see Figure 7.9. Let

E and F be the edges of LA containing x, with E ∈ β′
1 and F ∈ β′

2, and let u
(resp. v) be the vertex of E (resp. F ) different from x. Let r be the reflection
of Σ that fixes the panel A ∪ {v}; the corresponding wall is indicated in
Figure 7.9.

If m ≥ 3, then β′
2 contains at least 3 edges, so r(β′

2) contains both E and F .
By the convexity of r(β′

2) and Corollary 7.46, it follows that suppE = suppF
and hence that the vertices u, v have the same support in Σ′ := lkΣ x. Since
dΣ′(u, v) = 1, we can therefore apply Lemma 7.49 to conclude that there is a
unique wall of Σ′ not containing u and v and that this wall strictly separates
them. Now we know that u, v /∈ ∂α, so the unique wall of Σ′ not containing
them must be ∂α ∩Σ′. In particular, u and v cannot both be in α. But A is
joinable to both u and v and A is in α � ∂α, which implies that u and v are
both in α. This contradiction shows that m < 3. 	


We are ready now for the main result of this section.
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v

F

yu

A

x

E

Fig. 7.9. The case dim I = 0, second proof.

Theorem 7.51. Let Σ be a 2-spherical Coxeter complex and let α ⊆ Σ be a
root. Then for any integer k ≥ 0, the k-interior α(k) of α is gallery connected.
For k ≥ 1, the following more precise result holds: Given chambers C ∈ α(k−1)

and D ∈ α(k), there is a gallery C = C0, . . . , Cn = D with Ci ∈ α(k) for i ≥ 1.

Proof. We argue by induction on k. The case k = 0 is already known by
the convexity of roots, since α(0) = C(α), so we may assume k > 0. Given
chambers C ∈ α(k−1) and D ∈ α(k), the induction hypothesis implies that we
can connect C and D by a gallery Γ : C = C0, . . . , Cn = D in α(k−1). Let
m(Γ ) be the number of indices i with 1 ≤ i ≤ n and Ci /∈ α(k). It suffices to
show that if m(Γ ) > 0, then there is a new gallery Γ ′ from C to D in α(k−1)

with m(Γ ′) < m(Γ ).
Since m(Γ ) > 0, we can find an index 0 < i < n with Ci ∈ α(k−1)

� α(k)

and Ci+1 ∈ α(k). We may assume Ci−1 �= Ci+1, so that the simplex A :=
Ci−1 ∩ Ci ∩ Ci+1 has codimension 2 in Σ. Consider the path in LA := lkΣ A
corresponding to the gallery Ci−1, Ci, Ci+1, and let the vertices along this
path be denoted by v1, v2, v3, v4 as in Figure 7.10. (The vertex colors will be
justified in the next paragraph.) Since Σ is 2-spherical, LA is a circle; so there
is a second path from v1 to v4 in LA. Let Γ ′ be the gallery obtained from Γ
by removing Ci and inserting the chambers D1, . . . , Dp corresponding to the
edges along this second path. To see that m(Γ ′) < m(Γ ), we need to show
that Dj ∈ α(k) for all 1 ≤ j ≤ p.

Note first that we must have v2 ∈ ∂α and v4 /∈ ∂α, since Ci+1 has more
vertices in the interior of α (i.e., in α � ∂α) than Ci has. This implies that
A /∈ ∂α; for if we had A ∈ ∂α, then the panel A ∪ {v2} would be in ∂α,
contradicting the fact that Ci−1 and Ci are both in α. Note next that if
v3 /∈ ∂α, then also v1 /∈ ∂α, because Ci−1 has at least as many vertices in the
interior of α as Ci has.
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A

Ci−1

Ci

Ci+1

v3

v2v1

v4

Fig. 7.10. Modifying Γ ; black in ∂α, white not in ∂α, gray unknown.

We now apply Lemma 7.50 to analyze the possibilities for the intersection
I := LA ∩ ∂α. In view of the information in the previous paragraph, this
intersection must have vertex set {v2}, {v2, v3}, or {v1, v2, v3}. (Note that
case (2) of the lemma cannot occur, because if diam LA = 2, then v4 is the
vertex of LA opposite v2.) In particular, all the vertices of LA other than
v1, v2, v3 are in the interior of α. We can now conclude that the chambers Dj

that we have inserted into Γ ′ are in α(k). For j ≥ 2, this follows from the
fact that A has at least k − 1 vertices /∈ ∂α, and Dj has 2 more such vertices
coming from LA. This argument also works for j = 1 unless v1 ∈ ∂α. But in
this case A has k vertices /∈ ∂α, since Ci−1 ∈ α(k−1); and LA contributes one
more such vertex to D1, so we still obtain D1 ∈ α(k). 	


Corollary 7.52. Under the hypotheses of the theorem, suppose C is a cham-
ber in α(k)

� α(k+1). If α(k+1) �= ∅, then there is a chamber D ∈ α(k+1)

adjacent to C. 	


Exercises

7.53. Give an example to show that we cannot drop the 2-sphericity assump-
tion in Theorem 7.51.

7.54. In the 2-spherical case, is α(k) necessarily convex for k > 0?

7.5 Consequences of the Rigidity Theorem

We continue our preparation for the proof that thick, irreducible, spherical
buildings of rank at least 3 are Moufang. That proof will be given in the next
section. Throughout the present section we assume:

• ∆ is a thick, 2-spherical building.
• α is a root of ∆.
• g is an automorphism of ∆ that fixes α pointwise.
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Our goal is to find minimal hypotheses under which we can deduce that g
fixes st∆ P pointwise for every panel P ∈ α � ∂α (and hence, in the spherical
case, that g is in the root group Uα). There are two ingredients to the proofs.
The first is the rigidity theorem, applied to the action of g on the links of
various codimension-2 simplices; we have already recorded this application of
the rigidity theorem in Lemma 7.33. The second ingredient is the information
about k-interiors of roots that we collected in the previous section.

For the purposes of the applications in the present chapter, the main result
of this section is Proposition 7.57 below. In the next chapter, when we consider
Moufang twin buildings, we will also need Proposition 7.58.

Lemma 7.55.

(1) If C is a chamber in α(2) such that g fixes E1(C) pointwise, then g fixes
E2(C) pointwise.

(2) Let C and D be adjacent chambers with C ∈ α(1) and D ∈ α(2). Then g
fixes E1(C) pointwise if and only if it fixes E1(D) pointwise.

Proof. (1) Given D ∈ E2(C), the face A := D∩C has codimension at most 2,
and it is in α � ∂α since C ∈ α(2). We can now apply Lemma 7.33 to get
gD = D.

(2) If g fixes E1(D) pointwise, then it also fixes E2(D) pointwise by (1).
Since E1(C) ⊆ E2(D), this implies that g fixes E1(C) pointwise. Conversely,
suppose g fixes E1(C) pointwise. Given E ∈ E1(D), the face A := E ∩D ∩C
has codimension at most 2, and it is in α � ∂A, since D ∈ α(2). We can now
apply Lemma 7.33 to get gE = E. 	


Lemma 7.56. Suppose the Coxeter diagram of ∆ has no isolated nodes. If
g fixes E1(C) pointwise for every C ∈ α(1), then g fixes st∆ P pointwise for
every panel P ∈ α � ∂α.

Proof. Let P be a panel in α � ∂α, and choose a chamber C ≥ P in α. If C is
in α(1), then g fixes st∆ P pointwise by hypothesis. Otherwise, Corollary 7.52
implies that there is a chamber C ′ ∈ α(1) adjacent to C. [Recall that α(1) �= ∅
by Example 3.128, so the corollary is applicable.] By hypothesis, g fixes E1(C ′)
pointwise. Since C /∈ α(1), it has exactly one vertex x /∈ ∂α, and x must also
be a vertex of P and C ′ (because P /∈ ∂α and C ′ ∈ α(1)). So A := C ′ ∩ P is
a simplex of α � ∂α having codimension at most 2. We can therefore apply
Lemma 7.33 to conclude that g fixes st∆ A pointwise; hence it also fixes st∆ P
pointwise. 	


Proposition 7.57. Suppose ∆ is irreducible and of rank at least 3. If g fixes
E1(C) pointwise for some chamber C ∈ α(1), then g fixes st∆ P pointwise for
any panel P ∈ α � ∂α.

Proof. In view of Lemma 7.56, it suffices to show that g fixes E1(C ′) pointwise
for every chamber C ′ ∈ α(1). Recall now that α(2) �= ∅ by Proposition 3.125.
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So two applications of Theorem 7.51 yield a gallery C = C0, . . . , Cn = C ′ with
Ci ∈ α(2) for 0 < i < n. Since g fixes E1(C) pointwise, Lemma 7.55(2) now
implies that g fixes E1(C ′) pointwise. 	


Proposition 7.58. Suppose ∆ is irreducible and of rank at least 3. If g fixes
st∆ P pointwise for every panel P ∈ α such that codim∆(P ∩ ∂α) = 2, then g
fixes st∆ P pointwise for every panel P ∈ α � ∂α.

(Here, as in Section 7.4, P ∩ ∂α denotes the maximal face of P in ∂α.)

Proof. Let C0 be any chamber of α with a panel in ∂α, and choose (by Corol-
lary 7.52) a chamber C1 ∈ α(1) adjacent to C0. We will show that g fixes E1(C)
pointwise, so that an application of Proposition 7.57 will complete the proof.
Let x be the vertex of C0 not in ∂α, and let y be the vertex of C1 not in C0.
Then x and y are the two vertices of C1 not in ∂α. Set A := C1 � {x, y};
see Figure 7.11. By assumption, g fixes st∆ P pointwise for the two panels

C1

A

x

∂α

y

C0

Fig. 7.11. C0 ∈ α � α(1), C1 ∈ α(1).

P = A ∪ {x} and P = A ∪ {y} of C1. We must show that g fixes st∆ P
pointwise for any panel P of C1 containing both x and y. We will prove the
stronger result that g fixes st∆ B pointwise, where B := P �{y} ≤ C0. (In the
2-dimensional example shown in the picture, P is the edge joining x and y,
and B is the vertex x.) In view of Lemma 7.33, it suffices to show that g fixes
E1(C0) ∩ st∆ B pointwise. This follows from our hypothesis, since any panel
Q of C0 containing B also contains x and hence satisfies codim∆(Q∩∂α) = 2.

	


7.6 Spherical Buildings of Rank at Least 3

In Section 7.1 we showed, as an easy consequence of the extension theorem,
that if ∆ is a thick, irreducible, spherical building of rank ≥ 3, then ∆ is
pre-Moufang (see Proposition 7.11). Using the results of Section 7.5, we will
see that ∆ is actually Moufang. This was announced by Tits in [247, p. 274]
and proved in [251].
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Theorem 7.59. If ∆ is a thick, irreducible, spherical building of rank at
least 3, then ∆ is Moufang.

Proof. Let α be a root of ∆, and let Σ and Σ′ be apartments containing α. By
Corollary 5.211, there is an automorphism g of ∆ such that gΣ = Σ′, g fixes
α pointwise, and g fixes E2(C) pointwise for some C ∈ α(2). Proposition 7.57
implies that g is in the root group Uα, so the latter acts transitively on A(α).
Thus ∆ has the Moufang property. 	


Remark 7.60. This is a continuation of the discussion at the end of Sec-
tion 6.4. Recall that by the Feit–Higman theorem, finite thick buildings of
type I2(m) (m ≥ 3) exist only for m = 3, 4, 6, and 8. Tits [250, 253] later
proved that the same conclusion holds if the building is assumed to be Mou-
fang instead of finite. A slightly more general result was proved almost si-
multaneously by Weiss [280]. See also Ronan [200, Appendix 1] or Tits–Weiss
[262, Chapter 18]. The consequence we need right now is that one cannot
have m = 5. Since links in Moufang buildings are again Moufang by Proposi-
tion 7.32, we can combine this result with Theorem 7.59 to see that there do
not exist thick buildings of type H3 or H4. We therefore obtain the following
result:

Corollary 7.61. If ∆ is a thick, irreducible, spherical building of rank n ≥ 3,
then ∆ is of type An, Cn, Dn, En, or F4. 	


7.7 Group-Theoretic Consequences of the Moufang
Property

Throughout this section ∆ denotes a strictly Moufang (spherical) building
unless the contrary is explicitly stated. Choose a fundamental apartment Σ
and a fundamental chamber C ∈ Σ. As usual, we denote by Φ the set of roots
of Σ, by Φ+ the set of positive roots (those containing C), and by Φ− the set
of negative roots (those not containing C or, equivalently, those containing
the chamber C0 of Σ opposite C).

Our purpose in this section is to prove some algebraic results about the
group

G := 〈Uα | α ∈ Φ〉
that occurred in Proposition 7.28. These algebraic results will then lead us to
axioms for an algebraic theory to be developed in the next section.

7.7.1 The Groups U±, B±, and Uw

We define two subgroups U+, U− ≤ G by

U± := 〈Uα | α ∈ Φ±〉 .
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Recall that U+ played a crucial role in the proof that the G-action on ∆ is
strongly transitive (see Lemma 7.9, where U+ was simply called U). Next,
there are two important stabilizers:

B+ := {g ∈ G | gC = C} ,

B− :=
{
g ∈ G | gC0 = C0

}
.

Finally, we set

T := FixG(Σ) = {g ∈ G | g fixes Σ pointwise} ,

as is customary in the theory of strongly transitive actions (Section 6.1.1).
Note that

B+ ∩B− = T , (7.8)

since the convex hull of C and C0 is Σ.
Our main goal in this subsection is to apply the results of Section 7.2.2 to

the root groups Uα. The following lemma will play a crucial role.

Lemma 7.62. U+ ∩ T = {1}.

Proof. Let P be a panel of the fundamental chamber C, let α be the positive
root with P ∈ ∂α, and consider the action of U+ on the set of chambers
C(P, α) = CP � {C}. We claim that if an element u ∈ U+ fixes one chamber
in C(P, α), then it fixes all chambers in C(P, α). In other words, the image of
U+ in the group of permutations of C(P, α) acts freely on that set. Indeed, the
image of U+ is the same as the image of Uα, since Uβ acts trivially on C(P, α)
for β ∈ Φ+ � {α}. [We have P ∈ β � ∂β for any such β.] So our claim follows
from the fact that Uα acts freely on C(P, α).

Now suppose u ∈ U+ ∩ T . Then u fixes every chamber of Σ adjacent
to C, and hence, by the claim, u fixes every chamber of ∆ adjacent to C. The
rigidity theorem (see Corollary 5.206) therefore implies that u = 1. 	


Corollary 7.63. B+ ∩ U− = {1}.

Proof. By (7.8) we have B+ ∩U− ≤ T ∩U−. Now note that T ∩U− = {1} by
Lemma 7.62, applied with the roles of C and C0 reversed. 	


We now consider the groups

UΨ := 〈Uα | α ∈ Ψ〉 ,

where Ψ is a convex subset of Φ in the sense of Definition 7.13.

Proposition 7.64. Let Ψ be a convex set of roots in the fundamental apart-
ment Σ, let α1, . . . , αm be an admissible ordering of Ψ , and set Ui := Uαi

for
i = 1, . . . , m.
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(1) UΨ = U1 · · ·Um. More precisely, every element of UΨ is uniquely express-
ible as u1 · · ·um with ui ∈ Ui for each i.

(2) If Ψ = Ψ(K) for some subset K ⊆ Σ containing at least one chamber,
then the pointwise fixer of K in G is given by

FixG(K) = UΨT = UΨ � T .

Proof. Since T acts trivially on Σ, it follows from Lemma 7.25(1) that T
normalizes Uα for each α ∈ Φ. In particular, T normalizes UΨ . Note next that
we can take the fundamental chamber C to be in K, so that Ψ ⊆ Φ+ and
UΨ ≤ U+. In particular, Lemma 7.62 implies that

UΨ ∩ T = {1} . (7.9)

Statement (2) now follows immediately from Proposition 7.20(3), applied with
Xα = Uα for all α. Using parts (1) and (2) of the same proposition, we see
that every element of UΨT admits a unique representation as u1 · · ·umt with
ui ∈ Ui for all i and t ∈ T (see Remark 7.21(b)). In particular, every element
of UΨ admits such a representation, and necessarily t = 1 in view of (7.9).
This proves (1). 	


Taking K = {C}, we obtain the following important special case:

Corollary 7.65.

(1) There is an ordering U1, . . . , Um of the positive root groups such that every
element of U+ admits a unique representation as u1 · · ·um with ui ∈ Ui

for all i.
(2) B+ = U+ � T . 	


Next we consider the case Ψ = Φ(C,D), as in Example 7.15, for some
chamber D ∈ Σ. Here C is still the fundamental chamber. If we write D =
wC with w ∈ W , then the chamber D′ of Σ opposite D is wC0. Hence
Φ(C,wC) = Ψ

({
C,wC0

})
. It has precisely d(C,wC) = l(w) elements, and

any reduced decomposition of w yields an admissible ordering of it. We will
discuss this set in more detail in Section 7.8.4. For the moment, we simply
introduce the notation

Φ(w) := Φ(C,wC) = Ψ
({

C,wC0
})
⊆ Φ+ ,

and we apply Proposition 7.64 to the corresponding groups

Uw := UΦ(w) ≤ U+ .

Corollary 7.66. Given w ∈W , choose a reduced decomposition w = s1 · · · sl,
let Γ be the corresponding gallery from C to wC, and let α1, . . . , αl be the
sequence of roots associated to Γ as in Example 7.15. Set Ui := Uαi

for
i = 1, . . . , l.
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(1) Every element of Uw admits a unique representation as u1 · · ·ul with
ui ∈ Ui for all i.

(2) Uw is the stabilizer of wC0 in U+. In other words,

Uw = U+ ∩ wU−w−1 .

Proof. (1) is just Proposition 7.64(1), specialized to Ψ = Φ(w). To prove (2),
note first that the stabilizer of wC0 in B+ is the fixer of the set K =

{
C,wC0

}
,

so it is UwT by Proposition 7.64(2). The stabilizer of wC0 in U+ is therefore
U+ ∩ UwT , which equals Uw by Lemma 7.62. 	


Finally, we record the result of applying Lemma 7.22 to the gallery Γ in
Corollary 7.66.

Corollary 7.67. Uw acts simply transitively on the w-sphere

Cw := {D ∈ C(∆) | δ(C,D) = w} .

In particular, U+ acts simply transitively on

Cop := {D ∈ C(∆) | D op C} .

Proof. For any D ∈ Cw, there is a gallery from C to D having type (s1, . . . , sl),
so transitivity follows immediately from Lemma 7.22. Simple transitivity
follows from the uniqueness assertion of that lemma combined with Corol-
lary 7.66(1). Alternatively, it follows from the fact that if u ∈ Uw fixes wC,
then u fixes the pair

{
wC,wC0

}
of opposite chambers by Corollary 7.66(2);

hence u ∈ Uw∩T = {1}. Finally, the last assertion of the corollary is obtained
by taking w to be the longest element w0 ∈W . 	


The transitivity assertion in Corollary 7.67 yields a refinement of the
Bruhat decomposition in the setting of Moufang buildings:

Corollary 7.68. For any w ∈W , B+wB+ = UwwB+.

Proof. For any b ∈ B+, the chamber bwC is in Cw, so there is an element
u ∈ Uw such that bwC = uwC, i.e., bwB+ = uwB+. Thus B+wB ⊆ UwwB+.

	

Remark 7.69. We made the assumption that ∆ is strictly Moufang because
we needed the action of the root group Uα on C(P, α) to be simply transitive for
each α ∈ Φ. But all the results of this subsection remain valid if we weaken the
assumption slightly. Namely, it suffices to assume that we are given a system
of groups (Uα)α∈Φ with the following two properties:

• For each α ∈ Φ, Uα is a subgroup of the root group associated to α.
• For each α ∈ Φ and each panel P ∈ ∂α, the action of Uα on C(P, α) is

simply transitive.

Exercise 7.70.

(a) Show that UΨ ∩ UΨ ′ = UΨ∩Ψ ′ for any two convex subsets Ψ, Ψ ′ of Φ.
(b) If Ψ is a convex subset of Φ, show that

Ψ = {α ∈ Φ | Uα ≤ UΨ} .
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7.7.2 Commutator Relations

The elementary matrices in general linear groups satisfy well-known commu-
tator identities. (Readers who have not seen these can look ahead at equa-
tion (7.21) in Section 7.9.) These identities imply, for example, that

[Uij , Ujk] ≤ Uik (7.10)

if i, j, k are distinct indices (1 ≤ i, j, k ≤ n), where the notation is that of
Section 7.3.4. Here [U, V ] denotes the subgroup generated by the commutators
[u, v] := uvu−1v−1 for u ∈ U and v ∈ V . In the present subsection we give
a geometric explanation for the existence of relations like (7.10). Our setting
is still that ∆ is a strictly Moufang (spherical) building with a fundamental
pair (Σ,C), and Φ is the set of roots of Σ. In order to state the commutator
relations, we need the following definition.

Definition 7.71. Given α, β ∈ Φ, we define the closed interval [α, β] by

[α, β] := {γ ∈ Φ | γ ⊇ α ∩ β} .

We define the open interval (α, β) by

(α, β) := [α, β] � {α, β} .

It is easy to get a concrete picture of the interval [α, β] that explains why
it is called an interval. We will do this in Section 7.7.4. But first we establish
the importance of intervals by proving the commutator relations.

Proposition 7.72. Given α, β ∈ Φ with α �= ±β, we have

[Uα, Uβ ] ≤ U(α,β) := 〈Uγ | γ ∈ (α, β)〉 .

Proof. We first show that [α, β] and (α, β) are convex sets of roots, so that
the results of the previous subsection about the groups UΨ are applicable. The
convexity of [α, β] is trivial, since by definition, [α, β] = Ψ(α∩ β). [And α∩ β
contains at least one chamber, since α � −β by Lemma 3.53.] To see that
(α, β) is also convex, note that α ∩ β � β, so we can find adjacent chambers
D′,D with D′ ∈ α∩ β and D ∈ β � α. Similarly, there are adjacent chambers
E′, E with E′ ∈ α ∩ β and E ∈ α � β. One then checks immediately that

(α, β) = Ψ
(
(α ∩ β) ∪ {D,E}

)
, (7.11)

so (α, β) is indeed convex.
We now claim that [Uα, Uβ ] fixes D. To see this, let P be the panel D∩D′.

Then we have P ∈ α ∩ β, so Uα and Uβ stabilize the set of chambers CP =
C(∆)≥P . And we have P /∈ ∂β, so Uβ even fixes CP pointwise. A trivial
computation now proves the claim. Similarly, [Uα, Uβ ] fixes E. Since [Uα, Uβ ]
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also fixes α∩β pointwise, we may apply Proposition 7.64 and equation (7.11)
to conclude that

[Uα, Uβ ] ≤ FixG

(
(α ∩ β) ∪ {D,E}

)
= U(α,β) � T ≤ U[α,β] � T .

Since [Uα, Uβ ] is contained in the first factor of the rightmost semidirect prod-
uct, this implies the proposition. 	


Corollary 7.73. Let α1, . . . , αd be the roots associated to a minimal gallery
in Σ as in Example 7.15, and set Ui := Uαi

for i = 1, . . . , d. If d ≥ 2, then

[U1, Ud] ≤ U2 · · ·Ud−1 .

Proof. It is easy to check that [α1, αd] ⊆ {α1, . . . , αd} (see Exercise 7.75);
hence (α1, αd) ⊆ {α2, . . . , αd−1}. The corollary now follows from the proposi-
tion and the convexity of {α2, . . . , αd−1}. 	


Remark 7.74. In some treatments of the commutator relations, Corollary
7.73 is proved directly; see, for instance, [200, 281]. One can then deduce
Proposition 7.72 after reducing to the rank-2 case. We have followed Tits’s
original approach, which seems more straightforward and has the advantage
that it applies with no essential change to Moufang twin buildings (Sec-
tion 8.5.2).

Exercises

7.75. If Ψ is a convex set of roots, show that Ψ contains [α, β] for any α, β ∈ Ψ .

7.76. Verify that the application of Proposition 7.72 in the proof of Corol-
lary 7.73 was legitimate, i.e., that α1 �= ±αd.

7.77. Suppose that W is the Weyl group of a generalized root system. We
can then identify the roots in Σ(W,S) with root vectors as in Section 1.5.10.
Show that after this identification, the interval [α, β] determined by two root
vectors α, β is the set of root vectors γ such that γ is a nonnegative linear
combination of α and β.

7.78. Let (W,S) be the Coxeter system of type An−1. As we have seen in
Examples 1.119 and 3.52, it has one root αij for each ordered pair 1 ≤ i, j ≤ n
with i �= j. Given three distinct indices i, j, k, show that (αij , αj,k) = {αik}.
Thus the commutator relation (7.10) is a special case of Proposition 7.72.

7.7.3 The Role of the Commutator Relations

We show here that in some sense, the commutator relations capture the
essence of the Moufang property. Let’s start with a thick spherical build-
ing ∆ (with a fundamental apartment as usual), and suppose we are given a
family of subgroups Xα ≤ Aut∆ (α ∈ Φ) with the following two properties:
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(1) Xα fixes α pointwise for each α ∈ Φ.
(2) For each α ∈ Φ and each panel P ∈ ∂α, the action of Xα is transitive on

the set of chambers C(P, α).

Consider now the following two additional properties:

(3) For each α ∈ Φ and each panel P ∈ α � ∂α, Xα fixes CP pointwise.
(3′) For any α, β ∈ Φ with α �= ±β,

[Xα,Xβ ] ≤ X(α,β) .

In the case we have been treating, with the Xα being the root groups Uα, (3)
holds by definition, and this was crucial in our proof of (3′). We now show
that conversely, (3′) implies (3) (cf. [200, Proposition 6.14]).

Proposition 7.79. Let ∆ be a spherical building with a family of subgroups
(Xα)α∈Φ of Aut∆, where Φ is the set of roots of an apartment Σ. If the Xα

satisfy (1), (2), and (3′), then they also satisfy (3). Hence ∆, if it is thick,
is a Moufang building, and Xα is a subgroup of the root group Uα for each
α ∈ Φ. If, in addition, the Coxeter diagram of ∆ has no isolated nodes, then
∆ is strictly Moufang and Xα = Uα for all α.

Proof. Let α and P be as in (3), and consider any chamber C ∈ CP . Let D
and E be the chambers of Σ in CP . They are necessarily both in α. We have
to show that Xα fixes C. In view of (1), we may assume that C is different
from D and E.

The panel P determines a wall in Σ that bounds two opposite roots ±β.
These are both different from α, since P /∈ ∂α. Let’s say that D ∈ β. By (2)
there exists v ∈ Xβ such that vC = E. So Xα fixes C if and only if vXαv−1

fixes E. Since Xα fixes E (by (1) again) and v ∈ Xβ , we are reduced to
showing that [Xα,Xβ ] fixes E. By (3′) we can reduce further to showing that
Xγ fixes E for any γ ∈ (α, β). Now any such γ contains D and, being different
from β, also E. Hence Xγ fixes E, and the proof of (3) is complete. The
remaining assertions of the proposition follow easily. (To see that Xα = Uα

when the Coxeter diagram has no isolated nodes, use the fact that Uα acts
freely on C(P, α).) 	


Remark 7.80. The proof made no use of the assumption that ∆ is spherical.
But as we will see, the definition of the interval (α, β) that we have given is
suitable only in the spherical case. We will return to nonspherical buildings in
the next chapter and prove the appropriate analogue of the proposition (see
Lemma 8.58).

7.7.4 The Structure of [α, β]

This subsection is intended to provide some intuition for the notion of “inter-
val” that occurred in the commutator relations. We start with the case that
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Σ is the standard rank-2 Coxeter complex of type I2(m), which we identify
with a 2m-gon. It has 2m roots, each of which can be traced out by starting
at a vertex and going halfway around in the clockwise direction. Since there
is a cyclic order on the starting vertices, this imposes a cyclic order on the
roots, which we number as α1, α2, . . . , α2m. The choice of which one to call α1

is arbitrary, and the subscripts 1, 2, . . . , 2m should be thought of as integers
mod 2m; thus αi+m = −αi for each i. See Figure 7.12 for the case m = 3.
Consider now a pair of roots α, β with β �= ±α. Interchanging α and β if

α5

α1

α3

α2

α4

α6

Fig. 7.12. The roots of a rank-2 Coxeter complex.

necessary, we may assume that α = αi for some i and that β = αi+l, with
0 < l < m. It is then easy to check that the interval [α, β] consists of the
cyclically consecutive roots αi, αi+1, . . . , αi+l.

In the general case, we will reduce the calculation of [α, β] to the rank-2
case, as follows. Recall first that every maximal simplex A of ∂α ∩ ∂β has
codimension 2 in Σ. This is obvious from the point of view of finite reflection
groups, and we have also given a combinatorial proof in Lemma 3.164. [The
hypothesis of that lemma is automatically satisfied here because spherical
Coxeter complexes have no nested roots by Lemma 3.53.]

Choose a maximal simplex A ∈ ∂α∩∂β, and consider the link LA := lkΣ A.
Recall that the walls H ′ of LA are in 1–1 correspondence with the walls H
of Σ containing A, via H ′ = H ∩LA. Similarly, the roots γ′ of LA correspond
to the roots γ of Σ such that A ∈ ∂γ, via γ′ = γ∩LA. (See Proposition 3.79.)
We can now, as promised, reduce the calculation of [α, β] to the rank-2 case:

Lemma 7.81. Let α and β be roots of Σ such that α �= ±β, let A be a
maximal simplex of ∂α ∩ ∂β, and let α′ := α ∩ LA and β′ := β ∩ LA be the
roots of LA := lkΣ A corresponding to α and β. Then there is a bijection

[α, β] ∼−→ [α′, β′]
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given by γ �→ γ′ := γ ∩ LA for γ ∈ [α, β].

Proof. Given γ ∈ [α, β], we have γ ⊇ α∩β. Applying the opposition involution,
we see that also −γ ⊇ (−α)∩(−β); hence ∂γ ⊇ ∂α∩∂β. In particular, A ∈ ∂γ,
so γ corresponds to a root γ′ := γ ∩LA. We have γ′ ⊇ α′ ∩ β′, so γ′ ∈ [α′, β′].
It remains to show that if we start with an arbitrary γ′ ∈ [α′, β′], then the
corresponding root γ of Σ is in [α, β]. Thus we are given that γ′ ⊇ α′ ∩ β′,
and we must show that γ ⊇ α∩ β. Since α∩ β is a chamber subcomplex of Σ
[why?], it suffices to note that γ contains every chamber D ∈ α∩β; this follows
at once from the description of γ in terms of γ′ given in Lemma 3.162. 	


7.8 RGD Systems of Spherical Type

We have seen that a Moufang building gives rise to an automorphism group
G = 〈Uα | α ∈ Φ〉 with certain special properties. We now reverse the process
and look for group-theoretic axioms that allow one to construct a Moufang
building. The resulting structure is called an RGD system. (“RGD” stands
for “root group data.”) One can think of this as a refinement of a BN-pair.
Thus a BN-pair gives us a building ∆ on which a group G acts, and an RGD
system gives us in addition the root groups, enabling us to prove that ∆ is
Moufang. Before we can talk about “root groups” in an abstract setting, we
need roots. So we start with a Coxeter system.

Throughout this section we denote by (W,S) a Coxeter system with W
finite. Set Σ := Σ(W,S), and identify C(Σ) with W , so that the fundamental
chamber is the element 1 ∈ W . As before, we denote by Φ the set of roots
of Σ and by Φ+ (resp. Φ−) the set of positive (resp. negative) roots. Thus

Φ+ = {α ∈ Φ | 1 ∈ α}

and
Φ− = {α ∈ Φ | 1 /∈ α} = {α ∈ Φ | w0 ∈ α} ,

where w0 is the longest element of W . Recall, finally, that we have simple
roots αs (s ∈ S), characterized by

C(αs) = {w ∈W | l(sw) > l(w)} .

See equation (3.2) in Section 3.4.1 or Definition 5.79 in Section 5.5.4.

7.8.1 The RGD Axioms

The following definition is taken, with slight modifications, from Tits [261].
Suppose we are given a triple

(
G, (Uα)α∈Φ, T

)
consisting of a group G, a

family of subgroups Uα, and a subgroup T . To avoid complicated subscripts
in what follows, we will often write Us instead of Uαs

and U−s instead of U−αs
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for s ∈ S. We will also use the notation U∗ := U � {1} for any group U , and
we will use the notion of an interval of roots (Definition 7.71). Finally, we
continue to use the notation

UΨ := 〈Uα | α ∈ Ψ〉

for any subset Ψ ⊆ Φ. (In practice, we will use this notation only when Ψ is
convex in the sense of Definition 7.13.)

Definition 7.82. The triple
(
G, (Uα)α∈Φ, T

)
is called an RGD system of type

(W,S) if the following conditions are satisfied:

(RGD0) For all α ∈ Φ, Uα �= {1}.

(RGD1) For all α, β ∈ Φ with β �= ±α,

[Uα, Uβ ] ≤ U(α,β) := 〈Uγ | γ ∈ (α, β)〉 .

(RGD2) For every s ∈ S there is a function m : U∗
s → G such that for all

u ∈ U∗
s and α ∈ Φ,

m(u) ∈ U−suU−s and m(u)Uαm(u)−1 = Usα .

Moreover, m(u)−1m(v) ∈ T for all u, v ∈ U∗
s .

(RGD3) For all s ∈ S,
U−s � U+ ,

where U± := 〈Uα | α ∈ Φ±〉.

(RGD4) G = T 〈Uα | α ∈ Φ〉.

(RGD5) T normalizes Uα for each α ∈ Φ, i.e.,

T ≤
⋂

α∈Φ

NG(Uα) .

Example 7.83. Let ∆ be a strictly Moufang building with fundamental
apartment Σ0 and fundamental chamber C0 ∈ Σ0. We identify Σ0 with
Σ(W,S), where W is the group of type-preserving automorphisms of Σ0 and
S is the set of reflections with respect to the walls of C0. The set of roots of Σ0

is then identified with Φ = Φ(Σ(W,S)). For each α ∈ Φ let Uα ≤ Aut ∆ be
the corresponding root group. Let G := 〈Uα | α ∈ Φ〉 ≤ Aut∆, and define T ,
as usual, by

T := FixG(Σ) .

Then
(
G, (Uα)α∈Φ, T

)
is an RGD system of type (W,S). Axiom (RGD0) fol-

lows from the fact that ∆ is thick, and (RGD1) is Proposition 7.72. The first
part of (RGD2) follows from Corollary 7.6 and Lemma 7.25(1). Since m(u)
induces the reflection sα on Σ0, the second part of (RGD2) follows from the
definition of T . To prove (RGD3), note that U+ fixes C0 but U−s does not.
Finally, (RGD4) and (RGD5) are true by definition.
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Remark 7.84. We will see in Section 7.8.5 that as a consequence of our
axioms, one always has

T =
⋂

α∈Φ

NG(Uα) . (7.12)

So we could get a simpler but equivalent set of axioms by deleting (RGD5)
and the second assertion of (RGD2) and then defining T by (7.12). The only
appearance of T in the axioms would then be in (RGD4). This is precisely what
Tits does in [261]. We have chosen our definition, however, for two reasons.
First, we find it interesting that under our axioms, T is uniquely determined
by G and the Uα. Second, our axioms seem slightly more natural in connection
with examples. One typically has a canonical choice of T (often a torus), and
it is usually easy to check (RGD5), but it may not be obvious a priori that
(7.12) holds.

Our goal for the rest of this section is to show that the subgroups B+ :=
TU+ and N := 〈T, {m(u) | u ∈ U∗

s , s ∈ S}〉 constitute a BN-pair in G with
Weyl group N/(B+ ∩ N) = N/T ∼= W . We will then get a thick spherical
building ∆ = ∆(G,B+), which we will prove to be Moufang. Moreover, the Uα

will be the root groups of ∆ if the Coxeter diagram of (W,S) has no isolated
nodes. Roughly speaking, then, all RGD systems arise as in Example 7.83.
(This is not quite true, because the given G in an RGD system need not be
generated by the Uα in general and need not act faithfully on ∆. We will
analyze the kernel of the action in Proposition 7.127. Also, one has to deal
with the possibility of isolated nodes in the Coxeter diagram.)

The first step is to work out the algebraic theory in the rank-1 case. This
is not interesting from the point of view of buildings, but we will find it useful
to apply the rank-1 results to the groups Gs := T 〈Us, U−s〉 (s ∈ S) in the
general case.

7.8.2 Rank-1 Groups

In this subsection we derive some consequences of the axioms in the simplest
possible case, in which (W,S) has rank 1 (i.e., |S| = 1). The treatment that
follows uses ideas from Bruhat–Tits [59, Section 6].

A rank-1 Coxeter complex has exactly two roots ±α, and we will write
U± instead of U±α. Thus a rank-1 RGD system consists of a group G and
subgroups U+, U−, T satisfying the following axioms (where we omit (RGD1),
which is vacuous in the rank-1 case):

(RGD0) U± �= {1}.

(RGD2) There is a function m : U∗
+ → G such that m(u) ∈ U−uU− and

m(u)U±m(u)−1 = U∓ .

for all u ∈ U∗
+. Moreover, m(u)−1m(v) ∈ T for all u, v ∈ U∗

+.
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(RGD3) U− � U+.

(RGD4) G = T 〈U+, U−〉.

(RGD5) T ≤ NG(U+) ∩NG(U−).

We note for future reference that in the present rank-1 setup, we can
replace (RGD3) by the weaker axiom

(RGD3′) U− �= U+.

Indeed, if we make this replacement, then (RGD3) is an easy consequence;
see Remark 7.86 below.

Example 7.85. Let G = SL2(k), where k is a field. Let U+ be the strict
upper-triangular subgroup, let U− be the strict lower-triangular subgroup,
and let T be the diagonal subgroup. It is easy to verify the axioms, the only
interesting one being (RGD2). Here one wants m(u) to be a monomial matrix
of the form ( 0 ∗

∗ 0 ) so that it will interchange U± by conjugation. In order to
find such a monomial matrix in U−uU−, one needs to perform suitable row
and column operations on u. The result of the calculation is that if u = ( 1 λ

0 1 )
with λ ∈ k∗, then we can take

m(u) :=
(

0 λ
−λ−1 0

)
=
(

1 0
−λ−1 1

)(
1 λ
0 1

)(
1 0

−λ−1 1

)
∈ U−uU− .

(7.13)

We now derive 15 consequences of the axioms. The reader might find it
helpful to keep Example 7.85 in mind while working through these conse-
quences.

(1) For any v ∈ U∗
− there is an element m(v) ∈ U+vU+ such that

m(v)U±m(v)−1 = U∓ .

Proof. Set m := m(u0) for some fixed u0 ∈ U∗
+; such a u0 exists by (RGD0).

Since mU+m−1 = U−, we can write v = mum−1 with u ∈ U∗
+. Now set

m(v) := mm(u)m−1 ∈ m(U−uU−)m−1 = U+vU+. Then conjugation by m(v)
interchanges U+ and U−, since m(v) is a product of an odd number of elements
that interchange U+ and U−. 	


(2) U+∩NG(U−) = {1} and U−∩NG(U+) = {1}. In particular, U+∩U− = {1}.
Proof. If there were an element u ∈ U∗

+∩NG(U−), then we would have m(u) ∈
U−uU− ⊆ NG(U−). But m(u) conjugates U− to U+, and these two subgroups
are distinct by (RGD3′). This contradiction proves the first assertion, and the
proof of the second is similar (using (1)). 	
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Remark 7.86. Note that we have used only (RGD0), (RGD2), and (RGD3′)
so far, but (RGD3), and even a stronger version of it, follows from (2). This
proves our claim above that (RGD3) can be replaced by (RGD3′).

(3) Given u ∈ U∗
+, there exist unique elements u1, u2 ∈ U− such that

(u1uu2)U±(u1uu2)−1 = U∓. In particular, m(u) is the unique element of
U−uU− that interchanges U+ and U− by conjugation. Moreover, u1, u2 �= 1.

Proof. Suppose m = u1uu2 and n = v1uv2 both interchange U±, where
u1, u2, v1, v2 ∈ U−. We have u = u−1

1 mu−1
2 = v−1

1 nv−1
2 , which implies

v1u
−1
1 = nv−1

2 u2m
−1 =

(
nv−1

2 u2n
−1
) (

nm−1
)

.

The left side is in U−, the first factor on the right is in U+, and the second
factor on the right normalizes both U+ and U−. So v1u

−1
1 ∈ U−∩NG(U+), and

hence v1 = u1 by (2). We now have nv−1
2 u2n

−1 ∈ U+∩NG(U−), and we again
apply (2) to conclude that v2 = u2. This completes the uniqueness proof. To
show u1, u2 �= 1, suppose for instance that u1 = 1. Then uu2U−u−1

2 u−1 =
U+. Conjugating by u−1, we conclude that U− = U+, contradicting (RGD3).
Hence u1 �= 1. A similar argument shows that u2 �= 1. 	


(4) m(u−1) = m(u)−1 for all u ∈ U∗
+.

Proof. We have m(u)−1 ∈ U−u−1U−, and m(u)−1 interchanges U+ and U−
by conjugation. Now use the uniqueness of m(u−1) proved in (3). 	


(5) m(tut−1) = tm(u)t−1 for all u ∈ U∗
+, t ∈ T .

Proof. As in the proof of (4), note that tm(u)t−1 is in U−(tut−1)U− and
interchanges U± by conjugation. 	


(6) m(u) ∈ NG(T ) for all u ∈ U∗
+.

Proof. Using (5), we obtain

m(u)−1tm(u) = m(u)−1(tm(u)t−1)t = m(u)−1m(tut−1)t

for all t ∈ T . The right side is in T by the second assertion of (RGD2), so
m(u)−1Tm(u) ≤ T . Replacing u by u−1 and using (4), we get the opposite
inclusion. 	


Remark 7.87. At this point we can show that the concept of “rank-1 RGD
system” is completely symmetric. In other words, if we set U ′

+ := U− and
U ′
− := U+, then

(
G, (U ′

±), T
)

is still an RGD system. Indeed, we already
noted above that (RGD3) can be replaced by the symmetric axiom (RGD3′).
The only other asymmetric axiom is (RGD2), and its symmetric counterpart
follows from (1) and its proof, together with (6). Consequently, every result in
the rank-1 case has an “opposite” or “dual” result with the roles of + and −
interchanged.
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(7) m(u)T = m(v)T = m(u)−1T for all u, v ∈ U∗
+.

Proof. The first equation follows from (RGD2). Now replace v by u−1 and
use (4). 	


For the next few statements we fix u0 ∈ U∗
+ and set m := m(u0).

(8) U∗
+ ⊆ U∗

−mU∗
−T .

Proof. Given u ∈ U∗
+, we have u ∈ U∗

−m(u)U∗
− by (RGD2) and the last

assertion of (3). Since m(u) ∈ mT by (RGD2), this implies u ∈ U∗
−mTU∗

− =
U∗
−mU∗

−T [recall that T normalizes U−]. 	


(9) U∗
− ⊆ U∗

+mU∗
+T .

Proof. Conjugate (8) by m and use (6). 	


(10) U∗
+mTU+ = U∗

−TU+.

Proof. We have

U∗
+mTU+ ⊆ U∗

−mU∗
−TmTU+ by (8)

= U∗
−mU∗

−mTU+ because Tm = mT by (6)

= U∗
−mU∗

−m−1TU+ by (7)
= U∗

−U∗
+TU+

= U∗
−TU+ because U∗

+T = TU∗
+.

This proves one inclusion. For the other, we have

U∗
−TU+ ⊆ U∗

+mU∗
+TTU+ by (9)

= U∗
+mU∗

+TU+

= U∗
+mTU∗

+U+

= U∗
+mTU+ . 	


(11) Set B+ := TU+. Then

G = B+ ∪ U+mB+ .

Proof. Since U+ = {1} ∪ U∗
+, we have

U+mB+ = mB+ ∪ U∗
+mB+ = mB+ ∪ U∗

−B+ ,

where the second equation comes from (10). Taking the union with B+ and
writing U− = {1} ∪ U∗

−, we obtain

B+ ∪ U+mB+ = mB+ ∪ U−B+ . (7.14)
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Now set G′ := B+ ∪ U+mB+. Note that if we left-multiply the right side
of (7.14) by m, we get the left side. (Use (7) to see that m2B+ = m2TU+ =
TU+ = B+. And note that mU− = mU−m−1m = U+m.) Hence G′ is closed
under left multiplication by m. Moreover, G′ is also closed under left multi-
plication by T and U+. (To see that U+mB+ is closed under left multiplica-
tion by T , note that TU+mB+ = U+TmB+ = U+mTB+ = U+mB+.) Now
G = 〈T,U+, U−〉 by (RGD4); hence also G = 〈T,U+,m〉. So G′ is closed under
left multiplication by G, which implies that G′ = G. 	


(12) {1} � U+m is a set of representatives for G/B+.

Proof. Note first that U+ is a normal subgroup of B+ and m /∈ NG(U+),
so m /∈ B+. The union in (11) is therefore a disjoint union. It remains to
show that distinct elements of U+m represent different cosets of B+. Suppose
u1mB+ = u2mB+ for some u1, u2 ∈ U+. Then m−1u−1

2 u1m ∈ B+ ∩ U− ≤
NG(U+) ∩ U− = {1}; hence u1 = u2. 	


(13) B+ = NG(U+).

Proof. We know that B+ ≤ NG(U+). If this were a proper inclusion, then
NG(U+) would meet U+mB+, contradicting the fact that m /∈ NG(U+). 	


(14) Set B− := TU−. Then B− = NG(U−).

Proof. Conjugate (13) by m. Alternatively, use Remark 7.87. 	


(15) T = NG(U+) ∩NG(U−).

Proof. By (13) and (14), NG(U+)∩NG(U−) = B+ ∩B− = T (U+ ∩B−). Now
note that U+ ∩B− = {1} by (2). 	


Remark 7.88. The most important of these 15 properties in what follows
are (11) and (15). But of course, the others (with the exception of (12)) were
needed along the way.

7.8.3 The Weyl Group

We return now to an arbitrary RGD system
(
G, (Uα)α∈Φ, T ) of spherical

type (W,S). We define a subgroup N ≤ G by

N :=
〈
T, {m(u) | u ∈ U∗

s , s ∈ S}
〉

.

Note that each generator m(u) normalizes T by statement (6) of the previous
section applied to the rank-1 group Gs := T 〈Us, U−s〉. Hence T is a normal
subgroup of N . Our goal in this subsection is to prove that N/T ∼= W .

The first step is to define an action of N on Φ. We have a conjugation
action of N on the set of subgroups {Uα | α ∈ Φ} by (RGD2) and (RGD5),
so we will get an action of N on Φ if we show that this set of subgroups is in
1–1 correspondence with Φ. In other words, we need to show the following:
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Lemma 7.89. If α and β are distinct roots of Σ, then Uα �= Uβ.

The proof will use a simple lemma that could have been proved in Chap-
ter 1:

Lemma 7.90. If α and β are distinct roots of Σ, then there are elements
w ∈W and s ∈ S such that wα = −αs and wβ ∈ Φ+.

Proof. We claim there are adjacent chambers C ′,D′ with C ′ ∈ β � α and
D′ ∈ α. Assuming the claim, let w ∈ W be the element such that wC ′ is
the fundamental chamber 1. [Recall that C(Σ) = W .] Then wβ contains 1,
so wβ ∈ Φ+. And wα does not contain 1 but it contains a chamber adjacent
to 1, so wα = −αs for some s ∈ S. It remains to prove the claim.

If α = −β, we can take any pair of adjacent chambers C ′,D′ with C ′ ∈ β
and D′ ∈ −β = α. Otherwise, we have α � −β by Lemma 3.53, so α ∩ β
contains at least one chamber. We also have β � α, so there is a minimal
gallery that starts in β � α and ends in α ∩ β. This gallery must be entirely
contained in β by convexity of the latter, so it contains a pair of adjacent
chambers C ′,D′ ∈ β such that C ′ /∈ α but D′ ∈ α. This proves the claim. 	


Proof of Lemma 7.89. Choose w ∈W and s ∈ S as in Lemma 7.90, and write
w = s1 · · · sl with si ∈ S for 1 ≤ i ≤ l. Choose ui ∈ U∗

si
for 1 ≤ i ≤ l, and

set w̃ := m(u1) · · ·m(ul). Then w̃Uαw̃−1 = U−s and w̃Uβw̃−1 = Uγ , where
γ = wβ ∈ Φ+. We are therefore reduced to showing U−s �= Uγ . But this
follows from (RGD3), since Uγ ≤ U+. 	


We now have a well-defined action of N on Φ, given by a homomorphism
ν : N → Sym Φ, where the latter is the symmetric group of Φ, i.e., the group
of permutations of Φ. The action is characterized by

nUαn−1 = Uν(n)α (7.15)

for n ∈ N and α ∈ Φ. In view of (RGD5), the action of T is trivial. We also
have, of course, the canonical action of W on Φ. This action is easily seen to
be faithful. [For example, we could identify Φ with a generalized root system
in a vector space on which W acts as a finite reflection group, in which case we
verified the faithfulness of the action in the proof of Lemma 1.4.] Identifying
W with its image in Sym Φ, we conclude from (RGD2) that the image of ν is
precisely W . So we can view ν as a surjection N � W . It induces a surjection

ν̄ : N/T � W .

We wish to prove that ν̄ is an isomorphism or, equivalently, that T = ker ν.
A key step in the argument is an application of the rank-1 theory to subgroups
of the form Gs := T 〈Us, U−s〉 for s ∈ S to obtain the following result:

Lemma 7.91. ker ν ∩Gs = T for each s ∈ S.
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Proof. It is immediate from (7.15) that ker ν = N ∩
⋂

α∈Φ NG(Uα). Hence

ker ν ∩Gs ≤ NGs
(Us) ∩NGs

(U−s) = T

by statement (15) in Section 7.8.2. The opposite inclusion is trivial. 	


We can now prove the main result of this subsection, which is a step toward
the construction of a BN-pair in G:

Lemma 7.92. ν̄ is an isomorphism. In other words, T = ker ν.

Proof. For each s ∈ S, choose u ∈ U∗
s and set s̃ := m(u) ∈ N . Using both

parts of (RGD2), we see that the coset s̃T is independent of the choice of u
and that ν̄(s̃T ) = s. Moreover, the elements s̃T for s ∈ S generate N/T . It
therefore suffices to show that the s̃T satisfy the Coxeter relations defining W ;
equivalently, we have to show that (s̃t̃)m(s,t) ∈ T for all s, t ∈ S, where(
m(s, t)

)
s,t∈S

is the Coxeter matrix of (W,S). Indeed, once we have shown
this, the Coxeter presentation for W will give us a well-defined homomorphism
µ : W → N/T such that µ(s) = s̃T for all s ∈ S, and it is immediate that µ
(once we know it exists) is inverse to ν̄.

We already know that s̃2 ∈ T for all s ∈ S by statement (7) in Section 7.8.2
applied to Gs. So suppose s �= t, and set m := m(s, t). The trick for proving
the Coxeter relation, following Tits [260, 5.4, proof of Lemma 3(iii)], is to
rewrite that relation in terms of conjugation so that we can make effective use
of equation (7.15).

Consider first the Coxeter relation (st)m = 1 in W . This can be written as

st · · · s = t ,

where the left side is an alternating product of 2m − 1 factors. The middle
letter is s if m is odd and t if m is even. If we denote by w the alternating
product st · · · of length m− 1, the relation becomes

wxw−1 = t ,

where x = s or t, depending on whether m is odd or even. This implies

wαx = ±αt , (7.16)

and in fact the sign is +, although we do not really need this. [xw−1 is an
alternating product of length m, so l(xw−1) > l(w−1) =⇒ w−1 ∈ αx =⇒
1 ∈ wαx =⇒ wαx ∈ Φ+.] Letting n ∈ N be the alternating product s̃t̃ · · · of
length m− 1, the relation to be proved becomes

nx̃n−1 ≡ t̃ mod T . (7.17)

Since ν(n) = w, equations (7.15) and (7.16) imply that nU±xn−1 = U±t; hence
nGxn−1 = Gt. In particular, nx̃n−1 ∈ Gt. We also know that ν(nx̃n−1) =
ν(t̃). We can therefore apply Lemma 7.91 to conclude that (7.17) holds. 	
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We close this subsection with two further results that we can now prove
and that will be needed later. Recall that B± := TU±.

Lemma 7.93. N ∩NG(U+) = T , and hence N ∩B+ = T .

Proof. It suffices to show that

N ∩NG(U+) ≤ T = ker ν .

Given n ∈ N ∩NG(U+), set w := ν(n). For any α ∈ Φ+, we then have

Uwα = nUαn−1 ≤ U+ .

In view of (RGD3), it follows that we cannot have wα = −αs with s ∈ S.
Hence w = 1 by Exercise 7.97 below, and we have proved N∩NG(U+) ≤ ker ν.

	


Corollary 7.94. U−s ∩B+ = {1} for all s ∈ S.

Proof. Suppose there exists an element v ∈ U∗
−s ∩ B+, and consider the ele-

ment m(v) ∈ UsvUs that interchanges U±s by conjugation; see Section 7.8.2,
statement (1). The construction of m(v) shows that it is in N ; hence it is in
N ∩B+ = T . But this contradicts the fact that it does not normalize U±s. 	


Remark 7.95. This is a good place to point out that the theory of RGD
systems is completely symmetric with respect to + and −. More precisely,
suppose we are given an RGD system

(
G, (Uα)α∈Φ, T

)
. We define a new sys-

tem of groups by setting U ′
α := U−α for α ∈ Φ. The claim, then, is that(

G, (U ′
α)α∈Φ, T

)
is again an RGD system. Axioms (RGD0), (RGD1), (RGD4),

and (RGD5) are clear. [One has to use the opposition involution in the case
of (RGD1).] And (RGD2) follows from the results in Section 7.8.2; see Re-
marks 7.86 and 7.87. Finally, we can deduce (RGD3) for the new system from
(RGD3) for the original system by conjugating by the longest element w0

or, more precisely, by any representative of w0 in N . One needs to note here
that the action of w0 on Σ interchanges the positive and negative roots and
permutes the walls of the fundamental chamber, so that w0U+w−1

0 = U− and
{w0U−sw0 | s ∈ S} = {Us | s ∈ S}.

Exercises

7.96. The purpose of this exercise is to show that Lemma 7.90, which was
proved here for spherical Coxeter complexes, is not true for general Coxeter
complexes.

(a) Give an example of a Coxeter complex Σ that contains roots α, β such
that α ∩ β contains no chamber but α �= −β.

(b) Let Σ = Σ(W,S) for some Coxeter system (W,S). If α and β are roots
of Σ for which the conclusion of Lemma 7.90 holds, show that either
α = −β or α ∩ β contains a chamber.
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(c) Deduce that Lemma 7.90 does not hold for Σ as in (a).

7.97. Let (W,S) be an arbitrary Coxeter system, let Σ = Σ(W,S), and let Φ
be its set of roots. For any w �= 1 in W , show that there exist α ∈ Φ+ and
s ∈ S such that wα = −αs.

7.8.4 The Groups Uw

As in the previous subsection, we choose for each s ∈ S an element u ∈ U∗
s

and set s̃ := m(u). We omit the tilde in expressions that do not depend on
the choice of u, as in the following lemma.

Lemma 7.98. B+sB+ = UssB+ for any s ∈ S.

Proof. We have B+sB+ = U+TsB+ = U+sTB+ = U+sB+, so we must show
that U+sB+ = UssB+. In view of the definition of U+, it suffices to show that
UαUssB+ ⊆ UssB+ for all α ∈ Φ+. This is clear if α = αs, so assume α �= αs.
We also have α �= −αs, so we may apply the commutator relation (RGD1) to
get

[Uα, Us] ≤ 〈Uγ | γ ∈ (α, αs)〉 ≤ 〈Uγ | γ ∈ Φ+ � {αs}〉 .

Recall now that αs is the only positive root that is mapped by s to a negative
root. Hence sγ ∈ Φ+ for each γ that occurs in the commutator relation above.
Using this fact, we can complete the proof with the following calculation:

UαUssB+ ⊆ UsUα[Uα, Us]sB+

⊆ UsUα〈Uγ | γ ∈ Φ+ � {αs}〉sB+

= Us〈Uγ | γ ∈ Φ+ � {αs}〉sB+

= Uss〈Usγ | γ ∈ Φ+ � {αs}〉B+

= UssB+ . 	


Corollary 7.99. B+ ∪B+sB+ is a subgroup of G for each s ∈ S.

Proof. It suffices to show that sB+sB+ ⊆ B+ ∪ B+sB+. By the lemma we
have

sB+sB+ = sUssB+ ⊆ GsB+ ,

where, as usual, Gs := T 〈Us, U−s〉. We can now apply statement (11) from
Section 7.8.2 to obtain Gs = TUs ∪ UssTUs, so that

GsB+ = (TUs ∪ UssTUs)B+ = B+ ∪ UssB+ = B+ ∪B+sB+ . 	


Definition 7.100. For w ∈W we set

Φ(w) := {α ∈ Φ+ | w /∈ α}
= {α ∈ Φ | 1 ∈ α, w /∈ α}
= {α ∈ Φ | 1 ∈ α, w ∈ −α} .

We also set
Uw := UΦ(w) .
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Note that if we think of 1 and w as chambers of Σ, then Φ(w) coincides
with the set Φ(1, w) that occurred in Example 7.15. We record for ease of
reference some simple properties of Φ(−).

Lemma 7.101. Fix w ∈W .

(1) If α, β ∈ Φ(w), then [α, β] ⊆ Φ(w).
(2) Given a reduced decomposition w = s1 · · · sn, set wi := s1 · · · si for

i = 0, . . . , n, and set αi := wi−1αsi
for i = 1, . . . , n. Then Φ(w) =

{α1, . . . , αn}.
(3) If s ∈ S and l(sw) > l(w), then Φ(sw) = {αs} ∪ sΦ(w). In particular,

sΦ(w) ⊆ Φ+.

Proof. (1) This follows easily from the convexity of [α, β]; see Exercise 7.75.
(2) Consider the minimal gallery Γ : 1 = w0, . . . , wn = w. Since αsi

is the
root containing 1 but not si, we can multiply by wi−1 to see that αi is the
root containing wi−1 but not wi for 1 ≤ i ≤ n. (2) now follows from the
observations made in Example 7.15.

(3) Choose a reduced decomposition w = s1 · · · sn as in (2). Then we have
a reduced decomposition sw = ss1 · · · sn, and (3) follows at once from (2).
Alternatively, check (3) directly from Definition 7.100 (see Exercise 7.109).

	


Lemma 7.102. Fix w ∈W .

(1) Given a reduced decomposition w = s1 · · · sn, let α1, . . . , αn be as in
part (2) of Lemma 7.101. Then Uw = Uα1 · · ·Uαn

.
(2) If w1 and w2 are elements of W such that l(w1w2) = l(w1) + l(w2), then

Uw1w2 = Uw1w1Uw2w
−1
1 . In particular, Usw = UssUws−1 for s ∈ S and

w ∈W with l(sw) > l(w).

Proof. (1) We argue by induction on n = l(w). Assuming, as we may, that w �=
1, set w′ := s1 · · · sn−1 and s := sn. By Lemma 7.101, Φ(w) = Φ(w′) ∪ {αn},
with αn = w′αs, so Uw = 〈Uw′ , Uαn

〉. By the induction hypothesis, Uw′ =
Uα1 · · ·Uαn−1 , so we need to show that Uw = Uw′Uαn

. It suffices to show that
Uw′Uαn

Uαi
⊆ Uw′Uαn

for 1 ≤ i < n. Since [αn, αi] ⊆ Φ(w) by Lemma 7.101,
we have (αn, αi) ⊆ Φ(w)�{αn} = Φ(w′). Hence [Uαn

, Uαi
] ≤ Uw′ by (RGD1),

and
Uw′Uαn

Uαi
⊆ Uw′ [Uαn

, Uαi
]Uαi

Uαn
⊆ Uw′Uαn

.

(2) Choose reduced decompositions w1 = s1 · · · sn and w2 = t1 · · · tm with
all si, tj ∈ S, and combine these to get a reduced decomposition of w1w2. Let
α1, . . . , αn (resp. β1, . . . , βm) be the roots associated to the decomposition
of w1 (resp. w2). Then the roots associated to the decomposition of w1w2 are

α1, . . . , αn, γ1, . . . , γm

with γj = w1βj for 1 ≤ j ≤ m. The result now follows at once from (1) and
the fact that Uw2(β) = w2Uβw−1

2 for any root β. 	
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Remarks 7.103. (a) In spite of the fact that every s ∈ S has order 2 in W ,
it is necessary to write s−1 instead of s in (2); see Exercise 7.110 below.

(b) Once we have constructed a building associated to our RGD system, we
will quickly get the following addendum to (1): Every u ∈ Uw admits a unique
decomposition u = u1 · · ·un with ui ∈ Uαi

for 1 ≤ i ≤ n; see Corollary 7.119.
The interested reader can give an algebraic proof of this fact now (Exer-
cise 7.111).

We can now prove the following generalization of Lemma 7.98 (cf. Corol-
lary 7.68).

Lemma 7.104. B+wB+ = UwwB+ for all w ∈W .

Proof. We argue by induction on l(w), which may be assumed > 0. It suffices
to show that B+w ⊆ UwwB+. Writing w = sw′ with l(w) = l(w′) + 1, we
have

B+w = B+sw′

⊆ UssB+w′ by Lemma 7.98
⊆ UssUw′w′B+ by the induction hypothesis

= Us(sUw′s−1)wB+

= UwwB+ by Lemma 7.102(2) . 	


We close this subsection with some elementary observations about the
structure of the groups Uw. We need the following result from group theory:

Lemma 7.105. If H is a group generated by two nilpotent normal subgroups,
then H is nilpotent.

Proof. Call the two subgroups M,N , so that H = MN . Let M and N be
nilpotent of class c and d, respectively. We will show by induction on c + d
that H is nilpotent of class ≤ c + d. We may assume c, d > 0 (i.e., M and N
are both nontrivial). The center Z(M) of M is normal in H, so we may apply
the induction hypothesis to H/Z(M) to conclude that the latter is nilpotent
of class ≤ c + d − 1. Similarly, H/Z(N) is nilpotent of class ≤ c + d − 1, so
K := H/Z(M)×H/Z(N) is nilpotent of class ≤ c + d− 1. Observe now that
Z(M) ∩ Z(N) ≤ Z(H), so that we have canonical maps

H/Z(H) � H/(Z(M) ∩ Z(N)) ↪→ H/Z(M)×H/Z(N) = K .

Thus H/Z(H) is a subquotient of K and is therefore also nilpotent of class
≤ c + d− 1. Hence H is nilpotent of class ≤ c + d. 	


Proposition 7.106. If Uα is nilpotent for all α ∈ Φ, then Uw is nilpotent for
all w ∈W . In particular, U+ is nilpotent.
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Proof. The last assertion follows from the first because U+ = Uw0 . [Every wall
separates 1 from w0.] We prove the first assertion by induction on l(w), which
may be assumed ≥ 2. Write w = sw′t with s, t ∈ S and l(w) = l(w′) + 2. Set
w1 := sw′ and w2 := w′t. Then

Φ(w) = {αs} ∪ sΦ(w′) ∪ {w1αt} = Φ(w1) ∪ sΦ(w2) .

Hence Uw is generated by Uw1 and sUw2s
−1, both of which are nilpotent by

the induction hypothesis. In view of the lemma, it suffices to show that they
are both normal in Uw. Set β := w1αt. To show that Uw1 � Uw = Uw1Uβ , it
suffices to show that Uβ normalizes Uw1 . Now for any γ ∈ Φ(w1) = Φ(w)�{β},
the open interval (γ, β) is contained in Φ(w1), so [Uγ , Uβ ] ≤ Uw1 . This implies
that Uβ normalizes Uw1 . Similarly, setting α := αs, (RGD1) shows that Uα

normalizes sUw2s
−1, so the latter is normal in Uw = UαsUw2s

−1. 	


Remarks 7.107. (a) The hypothesis that the Uα are nilpotent is in fact al-
ways satisfied if the Coxeter diagram of (W,S) has no isolated nodes. For
buildings of rank 2, this is known as a result of the classification [262, Chap-
ter 17]; see also Tent [234] for a direct proof. The general case then follows
from Exercise 7.36. In concrete examples, one simply sees this by inspection.
In fact, the groups Uα are often abelian. In Section 7.9.3 we will see a concep-
tual explanation for the fact that Uα is nilpotent for RGD systems associated
with algebraic groups.

(b) It is also true that the group 〈Us, U−s〉 is never nilpotent. This fact, which
is not as difficult as the one quoted in (a), will be proved in Exercise 7.129
below. A case that often arises in practice is that 〈Us, U−s〉 is isomorphic to
SL2(k) or PSL2(k) for some field k.

(c) The proof of Proposition 7.106 used only (RGD1) together with the fol-
lowing consequence of (RGD0) and (RGD2): For any s ∈ S there exists an
element s̃ ∈ G such that s̃Uαs̃−1 = Usα for all α ∈ Φ. In particular, the proof
made no use of (RGD3). So if we are trying to verify the RGD axioms in an
example in which we know that the Uα are nilpotent, and if we also happen
to know that 〈Us, U−s〉 is nonnilpotent for all s ∈ S, then (RGD3) holds au-
tomatically; for if we had U−s ≤ U+, then we would have a nilpotent group
with a nonnilpotent subgroup.

Finally, we sketch how one can use the results of this subsection (including
the uniqueness assertion in Remark 7.103(b)) to get a presentation for Uw.
In particular, this gives a presentation for U+ = Uw0 . The result, roughly
speaking, is that the commutator relations in (RGD1) give a set of defining
relations among the groups Uα that generate Uw. [In case w = w0, these
are the Uα with α ∈ Φ+.] More precisely, suppose we choose generators and
relations for each group Uα (α ∈ Φ+). For each pair of distinct positive roots
α, β, (RGD1) says that there are relations of the form

[uα, uβ ] = v , (7.18)



7.8 RGD Systems of Spherical Type 425

where uα ranges over the generators of Uα, uβ ranges over the generators
of Uβ , and v is a word in the generators of the groups Uγ with γ ∈ (α, β).

Proposition 7.108. Given w ∈ W , one obtains a presentation for Uw by
taking generators and relations for the groups Uα with α ∈ Φ(w) and adding
the commutator relations (7.18) for α, β ∈ Φ(w), α �= β.

Sketch of proof. Choose a reduced decomposition w = s1 · · · sn, let α1, . . . , αn

be as in Lemma 7.101(2), and set Ui := Uαi
for i = 1, . . . , n. In view of Re-

mark 7.103(b), the proof of Proposition 7.106 gives us a semidirect product
decomposition Uw = Uw′ � Un, where w′ := s1 · · · sn−1. So we get a pre-
sentation of Uw by combining a presentation of Uw′ = U1 · · ·Un−1 with a
presentation of Un and adding conjugation relations describing the action of
Un on U1, . . . , Un−1 (see Exercise 7.114 below).

These conjugation relations are required to have the form unuiu
−1
n = v

with i < n, where ui ranges over the generators of Ui, un ranges over the
generators of Un, and v is a word in the generators of U1, . . . , Un−1. We can
equally well use commutator relations of the form [un, ui] = v′, where v′ sat-
isfies the same conditions as v. Relations of this form are provided by (7.18),
since (αn, αi) ⊆ {αi+1, . . . , αn−1}. To complete the proof, we argue induc-
tively that our presentation for Uw′ = U1 · · ·Un−1 can be taken to have the
desired form. 	


Exercises

7.109. Prove part (3) of Lemma 7.101 directly from Definition 7.100.

7.110. In Lemma 7.102 and elsewhere we have used expressions of the form
wV w−1 with w ∈ W and V a subgroup of G. Under what conditions is this
legitimate, and how should such an expression be interpreted?

7.111. Prove the assertion in Remark 7.103(b).

7.112. Suppose that all Uα are nilpotent. For any two roots α, β with α �= −β,
show that 〈Uα, Uβ〉 is nilpotent.

7.113. Consider the standard RGD system in the group G = GL3(k), where
k is a field. (See Section 7.3.4, or look ahead at Section 7.9.1.) Give a concrete
interpretation of Lemma 7.104 in terms of row and column operations.

7.114. Suppose a group G is a semidirect product N � Q. Show that one can
get a presentation of G by combining a presentation of Q, a presentation of N ,
and relations of the form qnq−1 = n′ describing the action of Q on N . Here q
is a generator of Q, n is a generator of N , and n′ is a word in the generators
of N .
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7.8.5 The BN-Pair and the Associated Moufang Building

We continue to assume that
(
G, (Uα)α∈Φ, T

)
is an RGD system of type (W,S)

with W finite. We are now ready to show that B+ := TU+ and N :=〈
T, {m(u) | u ∈ U∗

s , s ∈ S}
〉

constitute a BN-pair in G.

Theorem 7.115. (G,B+, N, S) is a Tits system with Weyl group

N/(B+ ∩N) = N/T ∼= W .

Proof. We have already shown that B+ ∩ N = T (Lemma 7.93), and we
have exhibited a homomorphism ν : N � W with kernel T (Lemma 7.92),
so that N/T ∼= W . The canonical generating set of N/T corresponding to S
is {s̃T | s ∈ S}, where s̃ = m(u) for any u ∈ U∗

s . Thus we have the familiar
situation

G

B+ N W = 〈S〉

T

Let’s verify now that G = 〈B+, N〉. We have G = T 〈Uα | α ∈ Φ〉, by (RGD4),
so we just need to check that 〈B+, N〉 contains Uα for α ∈ Φ−. Write α = wαs

for some w ∈ W and s ∈ S, and choose n ∈ ν−1(w). Then Uα = nUsn
−1 ≤

〈B+, N〉, as required.
Next we check (BN1). Given s ∈ S and w ∈ W , we must show that

sB+w ⊆ B+swB+ ∪ B+wB+. Suppose first that l(sw) > l(w), in which case
we will show that sB+w ⊆ B+swB+. We have

sB+w ⊆ sUwwB+ by Lemma 7.104

=
〈
Usα | α ∈ Φ(w)

〉
swB+

=
〈
Uβ | β ∈ sΦ(w)

〉
swB+

⊆ U+swB+ by Lemma 7.101(3)
⊆ B+swB+ .

If l(sw) < l(w), set w′ := sw. Then

sB+w = sB+sw′

⊆ (B+ ∪B+sB+)w′ by Corollary 7.99
= B+w′ ∪B+sB+w′

⊆ B+w′ ∪B+sw′B+ by the previous case
= B+sw ∪B+wB+ .

Finally, we check (BN2). Given s ∈ S, we must show that sB+s−1
� B+.

For this we need only recall that U−s = sUss
−1 ≤ sB+s−1 and that U−s � B+

by Corollary 7.94. 	
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In view of the theorem, we now have a building ∆ = ∆(G,B+). Recall
from Section 6.2.6 that ∆ is the poset of standard cosets, ordered by reverse
inclusion, with G acting by left translation. The chambers are the cosets gB+

(g ∈ G). We have a fundamental chamber C0 = B+ and a fundamental
apartment Σ0, with chamber set

C(Σ0) = {wB+ | w ∈W} .

The apartment Σ0 is canonically isomorphic to Σ = Σ(W,S). For each root
α ⊆ Σ, we denote by α0 the corresponding root in Σ0, whose set of chambers
is {wB+ | w ∈ α}.

Theorem 7.116. The building ∆ = ∆(G,B+) is Moufang. For any α ∈ Φ
and any boundary panel P of α0, Uα acts simply transitively on C(P, α0). In
particular, the action of Uα on ∆ is faithful, so we may identify Uα with its
image in Aut∆. It is a subgroup of the root group Uα0 . If, in addition, the
Coxeter diagram of (W,S) has no isolated nodes, then Uα = Uα0 , and ∆ is
strictly Moufang.

Proof. For each α ∈ Φ, let Ūα be the image of Uα in Aut∆. We will show
that the family of groups (Ūα)α∈Φ satisfies the conditions of Proposition 7.79.
The third of those conditions consists of the commutator relations (RGD1),
so it suffices to check the first two. To simplify the notation, we will identify
a root α ∈ Φ with the corresponding root α0 of Σ0. (But Uα still denotes the
group given as part of the RGD system, not the root group Uα0 .)

(a) Ūα fixes α pointwise.

Since the action of G on ∆ is type-preserving, it suffices to show that Ūα

stabilizes every chamber of α. In other words, we need to show that UαwB+ =
wB+ for each w ∈ α. Now

UαwB+ = wUw−1αB+ ,

so the result follows from a familiar calculation: w ∈ α =⇒ 1 ∈ w−1α =⇒
w−1α ∈ Φ+ =⇒ Uw−1α ≤ B+.

(b) For any root α ∈ Φ and any panel P ∈ ∂α, the action of Ūα on C(P, α) is
transitive.

We will prove the stronger statement that, as claimed in the theorem, Uα

acts simply transitively on C(P, α) (and hence can be identified with Ūα).
Assume first that the chamber C ≥ P in α is the fundamental chamber C0,
so that α = αs for some s ∈ S and P is the standard parabolic subgroup
Ps := B+ ∪ B+sB+. We have Ps = B+ ∪ UssB+, by Lemma 7.98, so CP is
the set of cosets gB+ with g ∈ P , and C(P, α) = CP � {C0} consists of the
cosets in UssB+. Transitivity of Us = Uαs

on this set is now transparent. To
prove simple transitivity, we must show that the stabilizer of sB+ in Us is
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trivial. Now the stabilizer of sB+ in G is the conjugate sB+s−1 of B+, so the
stabilizer in Us is Us ∩ sB+s−1 = s(U−s ∩B+)s−1, which is indeed trivial by
Corollary 7.94.

We now use the action of W to treat the general case. Given α ∈ Φ, let P
be a boundary panel of α, and let C be the chamber in α with P as a face.
Then C = wC0 for some w ∈ W , P = wPs for some s ∈ S, and α = wαs.
Choose n ∈ ν−1(w). We have Uα = nUsn

−1, so the simple transitivity of the
latter on C(P, α) = n · C(Ps, αs) follows from the simple transitivity of Us on
C(Ps, αs).

An application of Proposition 7.79 now completes the proof of the theorem.
	


Corollary 7.117. NG(U+) = B+ and NG(U−) = B−.

Proof. T normalizes U+, so B+ = TU+ � NG(U+). The latter is therefore
a standard parabolic subgroup. If it were strictly bigger than B+, it would
contain s̃ for some s ∈ S. But then we would have U−s = sUss

−1 ≤ U+, con-
tradicting (RGD3). This proves the first equation, and the second is obtained
by conjugating by w0 or by symmetry (see Remark 7.95). 	


Example 7.118. Suppose
(
G, (Uα)α∈Φ, T

)
is the RGD system associated to

a strictly Moufang building ∆ as in Example 7.83. Then ∆(G,B+) is canon-
ically isomorphic to the building ∆ that we started with. This follows from
Proposition 7.28 and the fact that B+ is the stabilizer of the fundamental
chamber C of ∆. We proved this fact in Corollary 7.65(2). [Note that B+, in
the context of that corollary, was defined to be the stabilizer of C; but the
corollary implies that it is equal to what we are now calling B+.]

Theorem 7.116 implies that the group-theoretic results of Section 7.7 are
valid for our groups Uα (see Remark 7.69). We state two of these results
explicitly for ease of reference. The first is Corollary 7.66(1), which sharpens
Lemma 7.102(1). The second is Corollary 7.67.

Corollary 7.119. With the notation of Lemma 7.102 (1), every u ∈ Uw ad-
mits a unique decomposition u = u1 · · ·un with ui ∈ Uαi

for 1 ≤ i ≤ n. 	


Corollary 7.120. For each w ∈ W , Uw acts simply transitively on Cw :=
{C ∈ C(∆) | δ(C0, C) = w}. 	


Note that the stabilizer in Uw of wB+ is Uw ∩ wB+w−1. So the triviality
of this stabilizer can be rewritten as

Uw ∩ wB+w−1 = {1} (7.19)

for any w ∈W . Equivalently:

Corollary 7.121. For any w ∈ W , w−1Uww ∩B+ = {1}. 	
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We now specialize equation (7.19) and Corollary 7.121 to the case w = w0.
Recalling that Uw0 = U+ and that conjugation by w0 interchanges U±, we
obtain the following:

Corollary 7.122. U+ ∩B− = {1} = U− ∩B+. In particular, U+ ∩ T = {1},
so B+ = TU+ is a semidirect product T � U+. Similarly, B− = T � U−. 	


Corollary 7.123.

(1) B+ ∩B− = T .
(2) T =

⋂
α∈Φ NG(Uα).

Proof. (1) B+ ∩B− = TU+ ∩B− = T (U+ ∩B−) = T by Corollary 7.122.
(2) T ≤

⋂
α∈Φ NG(Uα) ≤ NG(U+) ∩ NG(U−) = B+ ∩ B− by Corol-

lary 7.117. In view of (1), these inequalities must be equalities. 	


Remarks 7.124. (a) Since B− = w0B+w−1
0 , B− is the stabilizer of the

chamber w0B+ of Σ0 opposite C0. It follows that B+ ∩ B− is the set of
elements in G that fix Σ0 pointwise. A restatement of (1), then, is that the
BN-pair (B+, N) is saturated.

(b) Part (2) of Corollary 7.123 shows that the RGD system is uniquely de-
termined by G and the Uα and that our axioms are equivalent to those of
Tits [261]; see Remark 7.84.

The uniqueness of T leads immediately to another description of it in an
important special case:

Corollary 7.125. If G = 〈Uα | α ∈ Φ〉, then

T = 〈m(u)−1m(v) | u, v ∈ U∗
s , s ∈ S〉 .

Consequently, N = 〈m(u) | u ∈ U∗
s , s ∈ S〉.

Proof. Let T1 := 〈m(u)−1m(v) | u, v ∈ U∗
s , s ∈ S〉. Then, under our assump-

tion that G is generated by the Uα, we still have an RGD system if we replace
T by T1. So T1 = T by the uniqueness of T (Corollary 7.123(2)). It follows
that 〈m(u) | u ∈ U∗

s , s ∈ S〉 contains T and hence equals N , since the latter,
by definition, is generated by T and the m(u). 	


Exercise 7.126. For any subset J ⊆ S, let ΦJ := {wαs | w ∈WJ , s ∈ J}
and GJ := T 〈Uα | α ∈ ΦJ〉.
(a) Show that ΦJ can be identified with the set of roots of Σ(WJ , J) and

that
(
GJ , (Uα)α∈ΦJ

, T
)

is an RGD system of type (WJ , J).
(b) How is the corresponding building related to ∆(G,B+)?
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7.8.6 The Kernel of the Action

We started this chapter by considering buildings and certain groups of au-
tomorphisms of them. We then developed a corresponding algebraic theory
in which we constructed a building ∆ = ∆(G,B+) from a group G with an
RGD system. In general, however, the group G we started with does not act
faithfully on ∆. To complete the picture, we wish to describe the kernel of the
map φ : G → Aut∆ giving the action of G on ∆.

Proposition 7.127. Let G1 := 〈Uα | α ∈ Φ〉.
(1) kerφ = CG(G1), where the latter is the centralizer of G1 in G. Moreover,

Z(G) ≤ ker φ ≤ T ,

where Z(G) is the center of G.
(2) If G = G1 or if T is abelian, then ker φ = Z(G).
(3) kerφ ∩G1 = Z(G1).

Proof. (1) We have already observed (Remark 7.124(a)) that T is the set
of g ∈ G such that g fixes Σ0 pointwise. So kerφ ≤ T . In particular, kerφ
normalizes Uα for all α ∈ Φ. Since kerφ is normal in G, it follows that

[ker φ,Uα] ≤ ker φ ∩ Uα ≤ T ∩ Uα = {1} .

So in fact kerφ centralizes Uα for each α ∈ Φ, i.e.,

ker φ ≤
⋂

α∈Φ

CG(Uα) = CG(G1) .

Since CG(G1) obviously contains Z(G), all that remains is to show that
CG(G1) ≤ ker φ. Recall that G = 〈T,G1〉 and that T normalizes G1. Hence
G = TG1 = G1T , and every chamber of ∆ has the form g1B+ with g1 ∈ G1.
So any z ∈ CG(G1) satisfies

zg1B+ = g1zB+ = g1B+ ,

where the last equality comes from the fact that z ∈ T by Corollary 7.123(2).
Thus z stabilizes every chamber and so is in ker φ, since the action of G is
type-preserving.

(2) If G = G1, then (1) says that kerφ = CG(G1) = Z(G). If T is abelian,
then (1) gives

Z(G) ≤ ker φ ≤ T ∩ CG(G1) ≤ CG(T ) ∩ CG(G1) = Z(G) ,

so again ker φ = Z(G).
(3) Using (1) again, ker φ ∩G1 = CG(G1) ∩G1 = Z(G1). 	


Remark 7.128. The inclusion Z(G) ≤ ker φ holds more generally for any
group with a BN-pair; see Exercise 6.49.
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Exercises

We continue to assume that
(
G, (Uα)α∈Φ, T

)
is an RGD system.

7.129. For any α ∈ Φ, show that 〈Uα, U−α〉 is not nilpotent.

7.130. Set G1 = 〈Uα | α ∈ Φ〉 and T1 := 〈m(u)−1m(v) | u, v ∈ U∗
s , s ∈ S〉.

Let T ′ be a subgroup with T1 ≤ T ′ ≤ T , and let G′ := T ′G1.

(a) Show that
(
G′, (Uα)α∈Φ, T ′) is an RGD system.

(b) Show that T ′ = G′ ∩ T .
(c) Show that the RGD system in (a) gives rise to the same building as the

original RGD system.

7.131. Let K be a subgroup of T that is normal in G. Set Ḡ := G/K, Ūα :=
UαK/K, and T̄ := TK/K.

(a) Show that
(
Ḡ, (Ūα)α∈Φ, T̄

)
is an RGD system and that Uα

∼−→ Ūα for
each α ∈ Φ.

(b) Show that the RGD system in (a) gives rise to the same building as the
original RGD system.

7.8.7 Simplicity Results

We continue to denote by
(
G, (Uα)α∈Φ, T

)
an RGD system of type (W,S)

with W finite. We wish to apply Theorem 6.64 to show that G, or a closely
related subquotient, is simple if (W,S) is irreducible. All the work has already
been done, and we need only put the pieces together.

Set B := B+ and U = U+. Then B is a Tits subgroup of G, and B = TU =
UT , with U � B. Let G1 := 〈Uα | α ∈ Φ〉, and note that G1 � G = TG1, since
G1 is normalized by T . Moreover, G1 is the normal closure of U+ in G because
every root α is W -equivalent to a positive root (and even to a simple root αs).
Thus our present G1 coincides with the group called G1 in Section 6.2.7. Next,
we set

Z :=
⋂

g∈G

gBg−1 = ker φ = CG(G1) ,

where we have used Proposition 7.127 for the last equality. As we already
noted in that same proposition, G1 ∩ Z = Z(G1). We can now state the fol-
lowing proposition, as an immediate application of Theorem 6.64 and Propo-
sition 7.106:

Proposition 7.132. Assume (W,S) is irreducible, G1 is perfect, and every
Uα is nilpotent. Then every subgroup of G that is normalized by G1 is either
contained in Z = CG(G1) or contains G1. In particular, G1/Z(G1) is a simple
group. 	
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Recall from Remark 7.107(a) that the assumption on the Uα is in fact
always satisfied. In any case, it is generally easy to verify in examples. More-
over, the condition that G1 be perfect is also true and easy to verify in many
examples. Indeed, the calculations that verify the RGD axioms often give, as
a byproduct, the fact that G1 is perfect. We will see concrete illustrations of
this in the next section.

7.9 Examples of RGD Systems

7.9.1 Classical Groups

Example 7.133. This example is essentially the same as the one in Sec-
tion 7.3.4, but treated from the algebraic point of view. Let G = GLn(D),
where n ≥ 2 and D is a division ring. Let W be the symmetric group Sn

on n letters with its standard generating set S = {s1, . . . , sn−1} consisting of
adjacent transpositions. Let Σ = Σ(W,S). Recall from Example 1.119 or 3.52
that Σ has one root αij for each ordered pair (i, j) with 1 ≤ i, j ≤ n and
i �= j. So we need to exhibit a group T and root groups Uαij

.
Let T be the group Tn(D) of diagonal matrices, i.e.,

T := {diag(λ1, . . . , λn) | λi ∈ D∗} .

For 1 ≤ i, j ≤ n with i �= j, let Uαij
= Uij := {Eij(λ) | λ ∈ D}, where, as in

Section 7.3.4, Eij(λ) is the elementary matrix with 1’s on the diagonal, λ in
position (i, j), and 0’s elsewhere. Thus Uij is isomorphic to the additive group
of D. In particular, Uij �= {1}, so we have (RGD0). One can also verify the
conjugation formula

diag(λ1, . . . , λn)Eij(λ) diag(λ1, . . . , λn)−1 = Eij(λiλλ−1
j ) , (7.20)

so T normalizes Uij and (RGD5) holds. Let G1 be the subgroup generated by
all the subgroups Uij or, equivalently, by all elementary matrices Eij(λ). Then
T normalizes G1, so TG1 = G1T is a subgroup of G. Standard computations
with row and/or column operations show that in fact this subgroup is equal
to G, which proves (RGD4). It then follows that G1 � G.

Remark 7.134. The same row/column operations show that every coset G1g
contains a diagonal matrix of the form diag(1, . . . , 1, λ). If D is commutative,
this implies that G1 = SLn(D). In general, we simply define SLn(D) to be G1.
Readers familiar with the Dieudonné determinant will note that SLn(D) con-
sists of the elements of GLn(D) with Dieudonné determinant 1.

Returning to our roots αij and the corresponding groups Uij , recall (or
check) that αij is positive if and only if i < j, that αji = −αij , and that
wαij = αw(i)w(j) for all w ∈ W = Sn. Note further that Uij consists of strictly



7.9 Examples of RGD Systems 433

upper (resp. lower) triangular matrices if αij is positive (resp. negative). Thus
U+ is contained in the strict upper-triangular group [and is in fact equal to
it, as one again sees by elementary row/column operations]. This implies that
Uα ∩ U+ = {1} if α is a negative root; hence (RGD3) holds. It remains to
verify (RGD1) and (RGD2).

For (RGD1), one checks the following commutator formulas, where our
convention is that [u, v] := uvu−1v−1:

[Eij(λ), Ekl(µ)] =

⎧
⎪⎨

⎪⎩

1 if i �= l and j �= k,

Eil(λµ) if i �= l and j = k,

Ekj(−µλ) if i = l and j �= k.

(7.21)

Consequently,

[Uij , Ukl] =

⎧
⎪⎨

⎪⎩

1 if i �= l and j �= k,

Uil if i �= l and j = k,

Ukj if i = l and j �= k.

(7.22)

Recall now from Exercise 7.78 that αil is in the open interval (αij , αjl) if i �= l,
and similarly αkj ∈ (αij , αki) = (αki, αij) if j �= k. Equation (7.22) therefore
proves (RGD1).

Remark 7.135. Note: There is no commutator formula analogous to (7.21)
if i = l and j = k. This is the case corresponding to opposite roots.

We turn, finally, to (RGD2), which we can verify by imitating what we
did for SL2 in Example 7.85. Let’s begin by rewriting equation (7.13) in the
present notation, starting with the case n = 2. Given λ ∈ D∗, let

m12(λ) :=
(

0 λ
−λ−1 0

)
.

If we set u := E12(λ), then equation (7.13) says that

m12(λ) = E21(−λ−1)uE21(−λ−1) . (7.23)

To extend this 2 × 2 calculation to the n × n case, note that for each fixed
i �= j there is an isomorphic copy of GL2(D) in GLn(D) that acts on the
2-dimensional space eiD + ejD and fixes ek for k �= i, j. Here e1, . . . , en is the
standard basis for the right D-vector space Dn. For λ ∈ D∗, let mij(λ) be the
image of m12(λ) under this embedding of GL2(D) into GLn(D). We now set
m(u) := mij(λ) for u = Eij(λ) ∈ U∗

ij , and equation (7.23) implies that

mij(λ) = Eji(−λ−1)uEji(−λ−1) ∈ UjiuUji . (7.24)

Another 2× 2 calculation shows that m(u)−1m(v) ∈ T for all u, v ∈ U∗
ij ; this

reduces to
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(
0 −λ

λ−1 0

)(
0 µ

−µ−1 0

)
=
(

λµ−1 0
0 λ−1µ

)
. (7.25)

This proves the second part of (RGD2). For the first part, it is convenient
to work with permutation matrices. Given a permutation π ∈ W = Sn, let π
act on Dn by πej = eπ(j). Then the action of π is represented by the matrix
in GLn(D), still denoted by π, given by πij = δi,π(j). With this convention,
one easily checks that mij(λ) ∈ sijT , where sij is the transposition that inter-
changes i and j. The first part of (RGD2) now follows from the observation
that

πUklπ
−1 = Uπ(k)π(l)

for all π ∈W and all 1 ≤ k, l ≤ n with k �= l.
All of the axioms are now verified, and we have an RGD system in G =

GLn(D). The associated Moufang building ∆(G,B+) is, of course, canonically
isomorphic to the building ∆(Dn) studied in Section 7.3.4. We make one
final remark about this example, which also applies to many other examples.
Namely, the calculations above show that G1 = SLn(D) is perfect unless n = 2
and D = F2 or F3. This is especially transparent when n ≥ 3. In this case, if
we are given i �= j we can choose k �= i, j and note that

Uij = [Uik, Ukj ] ≤ [G1, G1]

by (7.22). If n = 2 and D has more than 3 elements, we instead use the
conjugation formula (7.20) to deduce that

[T1, U12] = U12 (7.26)

and similarly for U21, where T1 := G1 ∩ T ; see Exercise 7.139 below. Hence
Proposition 7.132 is applicable. In particular, SLn(D)/(Z ∩SLn(D)) is simple
(unless n = 2 and D = F2 or F3), where Z = CG(G1) =

⋂
i
=j CG(Uij). A

final calculation shows that Z is the set of matrices λI, where I is the identity
matrix and λ is in the center of D.

Example 7.136. In this example we describe the RGD systems associated
to symplectic, orthogonal, and unitary groups. Our basic reference is Bruhat–
Tits [59, Section 10], where all omitted details can be found. See also Abra-
menko [9, pp. 77–78 and 107–111] for a convenient summary. Our notational
conventions will be consistent with those in Chapter 6, which differ slightly
from those in the cited references.

Let K be a field with an automorphism σ such that σ2 = id. We denote
the action of σ by λ �→ λσ for λ ∈ K. We will always assume char K �= 2,
although the theory extends to characteristic 2 with suitable modifications.
(And for the unitary groups, the theory also extends to the case that K is a
division ring; see Exercise 7.142.)

Definition 7.137. Let V be a K-vector space, possibly infinite-dimensional.
Fix ε = ±1. A function B : V × V → K is said to be (σ, ε)-Hermitian if it is
linear in the first variable and satisfies
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B(y, x) = εB(x, y)σ (7.27)

for all x, y ∈ V .

Note that (7.27) implies that B is σ-linear in the second variable, i.e., it is
additive and satisfies B(x, λy) = λσB(x, y) for λ ∈ K and x, y ∈ V .

In order to relate this notion to the examples we saw in Chapter 6, note
that:

• If (σ, ε) = (id, 1), then B is a symmetric bilinear form; this is the orthogonal
case.

• If (σ, ε) = (id,−1), then B is a skew-symmetric bilinear form; this is the
symplectic case.

• If σ �= id and ε = 1, then B is Hermitian in the sense of Section 6.8; this
is the unitary case.

Remark 7.138. The remaining case, in which σ �= id and ε = −1, is es-
sentially the same as the unitary case. Indeed, if σ �= id, then there is a
scalar a �= 0 such that aσ = −a. [Choose any b ∈ K with bσ �= b, and set
a := b− bσ.] We can then replace B by aB to convert a (σ, ε)-Hermitian form
to a (σ,−ε)-Hermitian form. We will therefore also refer to this case as the
unitary case.

Assume from now on that we are given a (σ, ε)-Hermitian form on V
satisfying the following two conditions:

(1) B is nondegenerate in the sense that V ⊥ = 0, where

V ⊥ := {x ∈ V | B(x,−) = 0} .

(2) B has finite Witt index n ≥ 1.

Here, as before, the Witt index is the maximal dimension of a totally
isotropic subspace. It follows from these assumptions that we can find vectors
e1, . . . , en, e−n, . . . , e−1 satisfying the same relations as in the examples we
treated in Sections 6.6, 6.7, and 6.8, where e−i plays the role of the vector
called fi (1 ≤ i ≤ n) in those examples. Explicitly, if we set

ε(i) =

{
1 if i > 0,

ε if i < 0,

and 〈x, y〉 := B(x, y), then the relations are

〈ei, e−i〉 = ε(i) (7.28)

for all i ∈ I := {±1, . . . ,±n} and

〈ei, ej〉 = 0 (7.29)
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for all i, j ∈ I with j �= −i. Our assumptions also imply that V splits into a
direct sum

V = V1 ⊕ · · · ⊕ Vn ⊕ V0 ⊕ V−n ⊕ · · · ⊕ V−1 ,

where Vi = Kei for i ∈ I and V0 :=
⋂

i∈I e⊥i . We might have V0 = 0; this is
necessarily true in the symplectic case. Or at the other extreme, V0 might be
infinite-dimensional.

In what follows we will represent linear maps V → V by matrices whose
rows and columns are labeled by I ∪ {0}, where the (i, j)-entry describes
the (Vj → Vi) component of the map. These components are not scalars,
in general, if they involve V0. For example, the (0, 1)-entry is a vector in V0

(the image of e1 under a map V1 → V0); the (1, 0)-entry is an element of V ∗
0

(representing a map V0 → V1
∼= K); and the (0, 0)-entry is a linear map

V0 → V0.
We now consider the isometry group

G := {g ∈ GL(V ) | 〈gx, gy〉 = 〈x, y〉 for all x, y ∈ V } ,

and we will exhibit an RGD system. First, we set T equal to the set of all
g ∈ G represented by diagonal matrices (i.e., gVi = Vi for all i ∈ I ∪ {0}).
Next, we define root groups using “elementary” automorphisms of V . The
basic idea for this has already been illustrated in some of the examples in
Chapter 6, where we used elementary subgroups in various copies of SL2 or
GL2 in G as an aid in verifying the BN-pair axioms.

Given any i, j ∈ I with i �= ±j and any λ ∈ K, we can perform an
“elementary change of basis” in which we replace ej by e′j := ej + ε(i)λei and
we replace e−i by e′−i := e−i − ε(j)λσe−j . The new basis vectors satisfy the
same inner-product relations as the old ones and have the same orthogonal
complement V0. So there is an element Eij(λ) ∈ G given by

ej �→ e′j ,

e−i �→ e′−i ,

el �→ el if l ∈ I � {j,−i} ,

x �→ x if x ∈ V0 .

Thus the restriction of Eij(λ) to Vij := Vi ⊕ Vj ⊕ V−j ⊕ V−i is represented by
the matrix

i j −j −i
i 1 ε(i)λ 0 0
j 0 1 0 0

−j 0 0 1 −ε(j)λσ

−i 0 0 0 1

and Eij(λ) is the identity on V ⊥
ij . We now set Uij := {Eij(λ) | λ ∈ K} ≤ G.

It is isomorphic to the additive group of K. Note that Uij is simply the image
of the strict upper-triangular subgroup of SL2(K) under an embedding of the
latter into G.
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In most cases there is a second family of root subgroups Ui (i ∈ I), where
Ui consists of the elements g ∈ G satisfying the following conditions:

(1) gej = ej for j ∈ I � {±i}.
(2) g stabilizes Vi ⊕ V0 ⊕ V−i.
(3) The restriction of g to Vi ⊕ V0 ⊕ V−i has a matrix of the form

i 0 −i
i 1 f λ
0 0 1 v
−i 0 0 1

for some f ∈ V ∗
0 , λ ∈ K, and v ∈ V0.

In other words, g is given by

ej �→ ej if j ∈ I � {±i} ,

ei �→ ei ,

e−i �→ e−i + v + λei ,

x �→ x + f(x)ei if x ∈ V0 .

It is easy to work out the conditions that f, λ, v must satisfy in order for g to
preserve inner products. The crucial relations turn out to be 〈gx, ge−i〉 = 0
(for x ∈ V0) and 〈ge−i, ge−i〉 = 0, which translate to

f(x) = −ε(i)〈x, v〉 (7.30)

and
λ + ελσ = −ε(i)Q(v) , (7.31)

where Q(v) := 〈v, v〉. In particular, g is completely determined by the two
parameters v ∈ V0 and λ ∈ K. If we write g = gi(v, λ), then we have the
multiplication rule

gi(v, λ)gi(v′, λ′) = gi(v + v′, λ + λ′ − ε(i)〈v′, v〉) , (7.32)

which follows from the calculation
⎛

⎝
1 f λ
0 1 v
0 0 1

⎞

⎠

⎛

⎝
1 f ′ λ′

0 1 v′

0 0 1

⎞

⎠ =

⎛

⎝
1 f + f ′ λ + λ′ + f(v′)
0 1 v + v′

0 0 1

⎞

⎠

for f, f ′ ∈ V ∗
0 , λ, λ′ ∈ K, and v, v′ ∈ V0.

In the symplectic case, where (σ, ε) = (id,−1), we have V0 = 0, and (7.31)
holds for all λ. An element g ∈ Ui is then determined by the parameter λ,
and Ui is isomorphic to the additive group of K. It is the image of the strict
upper-triangular subgroup of SL2(K) under an embedding of the latter into G.

In the orthogonal case, where (σ, ε) = (id, 1), equation (7.31) says that
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λ = −ε(i)Q(v)/2 ,

so that an element g = gi(v, λ) ∈ Ui is determined by the parameter v. It
then follows from (7.32) that Ui is isomorphic to the additive group of V0. In
particular, Ui is nontrivial (and so is a candidate for a root group) if and only
if V0 �= 0.

The unitary case (σ �= id) turns out to be the most interesting. We will
take ε = −1 (see Remark 7.138), though we could handle ε = 1 with minor
modifications. Equation (7.31) then reads

λ− λσ = −ε(i)Q(v) . (7.33)

Let k be the fixed field of the automorphism σ, so that K is a quadratic
extension of k. For any v ∈ V0 we have one solution of (7.33), given by
λ = λ0(v) := −ε(i)Q(v)/2. [Use the fact that Q(v) = −Q(v)σ.] The general
solution is then λ = λ0(v)+µ with µ ∈ k. If we write gi(v, λ) =: ui(v, µ), then
we obtain from (7.32) and a short calculation the multiplication rule

ui(v, µ)ui(v′, µ′) = ui(v + v′, µ + µ′ + ε(i) tr〈v, v′〉)

for v, v′ ∈ V0 and µ, µ′ ∈ k, where tr : K → k is the trace map (tr a = a+ aσ).
If V0 = 0, then Ui is isomorphic to the additive group of k. If V0 �= 0, however,
then Ui is a nonabelian nilpotent group of class 2. The noncommutativity
shows up in the term tr〈v, v′〉 above, which changes sign if v and v′ are inter-
changed. The center of Ui is Z := {ui(0, µ) | µ ∈ k}, which is isomorphic to
the additive group of k, and Ui/Z is isomorphic to the additive group of V0.

We are now ready to describe the groups Uα for our RGD system, which
will be a system of type Cn in most cases. Let Φ be the set of roots of the
standard Coxeter complex of type Cn. It consists of roots αi for i ∈ I and
αij for i, j ∈ I with i �= ±j. This follows from the descriptions of the root
systems of type Bn and Cn in Example 1.11. In more detail, let b1, . . . , bn

be the standard basis of R
n, and set b−i = −bi for i = 1, . . . , n. Then αij

corresponds to the root vector bi − bj , and αi corresponds the root vector
bi or 2bi, depending on whether we use the root system of type Bn or Cn.
Recall now that we chose a specific fundamental chamber in Example 1.82 for
the Weyl group, which is the same for both root systems. According to that
choice, the set Φ+ of positive roots consists of the roots αi with i > 0 and the
roots αij such that i precedes j in the ordering

1, 2, . . . , n,−n, . . . ,−2,−1

of I.
We now set

Uαi
:= Ui

and
Uαij

:= Uij ,
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and one can check that
(
G, (Uα)α∈Φ, T

)
is an RGD system of type Cn unless

we are in the orthogonal case with V0 = 0. We refer to the cited references for
the details, which are not difficult.

In the orthogonal case with V0 = 0, there are two differences, both of
which are to be expected in view of Section 6.7.1. First, the RGD system is of
type Dn instead of Cn. [Here we assume n ≥ 2, since there is no root system of
type D1; the orthogonal group is boring in that case anyway.] Thus Φ consists
only of roots αij with i, j ∈ I and i �= ±j (see Example 1.13), and we define
Uα for α ∈ Φ as above. Second, the group generated by the Uα and T is not
the full orthogonal group G = O2n(K) but only the subgroup SO2n(K) of
index 2; see Exercise 7.141. The result, then, is that we have an RGD system(
SO2n(K), (Uα)α∈Φ, T

)
of type Dn.

In all cases, one gets a Moufang building ∆ on which G acts, and, not
surprisingly, it is the same building that was constructed in Chapter 6.

Finally, we remark that G1 := 〈Uα | α ∈ Φ〉 is almost always perfect,
so that G1/Z is simple by Proposition 7.132 (where Z now denotes Z(G1)),
provided our Coxeter system is irreducible. The unique case in which it is
reducible is the orthogonal case with n = 2 and V0 = 0, where the system is
of type D2 = A1×A1. In this case G1/Z ∼= PSL2(K)×PSL2(K) and so is not
simple but is usually a product of two simple groups. If we exclude this case
(as well as SO2), then we have the following short list of exceptional cases in
which G1/Z is not simple. [Note: Since we have not discussed the theory in
characteristic 2, we are not listing exceptions with char K = 2.]

• If n = 1, then Sp2n = SL2, so it is not perfect when K = F3, as we noted
in connection with Example 7.133.

• In the unitary case with n = 1 and V0 = 0, we have G1
∼= SL2(k), so there

is again an exception when k = F3 (K = F9).
• In the orthogonal case with n = 1 and dim V0 = 1, we have G1/Z ∼=

PSL2(K), so there is an exception when K = F3.

Notice that our three exceptional nonsimple groups G1/Z are all the same
group PSL2(F3), which is isomorphic to the alternating group on 4 letters.

Exercises

7.139. Let D be a division ring.

(a) Show that h(λ) := diag(λ, λ−1) is in SL2(D) for all λ ∈ D∗.
(b) Show that [h(λ), E12(µ)] = E12((λ2 − 1)µ) if λ and µ commute.
(c) Deduce that equation (7.26) holds, and hence that SL2(D) is perfect, if

D �= F2 or F3.

7.140. For any division ring D, show that the groups SL2(D) and PSL2(D) :=
SL2(D)/Z(SL2(D)) are not nilpotent.

7.141. (a) In the orthogonal case of Example 7.136 with V0 = 0, show that
every element of T has determinant 1.
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(b) What can you say about the determinant of an element of T in the
symplectic case or in the unitary case with V0 = 0?

7.142. Let D be a division ring with an antiautomorphism σ such that σ2 =
id. Thus

(λ + µ)σ = λσ + µσ and (λµ)σ = µσλσ .

What happens in Example 7.136 if we replace K by D?

7.9.2 Chevalley Groups

Our basic reference for this section is Steinberg [227]. We follow his approach
closely, except for minor changes of notation to conform with the notation
we have used elsewhere in this book. The starting point is a semisimple Lie
algebra g over the field C of complex numbers. As we indicated briefly in
Section 6.4, one can then define a group G(K) for any field K; it can be
thought of as the analogue over K of the complex Lie group G with Lie algebra
g = L(G). For the benefit of readers familiar with Lie theory, we will state
this slightly more precisely. [Warning: The group that we are calling G(K)
here, following Steinberg, is in general smaller than the group of K-points of
the corresponding algebraic group.]

There is not just one complex Lie group G with Lie algebra g, but a family
of them. The smallest is the adjoint group, and all the others are coverings of
it. The biggest is the simply connected group, which is the common universal
cover of all of them. The family of groups G can be parametrized by a lattice
Λ in the real vector space that contains the root system Φ of g. We have
Λr ≤ Λ ≤ Λw where Λr is the root lattice and Λw is the weight lattice. The
lattice Λr corresponds to the adjoint group Ga, and the lattice Λw corresponds
to the simply connected group Gu, also called the universal group.

If K is now an arbitrary field, then there is a corresponding family of
Chevalley groups

G(K) = G(Φ,Λ;K)

associated to g. We will not go into the details of the definition but will
simply state the facts that enable one to construct an RGD system of type Φ
(or type (W,S), where W is the Weyl group WΦ). The first fact is that G(K)
has generators, denoted by xα(λ), with α ∈ Φ and λ ∈ K. The reader might
find it helpful to think of the case G(K) = SLn(K), where Φ is the root system
of type An−1 and xα(λ) is an elementary matrix. For fixed α, if we set

Uα := {xα(λ) | λ ∈ K} ,

then Uα is a subgroup of G(K) and is isomorphic to the additive group of K
via λ �→ xα(λ) for λ ∈ K; see [227, Section 3, Corollary 1, p. 26].

We now define elements of G(K) by
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mα(λ) := xα(λ)x−α(−λ−1)xα(λ) ,

mα := mα(1) ,

hα(λ) := mα(λ)m−1
α ,

for α ∈ Φ and λ ∈ K∗. One has hα(λµ) = hα(λ)hα(µ) [227, Section 3,
Lemma 28(a), p. 43], so {hα(λ) | λ ∈ K∗} is a subgroup of G(K) and is a
homomorphic image of the multiplicative group K∗. If G = SL2(K) and
α = α12, for example, then

mα(λ) = m−α(−λ−1) =
(

0 λ
−λ−1 0

)

and hα(λ) = h−α(λ−1) = diag(λ, λ−1).
There are two families of conjugation relations that say how the elements

mα and hα(λ) act by conjugation on the generators of G(K). First,

mαxβ(λ)m−1
α = xsα(β)(±λ) (7.34)

for α, β ∈ Φ and λ ∈ K∗, where the rule for determining the ambiguous sign
need not concern us here; see [227, Section 3, relation (R7) on p. 30]. Second,

hα(λ)xβ(µ)hα(λ)−1 = xβ(λ〈β,α∨〉µ) (7.35)

for α, β ∈ Φ, λ ∈ K∗, and µ ∈ K; see [227, Section 3, relation (R8) on p. 30].
The angle brackets here denote inner products as in Appendix B. [Warning:
Steinberg [227] uses angle brackets to denote something different.] Combining
(7.34), (7.35), and the definition of hα(λ), one gets

mα(λ)xβ(µ)mα(λ)−1 = xsα(β)(±λ〈sα(β),α∨〉µ) . (7.36)

In the special case β = α, (7.35) becomes

hα(λ)xα(µ)hα(λ)−1 = xα(λ2µ) ,

which implies the commutator formula

[hα(λ), xα(µ)] = xα((λ2 − 1)µ) .

Consequently,
[hα(λ), Uα] = Uα

if λ ∈ K � {0,±1}. This shows that G(K) is a perfect group if |K| ≥ 4, i.e.,
K �= F2, F3.

Finally, we have commutator formulas involving the generators xα(λ).
Given roots α �= ±β and scalars λ, µ ∈ K, the commutator formulas have
the form

[xα(λ), xβ(µ)] =
∏

i,j∈N

iα+jβ∈Φ

xiα+jβ(cijλ
iµj) . (7.37)
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Here one must choose a definite order for the factors in the product (which
do not commute with one another), and the cij are integers that depend on α
and β and the chosen order; see [227, Section 3, relation (R2) on p. 30]. Note
that Uα is abelian, so we could also write a commutator formula for the case
β = α. But there is no such formula for β = −α. In fact, it turns out that for
all α ∈ Φ,

〈Uα, U−α〉 ∼= SL2(K) or PSL2(K) , (7.38)

depending on α and the lattice Λ; see [227, Section 3, Corollary 6, pp. 46–
47]. One gets SL2(K) for all α in the universal case (Λ = Λw), and one gets
PSL2(K) for all α in the adjoint case (Λ = Λr).

We now set
T := 〈hα(λ) | α ∈ Φ, λ ∈ K∗〉 ,

and it is straightforward to verify that
(
G(K), (Uα)α∈Φ, T

)
is an RGD sys-

tem. We run through the axioms briefly. (RGD0) is trivial, since Uα
∼= K

(additive group). The commutator relations (RGD1) follow from the com-
mutator formulas (7.37), since each root of the form iα + jβ in (7.37) is in
the open interval (α, β) by Exercise 7.77. For (RGD2), consider an element
u = xα(λ) ∈ U∗, where λ ∈ K∗. If we set

m(u) := m−α(−λ−1) = x−α(−λ−1)xα(λ)x−α(−λ−1) ∈ U−αuU−α ,

then we have
m(u)Uβm(u)−1 = Usα(β)

by (7.36). Moreover, a short calculation, which we omit, gives m(u)−1m(v) ∈ T
for all u, v ∈ U∗

α. This proves (RGD2). There are two easy ways to prove
(RGD3). One is to look at the explicit construction of G(K), which we did
not write down. This exhibits G(K) as a matrix group, in such a way that
xα(λ) is strictly triangular; it is upper triangular for α ∈ Φ+ and lower trian-
gular for α ∈ Φ−, so (RGD3) is clear. Alternatively, we could use the method
of Remark 7.107(c), which is applicable in view of (7.38). Finally, (RGD4) is
trivial, and (RGD5) follows from (7.35).

Remarks 7.143. (a) The group G(K) is almost always perfect, so the sim-
plicity results of Section 7.8.7 are applicable if Φ is irreducible, i.e., if the Lie
algebra g is simple. The conclusion is that the adjoint group G(Φ,Λr;K) is
simple except in a few cases involving the fields F2 and F3.

(b) There is of course considerable overlap between the Chevalley groups of
the present subsection and the classical groups of the previous subsection. In
particular, SLn(K) and Sp2n(K) are examples of Chevalley groups G(K). And
the special orthogonal group SOm(K) associated to the standard quadratic
form differs in only a minor way from such a Chevalley group. More precisely,
the commutator subgroup Ωm(K) ≤ SOm(K) that we discussed at the end
of Section 6.7.1 is a Chevalley group G(K), and we have SOm(K) = T ′G(K),
where T ′ is the diagonal subgroup of SOm(K). The RGD systems that we
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have described in G(K) and SOm(K) give rise to the same building (see
Exercise 7.130).

The unitary groups, on the other hand, do not fit into the theory of the
present subsection, nor do the classical groups involving a noncommutative
division ring, nor do orthogonal groups associated to quadratic forms other
than the standard one. Some (but not all) of the omitted classical groups will
be covered by the next subsection.

*7.9.3 Nonsplit Algebraic Groups

In this subsection we assume some knowledge of the theory of algebraic groups
and Lie algebras, although we will try to keep this to a minimum. The ter-
minology involving algebraic groups is summarized in Appendix C, and the
standard reference is Borel [39]. See also Abramenko [7] for a survey. We start
by considering linear algebraic groups over an algebraically closed field K. In
this case we will identify a linear algebraic group G with its group G(K) of
K-points.

Let G be a (connected) semisimple linear algebraic group over a field K,
and let T ≤ G be a torus of dimension l. There is an associated character
group

X = X(T ) := Hom(T, Gm) ∼= Z
l ,

where Gm denotes the multiplicative group. Identifying Gm with its group K∗

of K-points, we can view an element of X as a homomorphism α : T → K∗.
The centralizer CG(T ) is again a connected K-group, and it is a finite-index
normal subgroup of the normalizer NG(T ). We set

W (G,T ) := NG(T )/CG(T ) .

If T is a maximal torus, then CG(T ) = T . In this case we write W instead
of W (G,T ) and call it the Weyl group of G; thus

W := N/T ,

where N := NG(T ). All maximal tori are conjugate, so W is independent of T
up to isomorphism.

Let g := L(G) be the Lie algebra of G, and consider the adjoint represen-
tation

Ad: G → GL(g) .

For any torus T in G (not necessarily maximal), the elements of T acting on g

are simultaneously diagonalizable, so we can decompose g into T -eigenspaces:

g =
⊕

α∈X

gα ,

where



444 7 Root Groups and the Moufang Property

gα := {v ∈ g | Ad(t)v = α(t)v for all t ∈ T} .

Here α(t)v makes sense because we are thinking of α as a homomorphism
T → K∗. There are, of course, only finitely many α ∈ X such that gα �= 0. The
trivial character (α(t) ≡ 1) is one of them, and the corresponding eigenspace
is the Lie algebra L

(
CG(T )

)
. The nontrivial characters that occur are called

the roots of G relative to T , and we denote the set of all such roots by Φ(G,T ).
The eigenspace (or root space) decomposition thus becomes

g = L
(
CG(T )

)
⊕

⊕

α∈Φ(G,T )

gα .

We will return to this relative theory shortly, but assume now that T is max-
imal, in which case we write Φ instead of Φ(G,T ), and we have

g = L(T )⊕
⊕

α∈Φ

gα .

Here are some basic facts.

(1) N = NG(T ) acts on T by conjugation. Since T is abelian, this induces an
action of the Weyl group W = N/T on T and hence an action of W on the
character group X. The set Φ of roots is invariant under the W -action. More
precisely, given w ∈W and a representative n of w in N ,

Ad(n)gα = gwα

for all α ∈ Φ.

(2) Φ is a (reduced, crystallographic) root system in the l-dimensional real
vector space R ⊗Z X endowed with a suitable inner product, and W is its
Weyl group WΦ.

(3) Each root space gα (α ∈ Φ) is 1-dimensional. There is a unique T -invariant
connected algebraic subgroup Uα ≤ G such that L(Uα) = gα. Moreover,
Uα is isomorphic to the additive group Ga via a canonical homomorphism
λ �→ xα(λ) ∈ Uα for λ ∈ K. We have

txα(λ)t−1 = xα(α(t)λ)

for all t ∈ T and λ ∈ K; in particular, T normalizes Uα. We also have

wUαw−1 = Uwα

for all w ∈W and α ∈ Φ.

Example 7.144. Let G = SLn, in which case g is the Lie algebra of n × n
matrices of trace 0. Let T be the group of diagonal matrices. For each off-
diagonal matrix position (i, j), there is a root subspace of g consisting of the
matrices that vanish except at that position. The corresponding root α is the
character tit

−1
j , where ti ∈ X gives the ith diagonal entry of a matrix in T ,

and Uα is the group Uij discussed in Example 7.133.
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Remark 7.145. The theory that we have just sketched is essentially a refor-
mulation of the theory of Chevalley groups. [The character group X plays the
role of the lattice Λ that we mentioned in Section 7.9.2.] In particular, we
already know that we have an RGD system

(
G, (Uα)α∈Φ, T

)
.

We turn now to the relative theory. Thus we consider k-groups where the
field k is not necessarily algebraically closed. Let G be a semisimple k-group,
and let K be an algebraic closure of k. Then we can apply the absolute theory
described above to the group GK obtained from G by extension of scalars.
Let g be the Lie algebra of GK . There are two tori to which we can apply
the theory sketched above. First, we choose a maximal k-split torus S ≤ G.
Second, we choose a maximal torus T ≤ G (defined over k) containing S.
The centralizer CG(S) is a connected k-group, and it is a finite-index normal
subgroup in the normalizer NG(S). We define the relative Weyl group kW by

kW := NG(S)/CG(S) .

Our two tori now give us two character groups X(T ) and X(S), which are
related by a surjection

j : X(T ) � X(S)

obtained by restricting characters from T to the subtorus S. We also get two
sets of roots:

Φ := Φ(G,T ) ⊆ X(T )

and
kΦ := Φ(G,S) ⊆ X(S) .

Here one has to interpret Φ(G,T ) and Φ(G,S) after extension of scalars;
we have omitted the subscripts K to simplify notation. It is a fact that the
maximal k-torus T remains maximal after extension of scalars to K, so Φ has
the same meaning as in our discussion of the absolute case, and kΦ is the set
of roots of the adjoint representation restricted to S. Thus

g = L
(
CG(S)

)
⊕
⊕

α∈kΦ

gα .

Our two sets of roots are related by

kΦ ⊆ j(Φ) ⊆ kΦ ∪ {0} ,

where 0 denotes the trivial character of S. (This convention is consistent
with the fact that we often think of X(S) as a lattice in the real vector
space R⊗Z X(S) and therefore use additive notation.) We now list the basic
facts:

(1) kΦ is a (possibly nonreduced) crystallographic root system in R⊗Z X(S)
with Weyl group kW . “Possibly nonreduced” means that we might have a
root α ∈ kΦ such that 2α is also a root; see Section B.5.
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(2) By the absolute theory, we have root groups Uβ(K) ≤ G(K) for β ∈ Φ,
and each such root group is isomorphic to the additive group Ga(K) = K.
It turns out that if we lump these root groups together appropriately, we get
algebraic groups that can be defined over k. To make this precise, fix a root
α ∈ kΦ, and set

Ψ := {β ∈ Φ | j(β) = α or 2α} .

Then one can show that there is an algebraic k-group Uα ≤ G such that

Uα(K) = 〈Uβ(K) | β ∈ Ψ〉 =
∏

β∈Ψ

Uβ(K)

for a suitable ordering of the factors. In fact, the multiplication map
∏

β∈Ψ

Uβ(K) → Uα(K)

defines an isomorphism of algebraic varieties over K. (These assertions are
reminiscent of the facts about the groups Uw that we proved in Section 7.7.2.)
Moreover, even though the individual groups Uβ are not defined over k in
general, one can prove that Uα is isomorphic as an algebraic variety over k to
m-dimensional affine space, where m := |Ψ |.

(3) Continuing with the notation in (2), suppose that 2α /∈ kΦ. Then Uα is
abelian, and in fact, there is an isomorphism

Uα
∼= G

m
a

of k-groups, where m = |Ψ | as above. If, on the other hand, 2α ∈ kΦ, then
Uα is nilpotent but generally nonabelian. What happens is that U2α(k) is a
proper central subgroup of Uα(k) (typically the entire center), with

[Uα(k), Uα(k)] ≤ U2α(k) . (7.39)

The classical groups discussed in Section 7.9.1 illustrate this lumping phe-
nomenon. Consider, for example, the group SLn(D), where D is a division
ring. If D is finite-dimensional over its center k, then SLn(D) is the group of
k-points of a semisimple k-group G, which becomes isomorphic to SLN after
extension of scalars. [Here N = nr if dimk D = r2.] The root groups Uij that
we described in Example 7.133 are isomorphic to the additive group of D,
and each is obtained by lumping together r2 root groups of SLN (K). The
root system kΦ is of type An−1 in this example. In particular, it is reduced,
and all the root groups are abelian.

Consider now the unitary groups of Example 7.136, with V0 �= 0 and
finite-dimensional. With k and n as in that example, the unitary group is
a semisimple k-group whose relative root system kΦ is the root system of
type BCn (see Example B.7 in Appendix B). This root system is nonreduced,
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so we have a conceptual explanation for the appearance of nonabelian root
groups in the unitary group.

Returning now to the general theory, we have almost completed the con-
struction of an RGD system in G(k). Let Σ be the Coxeter complex associated
to the relative Weyl group kW . Since kΦ is not necessarily reduced, one can
have two root vectors α, 2α ∈ kΦ corresponding to the same root of Σ. In this
case we choose the bigger group Uα(k) as our root group for the RGD system.
And the “T” of the RGD system is the group of k-points of CG(S). We omit
the verification of the RGD axioms, which can be found in [59].

Remark 7.146. The theory that we have just sketched actually leads to a
“refined” RGD system, with additional root groups U2α(k) whenever α and 2α
are both in kΦ. Such systems were studied by Bruhat and Tits [59]. The general
picture is that one has root groups indexed by a possibly nonreduced root
system, and the main new ingredient is that there are commutator relations
for all pairs of roots α, β with α �= −β. The relation in (7.39) is an example.
Another commutator relation asserts that Uα is abelian if α is a root such
that 2α is not a root.
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Moufang Twin Buildings and RGD Systems

In this chapter, which is intended for advanced readers, we generalize to twin
buildings the theory developed in Chapter 7 for spherical buildings. The al-
gebraic version is a theory of RGD systems of arbitrary type (W,S). At the
time of this writing, it is not very easy to learn this theory from the existing
literature. One of our goals in writing this chapter has been to supply some of
the missing details in order to make the subject more accessible. In particular,
we will provide detailed proofs of results for which only sketches currently ap-
pear in the literature. The results of this chapter have important applications
to Kac–Moody groups, which we will survey in the final section.

We assume knowledge of the basic facts about twin buildings and twin
BN-pairs, which were given in the optional Sections 5.8 and 6.3.

8.1 Pre-Moufang Twin Buildings and Twin BN-Pairs

Throughout this section, C = (C+, C−) denotes a thick twin building of type
(W,S). [As usual, we have suppressed δ∗ from the notation.] We denote by
Aut0 C the group of type-preserving automorphisms of C; thus elements of
Aut0 C act on C+ and C−, and they preserve Weyl distances and the codistance
as in Definition 6.67. Fix a “fundamental pair” (C+, C−) of opposite chambers,
with C± ∈ C±, and let Σ = (Σ+, Σ−) = Σ {C+, C−} be the corresponding
“fundamental twin apartment.” Let Φ be the set of twin roots of Σ, and set

Φ+ := {α ∈ Φ | C+ ∈ α} ,

Φ− := {α ∈ Φ | C− ∈ α} .

It turns out that everything we did in Section 7.1, as specialized to the spher-
ical case, extends with minor modifications to the present setup. We will
quickly run through the relevant definitions and results, pointing out the mi-
nor modifications that are needed.
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Note first that some of the notation and terminology will change in triv-
ial ways because we are now working in the W-metric setting. For example,
apartments and roots are now sets of chambers, and a panel is now a rank-1
residue. Given a twin root α and a panel P of C+ or C− that meets α, we
say that P is a boundary panel of α if P ∩ α consists of exactly one chamber;
otherwise, P is said to be an interior panel of α. If P is a boundary panel
of α, we write C(P, α) := P � {C}, where C is the chamber in P ∩ α.

Definition 8.1. A family (Xα)α∈Φ of subgroups of Aut0 C is called a system
of pre–root groups if it satisfies the following two conditions:

(1) Xα fixes α pointwise for each α ∈ Φ.
(2) For each α ∈ Φ and each boundary panel P of α, the action of Xα

on C(P, α) is transitive.

We say that C is a pre-Moufang twin building if it admits a system of pre–root
groups.

(Recall that we are generalizing the spherical theory, so there is no reason to
require an analogue of condition (3) of Definition 7.2; instead we will prove,
as in the spherical case, that such an analogue always holds.)

Recall from Lemma 5.198 that for any twin root α and any boundary
panel P of α, there is a canonical bijection between C(P, α) and the set A(α)
of twin apartments containing α. We therefore obtain the following general-
ization of Lemma 7.4:

Lemma 8.2. Suppose (Xα)α∈Φ is a system of subgroups of Aut0 C satisfying
condition (1) of Definition 8.1. Then the following conditions are equivalent:

(i) The system (Xα)α∈Φ satisfies condition (2).
(ii) For each α ∈ Φ there exists a boundary panel P of α such that the action

of Xα on C(P, α) is transitive.
(iii) For each α ∈ Φ, the action of Xα on A(α) is transitive. 	


Next, we have the analogue of Lemma 7.5:

Lemma 8.3. Let (Xα)α∈Φ be a system of pre–root groups in Aut0 C. Then
for each α = (α+, α−) in Φ there is an element nα ∈ 〈Xα,X−α〉 such that
nα(α) = −α and nα(−α) = α. In other words, nα stabilizes Σ and acts on
each Σε as the reflection sαε

(ε = ±).

Proof. Let C and D be the adjacent chambers in Σ+ with C ∈ α+ and
D ∈ −α+. Let C ′ := opΣ C and D′ := opΣ D. Let P (resp. P ′) be the
panel containing C and D (resp. C ′ and D′). See Figure 8.1. The first part
of the proof of Lemma 7.5 goes through without change. Thus if we start
with an element x ∈ Xα such that xD �= D, then we can find an element
m(x) ∈ X−αxX−α that interchanges C and D. We claim that m(x) also
interchanges C ′ and D′. Observe first that Xα and X−α stabilize P and P ′,
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Fig. 8.1. A twin root.

so the same is true of m(x). Our claim now follows from the fact that since P
and P ′ are opposite, C ′ (resp. D′) is the unique element of P ′ not opposite D
(resp. C); see Corollary 5.153. Recalling now that α is the convex hull of C
and D′ and that −α is the convex hull of D and C ′ (Corollary 5.194), we
conclude that m(x) interchanges ±α. 	


There are also analogues of Corollary 7.6 and Remark 7.7:

Corollary 8.4. Under the hypotheses of Lemma 8.3, let α be a twin root of Σ,
let D ∈ −α+ be a chamber contained in a boundary panel of α, and let x ∈ Xα

be an element such that xD �= D. Then there is an element m(x) ∈ X−αxX−α

such that m(x) interchanges ±α. 	


Remark 8.5. Suppose the action of Xα on C(P, α) is simply transitive for
each α ∈ Φ. Then for any x ∈ Xα as in the corollary, there are unique elements
x′, x′′ ∈ X−α such that m(x) = x′xx′′ interchanges ±α.

Finally, the connection between the pre-Moufang property and strongly
transitive actions generalizes to twin buildings. In one direction, if we start
with a strongly transitive automorphism group G ≤ Aut0 C, then the point-
wise fixers Xα := FixG(α) (α ∈ Φ) form a system of pre–root groups; the proof
is the same as the proof of Proposition 7.8, except that we use Corollary 6.74
instead of Corollary 6.7:

Proposition 8.6. If G is a strongly transitive group of type-preserving auto-
morphisms of C, then G contains a system of pre–root groups. 	


To go in the other direction, we start with a system of pre–root groups Xα

and set
U := 〈Xα | α ∈ Φ+〉 .

We then have, exactly as in the proof of Lemma 7.9,
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Lemma 8.7. C+ =
⋃

u∈U uΣ+ and C− =
⋃

u∈U uΣ−. 	


Corollary 8.8. U acts transitively on the set of chambers opposite C+.

Proof. Given D op C+, we can find u ∈ U with uD ∈ Σ−. Then uD op uC+

= C+; hence uD = C−. 	


Suppose now that we have a subgroup G ≤ Aut0 C containing a system
of pre–root groups (Xα)α∈Φ. Let B± be the stabilizer in G of C±, and set
N := 〈nα | α ∈ Φ〉 for some choice of elements nα as in Lemma 8.3.

Theorem 8.9.

(1) The action of G on C is strongly transitive.
(2) The triple (B+, B−, N) is a twin BN-pair in G, and C ∼= C(G,B+, B−).

Proof. (1) Note that N stabilizes Σ+ and acts transitively on it. Combining
this with Lemma 8.7, we see that G acts transitively on C+. Since B+ is tran-
sitive on the set of chambers opposite C+ by Corollary 8.8, strong transitivity
follows.

(2) follows from (1) via Corollary 6.79 (and the comments immediately
following it). 	


8.2 Calculation of Fixers

We show here that the results of Section 7.2 all generalize to the setting of
twin buildings.

8.2.1 Preliminaries: Convex Sets of Twin Roots

Let Σ = (Σ+, Σ−) be a thin twin building. Recall that since we are in a
W-metric setting, Σ± are sets of chambers, i.e., we are not considering any
lower-dimensional simplices. For example, we could just take Σ to be the
standard twin building of type (W,S) (Example 5.136(b)), in which case Σ+ =
Σ− = W .

For any pair M = (M+,M−) ⊆ Σ, we define a set of roots Ψ(M) by

Ψ(M) := {α ∈ Φ | α ⊇M} . (8.1)

Definition 8.10. A set of twin roots Ψ ⊆ Φ is said to be convex if it has the
form Ψ = Ψ(M) for some pair M with M+ and M− both nonempty.

Remarks 8.11. (a) Recall that a twin root α = (α+, α−) is completely de-
termined by its first component α+, which can be an arbitrary root of Σ+. We
can therefore identify Φ with the set of roots of Σ+. Moreover, the condition
α ⊇M in (8.1) is equivalent to the two conditions
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α+ ⊇M+ and − α+ ⊇ opΣ(M−) .

So a set of twin roots is convex if and only if its set of first components
is convex in the sense of Definition 7.18. Note, however, how much more
natural the notion of “convexity” is from the twin point of view. Moreover,
the analogy with the spherical case points the way toward results that would
be more cumbersome to state if we worked only with Σ+.

(b) A convex set of twin roots is always finite in view of an observation made
after Definition 7.18.

The following lemma is proved in exactly the same way as Lemma 7.14,
with the aid of Proposition 5.193. It refers to the concept of “convex pair”
that was introduced in Definition 5.158.

Lemma 8.12. There is an order-reversing 1–1 correspondence between convex
pairs M and convex subsets of Φ. It is given by M �→ Ψ(M), and its inverse
is given by Ψ �→

⋂
α∈Ψ α. 	


Example 8.13. Given two chambers C,D ∈ Σ+, set

Φ(C,D) := {α ∈ Φ | C ∈ α+, D /∈ α+} .

Then Φ(C,D) = Ψ(M), where M+ = {C} and M− = {D′}, with D′ :=
opΣ D. Hence Φ(C,D) is a convex set of roots. Its set of first components is
precisely what was called Φ(C,D) in the setting of ordinary Coxeter complexes
(following Definition 7.18). Thus it contains precisely d = d(C,D) roots, one
for each wall of Σ+ that separates C from D, and we can enumerate these
roots as in Example 7.15 by choosing a minimal gallery C = C0, . . . , Cd = D
from C to D.

Observe next that the notion of admissible ordering in Definition 7.16
applies verbatim to the present setting. Using Lemma 5.191(1), one can now
imitate the proof of Lemma 7.17 to obtain the following:

Lemma 8.14. Every convex set of twin roots admits an admissible ordering.
	


We are now ready to return to pre–root groups.

8.2.2 Fixers

Assume that C = (C+, C−) is a twin building and that G is a subgroup
of Aut0 C that contains a system (Xα)α∈Φ of pre–root groups. Here Φ is the
set of twin roots of a fundamental twin apartment Σ = (Σ+, Σ−). For any
subset Ψ ⊆ Φ we set

XΨ := 〈Xα | α ∈ Ψ〉 .
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We also set
T := FixG(Σ) .

We can now record the analogue of Proposition 7.20, whose proof goes through
with minor modifications:

Proposition 8.15. Let Ψ be a convex set of twin roots in the fundamental
twin apartment Σ, let α1, . . . , αm be an admissible ordering of Ψ , and set
Xi := Xαi

for i = 1, . . . ,m.

(1) XΨT is a subgroup of G, and

XΨT = X1 · · ·XmT .

(2) If x1 · · ·xmt = x′
1 · · ·x′

mt′ with xi, x
′
i ∈ Xi for i = 1, . . . , m and t, t′ ∈ T ,

then there are elements t1, . . . , tm ∈ T such that

x′
1 = x1t1 ,

x′
2 = t−1

1 x2t2 ,

...

x′
m = t−1

m−1xmtm ,

t′ = t−1
m t .

(3) If Ψ = Ψ(M) for some pair M = (M+,M−) with M± �= ∅, then the
pointwise fixer of M is given by

FixG(M) = XΨT . 	


8.3 Root Groups and Moufang Twin Buildings

Throughout this section, C = (C+, C−) denotes a thick twin building of
type (W,S). We continue to record the (still mostly routine) generalizations
of the concepts and results of Chapter 7.

8.3.1 Definitions and Simple Consequences

Definition 8.16. For any twin root α of C, the root group Uα is defined to
be the set of automorphisms g of C such that (a) g fixes α pointwise and (b)
g fixes P pointwise for every interior panel P of α.

Note that Uα ≤ Aut0 C and that as in Definition 7.24, (a) is redundant if
the rank is at least 2. Note also that the panel P might be in either C+ or C−.
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Lemma 8.17.

(1) For any twin root α and any g ∈ Aut0 C,

gUαg−1 = Ugα .

(2) Let α be a twin root and let P be a boundary panel of α. Then the root
group Uα acts on the sets A(α) and C(P, α), and these two actions are
equivalent.

(3) If the Coxeter diagram of (W,S) has no isolated nodes, then the actions
in (2) are free.

Proof. This is similar to the proof of Lemma 7.25. For (2) one uses Lemma
5.198 instead of Lemma 4.118, and for (3) one needs to recall that the rigidity
theorem is valid for twin buildings (see Remark 5.208). 	


Definition 8.18. We say that C is Moufang, or is a Moufang twin building,
if the actions in Lemma 8.17(2) are transitive for every twin root α of C. If,
in addition, these actions are simply transitive, then we say that C is strictly
Moufang, or is a strictly Moufang twin building.

Note that a Moufang twin building whose Coxeter diagram has no isolated
nodes is strictly Moufang.

Proposition 8.19. If C is Moufang, then it is pre-Moufang. More precisely,
if we choose a twin apartment Σ and let Φ be its set of twin roots, then
(Uα)α∈Φ is a system of pre–root groups. Hence G := 〈Uα | α ∈ Φ〉 acts strongly
transitively on C, and C ∼= C(G,B+, B−), where B± are the stabilizers in G
of any pair of opposite chambers. 	


Remarks 8.20. (a) As in Remarks 7.29(a) and (b), a twin building is Mou-
fang if Uα is transitive on A(α) for every α ∈ Φ, where Φ is the set of twin
roots in a fundamental twin apartment. Moreover, G is then generated by all
the root groops Uα with α a twin root of C.
(b) Even more than in the case of Moufang spherical buildings, one needs
to be careful in reading the literature. In particular, the original definition of
“Moufang twin building” given by Tits [261, p. 261] is based on asymmetrically
defined root groups, and we do not know whether these are always the same
as our root groups as defined above. But our (symmetric) definition seems to
be the “right” one, since, as we will show, it leads to the expected equivalence
between Moufang twin buildings and RGD systems; see Example 8.47(a) and
Theorem 8.81. Moreover, Ronan and Tits used the symmetric definition of root
groups in their paper [205] on twin trees. We suspect, incidentally, that the two
definitions do not agree for twin trees, but we do not have a counterexample.

(c) As a byproduct of our work in Section 8.4, we will see that the symmetric
and asymmetric versions of root groups agree in the 2-spherical case (see
Remark 8.26).
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We turn next to links (or, rather, residues, since we are now using the
W-metric approach). We will not need a systematic study of residues in Mou-
fang twin buildings, so we confine ourselves to recording one result that will
be needed later. Its proof is similar to that of Proposition 7.32(1).

Proposition 8.21. If C is a Moufang twin building, then every spherical
residue of C is a Moufang (spherical) building. 	


Finally, we remark that the results of Section 7.3.3 on subbuildings ex-
tend to Moufang twin buildings with no difficulty. In particular, we have the
following analogue of Proposition 7.37:

Proposition 8.22. Let C be a Moufang twin building whose Coxeter diagram
has no isolated nodes. If C′ is a thick twin subbuilding of C, then C′ is also
Moufang. If, moreover, Σ is a twin apartment of C′, α is a twin root of Σ,
and Uα is the corresponding root group of C, then U ′

α := {u ∈ Uα | u(C′) = C′}
is the root group of C′ associated to α. 	


8.3.2 Example

In Section 6.12 we briefly described a twin building ∆ = (∆+,∆−) associated
to a rational function field K = k(t) and an integer n ≥ 2. Here k is an
arbitrary field. We now sketch a proof that ∆ has the Moufang property. In
what follows we will work in the simplicial setting and will freely use the
notation introduced in Section 6.12, which the reader should review before
proceeding.

Recall that we have a fundamental twin apartment Σ = (Σ+, Σ−) whose
vertices are the A±-lattice classes [[ta1e1, . . . , t

anen]], where e1, . . . , en is the
standard basis of V = Kn and a1, . . . , an ∈ Z. In order to discuss the Moufang
property, we need the following description of the twin roots of Σ: There is
one twin root αl

ij for each ordered pair of indices 1 ≤ i, j ≤ n with i �= j
and each integer l; the vertices of its Σ+-component are the A+-lattice classes
[[ta1e1, . . . , t

anen]] with ai − aj ≤ l, and the vertices of its Σ−-component are
the A−-lattice classes [[ta1e1, . . . , t

anen]] with ai − aj ≥ l. To verify this, one
needs to understand the Weyl group W of ∆ and its Coxeter complex. Recall
that W is the Coxeter group of type Ãn−1 that we described in Section 6.9.3,
where we claimed that it is a Euclidean reflection group. We will in fact
study this group and its Coxeter complex in detail in Section 10.1.7, and the
interested reader can look ahead and see that our description of the roots is
indeed correct. (Alternatively, the reader may prefer to specialize to the case
n = 2. Here W is the infinite dihedral group, each Σε is a triangulated line,
and it is trivial to describe the roots.)

Remark 8.23. For future reference, we note that αl
ij is a positive root (i.e.,

it contains the fundamental chamber C+) if and only if either i < j and l ≥ 0
or i > j and l ≥ 1.
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Recall next that we have an action of the group G = SLn(k[t, t−1]) on ∆.
We will use this action as an aid in proving the Moufang property. For each
i, j, l as above, let U l

ij be the subgroup of G defined by

U l
ij :=

{
Eij(ctl) | c ∈ k

}
.

Here Eij(−) denotes an elementary matrix as in Section 7.3.4. Thus each U l
ij is

isomorphic to the additive group of k. The following analogue of Lemma 7.41
implies that ∆ has the Moufang property. The proof is straightforward and
is left to the interested reader. (See Exercise 6.115 and its solution for some
hints related to part (2).)

Lemma 8.24.

(1) U l
ij fixes every vertex of ∆ that is joinable to an interior vertex of αl

ij.
In particular, U l

ij fixes αl
ij pointwise.

(2) Let P be a panel in ∂αl
ij. Then U l

ij acts simply transitively on C(P, αl
ij).
	


8.4 2-Spherical Twin Buildings of Rank at Least 3

In this section we generalize Theorem 7.59 and derive the Moufang property
for a class of twin buildings. Surprisingly, although Theorem 8.27 below has
certainly been known to the experts for quite some time, we could not find
an explicit statement of it in the literature.

As in the spherical case, the Moufang property for 2-spherical twin build-
ings is basically (modulo some additional arguments that we will supply) a
consequence of the extension theorem that we quoted in Section 5.11. We
therefore have to make the same assumptions here as in Section 5.11. Namely,
we assume that C = (C+, C−) is a thick, irreducible, 2-spherical twin building
of rank at least 3 that satisfies condition (co) of Section 5.11. We then want
to deduce from Corollary 5.215 that C is Moufang, just as we deduced from
Corollary 5.211 that thick, irreducible, spherical buildings of rank at least 3
are Moufang. In our present context, we will need an additional argument
showing that the automorphism provided by Corollary 5.215 fixes pointwise
all interior panels of α contained in C−. (For those contained in C+, we can
apply Proposition 7.57 as in the spherical case.) This additional argument is
given in Proposition 8.25 below (which does not require condition (co)). Its
proof was kindly suggested to us by Bernhard Mühlherr and is included here
with his permission.

Proposition 8.25. Let C = (C+, C−) be a thick, irreducible, 2-spherical twin
building of rank at least 3, and let α = (α+, α−) be a twin root of C. Assume
that g is an automorphism of C that fixes α pointwise as well as all interior
panels of α contained in C+. Then g fixes all interior panels of α pointwise.
In other words, g is in the root group Uα as defined in Definition 8.16.
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Proof. Given an interior panel P− of α contained in C−, we have to show that
g fixes all chambers in P−. In view of Proposition 7.58, it suffices to prove this
for P− “close” to the boundary of α−. In order to make this precise in terms of
our present W-metric setup, we first generalize the terminology we introduced
before Definition 8.1. Namely, we call a residue R of C meeting α an interior
residue of α if R ∩ Σ = R ∩ α for any twin apartment Σ containing α, and
we call R a boundary residue of α otherwise. So, in view of Proposition 7.58,
we may now assume that P− is contained in a rank-2 residue R− of C− that
is a boundary residue of α.

Choose a twin apartment Σ = (Σ+, Σ−) containing α. Observe that
opΣ(R− ∩ Σ−) is a (thin) rank-2 residue of Σ+ having nonempty intersec-
tion with α+ as well as −α+. So opΣ(R− ∩ Σ−) is contained in a (unique)
rank-2 residue R+ of C+ that is a boundary residue of α. Now R+ and R− are
opposite spherical residues (recall that C is 2-spherical). Hence, by Proposi-
tion 5.152, projR+

and projR− induce mutually inverse σJ -isometries between
R− and R+ (where J is the common type of R+ and R−). In particular,
P+ := projR+

P− is a panel contained in R+, and projR− P+ = P−.
Since α is convex (see Lemma 5.191) and R+ meets α+, projR+

(P−∩α−)
is contained in α+ (see Remark 5.159 and Exercise 5.169). Hence P+ is an
interior panel of α, and g fixes P+ pointwise by assumption. Since P− =
projR− P+, any chamber C− ∈ P− is of the form C− = projR− C+ for some
C+ ∈ P+. Now g stabilizes R− (since g is an isometry and stabilizes P−), and
g fixes C+ ∈ P+. Hence g also fixes C−, and the proof is complete. 	


Remark 8.26. The proposition implies, as we claimed in Remark 8.20(c),
that Tits’s asymmetric definition of root groups [261, Section 4.3] agrees with
our Definition 8.16 for (thick) 2-spherical twin buildings. [One easily reduces
to the irreducible case, and then the assertion is trivial unless the rank is at
least 3.]

It is now easy to put the pieces together in order to obtain the main result
of this section.

Theorem 8.27. If C is a thick, irreducible, 2-spherical twin building of rank
at least 3 that satisfies condition (co) of Section 5.11, then C is Moufang.

Proof. Given a twin root α of C and two twin apartments Σ and Σ′ contain-
ing α, we need to find an element g in the root group Uα with gΣ = Σ′. By
Corollary 5.215, there is an automorphism g of C that fixes α and E2(C+)
pointwise for some chamber C+ ∈ α

(2)
+ and that satisfies gΣ = Σ′. By Propo-

sition 7.57, g fixes pointwise all interior panels of α contained in C+. Proposi-
tion 8.25 now implies that g is in Uα. 	


Corollary 8.28. If C is as in the theorem, then it is the twin building asso-
ciated to a twin BN-pair.

Proof. This follows from the theorem together with Proposition 8.19. 	




8.5 Group-Theoretic Consequences of the Moufang Property 459

Corollary 8.29. If C is as in the theorem, then all rank-2 residues of C are
Moufang. In particular, the Coxeter matrix associated to C has all of its entries
m(s, t) in {1, 2, 3, 4, 6, 8}.

Proof. The first assertion follows from the theorem and Proposition 8.21. The
second assertion now follows from the result of Tits cited in Remark 7.60. 	


Remarks 8.30. (a) Our proof of Corollary 8.29 was based on the extension
theorem 5.213. But there are weaker versions of the extension theorem that
are sufficient to yield the corollary; see [261, Section 5.6] and [203, Section 8].
And these weaker versions can be proved without using (co). So Corollary 8.29
is in fact true for all thick, irreducible, 2-spherical twin buildings of rank at
least 3. This is significant in connection with Remark 5.212 (see assertion (b)
of that remark).

(b) Moufang octagons are pretty special (see [256]). So one cannot expect
arbitrary Coxeter matrices with all m(s, t) ∈ {1, 2, 3, 4, 6, 8} to be realizable
as the Coxeter matrices of thick twin buildings if 8 actually occurs. But if one
excludes the value 8 from this list, i.e., if one restricts to Coxeter matrices
with m(s, t) ∈ {1, 2, 3, 4, 6}, then all of them are in fact realizable. We will see
this while discussing Kac–Moody groups (see Remark 8.97), which give rise
to twin BN-pairs and hence to twin buildings.

8.5 Group-Theoretic Consequences of the Moufang
Property

Throughout this section, C = (C+, C−) denotes a strictly Moufang twin build-
ing of type (W,S). Choose a fundamental twin apartment Σ = (Σ+, Σ−) and
a fundamental pair of opposite chambers C±, so that Σ = Σ {C+, C−}. As
usual, we denote by Φ the set of twin roots of Σ, by Φ+ the set of positive
twin roots (those containing C+), and by Φ− the set of negative twin roots
(those containing C−).

Our purpose in this section is to record the algebraic results about the
group

G := 〈Uα | α ∈ Φ〉
analogous to the results of Section 7.7 for the spherical case. No difficulties
arise, and we will be brief.

8.5.1 The Groups U±, B±, and Uw

We define two subgroups U+, U− ≤ G by

U± := 〈Uα | α ∈ Φ±〉 ;
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U+ is the group that occured in Lemma 8.7, where it was called U . Next, we
introduce the two stabilizers

B+ := {g ∈ G | gC+ = C+} ,

B− := {g ∈ G | gC− = C−} .

Finally, we set

T := FixG(Σ) = FixG(Σ+) = FixG(Σ−) .

Note that
B+ ∩B− = T ,

since the convex hull of C+ and C− is Σ.
Lemma 7.62 and Corollary 7.63 and their proofs go through with no es-

sential change:

Lemma 8.31. U+ ∩ T = B+ ∩ U− = {1}. 	


This leads to the following strengthening of Corollary 8.8:

Corollary 8.32. U+ acts simply transitively on the set of chambers oppo-
site C+. 	


If Ψ is a convex subset of Φ in the sense of Definition 8.10, we set

UΨ := 〈Uα | α ∈ Ψ〉 ,

and one can then prove, as in Proposition 7.64, the following result:

Proposition 8.33. Let Ψ be a convex set of twin roots in the fundamental
twin apartment Σ, let α1, . . . , αm be an admissible ordering of Ψ , and set
Ui := Uαi

for i = 1, . . . ,m.

(1) UΨ = U1 · · ·Um. More precisely, every element of UΨ is uniquely express-
ible as u1 · · ·um with ui ∈ Ui for each i.

(2) If Ψ = Ψ(M) for some pair M = (M+,M−) with both components
nonempty, then

FixG(M) = UΨT = UΨ � T . 	


We now specialize to the case Ψ = Φ(C+, wC+) with w ∈ W , where
the notation is that of Example 8.13. Equivalently, Ψ = Ψ(M) with M =(
{C+} , {wC−}

)
. If we identify Σ+ with Σ(W,S), then the set of first com-

ponents α+ of the twin roots α ∈ Ψ is simply the set Φ(w) defined exactly
as in Definition 7.100. By abuse of notation, we will also write Φ(w) for the
corresponding set of twin roots. We now set

Uw := UΦ(w) ≤ U+ ,

and we have, as in Corollaries 7.66 and 7.67, the following:
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Corollary 8.34. Given w ∈W , choose a reduced decomposition w = s1 · · · sl,
let Γ be the corresponding gallery from C+ to wC+, and let α1, . . . , αl be the
associated sequence of twin roots. Set Ui := Uαi

for i = 1, . . . , l.

(1) Every element of Uw admits a unique representation as u1 · · ·ul with
ui ∈ Ui for all i.

(2) Uw is the stabilizer of wC− in U+. In other words,

Uw = U+ ∩ wU−w−1 .

(3) Uw acts simply transitively on the w-sphere

Cw := {D ∈ C+ | δ+(C+,D) = w} . 	


(Note that in the proof of (3), we are allowed to use Lemma 7.22, which we
explicitly stated for buildings that are not necessarily spherical.)

Remark 8.35. Part (2) of the corollary enables us to give a complete analysis
of the action of U+ on C−. Indeed, Lemma 8.7 implies that every U+-orbit
in C− is represented by a chamber wC− for some w ∈ W . And w is uniquely
determined by the orbit, since it is equal to δ∗(C+,D) for any chamber D in
the orbit. Combining this with the stabilizer calculation in the corollary, we
obtain a bijection

κ :
∐

w∈W

U+/Uw ∼−→ C− , (8.2)

given by κ(xUw) = xwC− for x ∈ U+ and w ∈ W . This observation will be
useful in Section 8.7.

Exercise 8.36. This is a continuation of Remark 8.35. The goal is to re-
construct the building (C−, δ−) from the group U+ and the family of sub-
groups Uw.

(a) Let D,D′ ∈ C− be s-adjacent chambers for some s ∈ S. If δ∗(C+,D) �=
δ∗(C+,D′), show that there is an element u ∈ U+ such that uD and uD′

are both in Σ−. Equivalently, there are elements x ∈ U+ and w ∈ W
such that D = xwC− and D′ = xwsC−. If δ∗(C+,D) = δ∗(C+,D′), on
the other hand, then we know that D and D′ are U+-equivalent to the
same chamber wC− ∈ Σ−. Show in this case that l(ws) > l(w) and that
there are elements x, y ∈ U+ such that D = xwC−, D′ = ywC−, and
xwsC− = ywsC−.

(b) Deduce that C−, as a chamber system over S (see Section 5.2), is isomor-
phic to the following chamber system C′. As a set,

C′ :=
∐

w∈W

U+/Uw .

Two cosets xUv and yUw (x, y ∈ U+, v, w ∈ W ) are declared to be
s-equivalent (for s ∈ S) if (i) v = w or ws and (ii) y−1x is in the larger of
the two groups Uw, Uws. [Recall or check that Uw ≤ Uws if l(ws) > l(w).]
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8.5.2 Commutator Relations

Definition 8.37. Given two twin roots α, β ∈ Φ, we say that the pair {α, β}
is prenilpotent if both components of α∩ β are nonempty. We then define the
closed interval [α, β] by

[α, β] := {γ ∈ Φ | γ ⊇ α ∩ β} ,

and we define the open interval (α, β) by

(α, β) := [α, β] � {α, β} .

Remarks 8.38. (a) It is natural to restrict the definition of [α, β] to the pre-
nilpotent case, since this guarantees that [α, β] is convex in the sense of Defin-
ition 8.10. As in the spherical theory, it is then possible to give a very concrete
interpretation of the interval. We will do this in the next subsection.

(b) The terminology “prenilpotent” was introduced by Tits [260]. It is moti-
vated by the fact that for a prenilpotent pair {α, β} of twin roots, the root
groups Uα and Uβ of our stictly Moufang building C generate a nilpotent
group, provided that all root groups are nilpotent (which is almost always
true in concrete examples). This result is stated in Exercise 8.53 below. The
spherical case was treated in Exercise 7.112. This group-theoretic background
also explains, independently of (a), why one requires the existence of chambers
in both components of α ∩ β. Indeed, the group 〈Uα, Uβ〉 is not nilpotent in
general if one component of the intersection is empty, even if all root groups
are abelian. Consider, for instance, the example of Section 8.3.2, and take
α = αl

ij and β = αm
ji for some i �= j and some l,m ∈ Z. If l = −m, these

twin roots are opposite. Otherwise, there are chambers in one (and only one)
component of α∩β. Regardless of the choice of l,m, the groups Uα and Uβ do
not generate a nilpotent subgroup, nor do they satisfy any “nice” commutator
relations.

The closed interval determined by a prenilpotent pair of roots is convex,
as we noted above. The open interval is also convex; one can see this by
arguing as in the first part of the proof of Proposition 7.72: We may assume
that α �= β, which implies that β � α (see Exercise 5.200). We can then
find adjacent chambers D′,D in C+ or C− with D′ ∈ α ∩ β and D ∈ β � α.
Similarly, there are adjacent chambers E′, E in C+ or C− with E′ ∈ α∩β and
E ∈ α � β. One then checks immediately that

(α, β) = Ψ
(
(α ∩ β) ∪ {D,E}

)
, (8.3)

so (α, β) is indeed convex.
The rest of the proof of Proposition 7.72 also generalizes with no essential

change, as does the proof of Corollary 7.73:
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Proposition 8.39. For all α �= β in Φ such that the pair {α, β} is prenilpo-
tent,

[Uα, Uβ ] ≤ U(α,β) . 	


Corollary 8.40. Let α1, . . . , αd be the sequence of twin roots associated to a
minimal gallery in Σ+ as in Example 8.13, and set Ui := Uαi

for i = 1, . . . , d.
If d ≥ 2, then

[U1, Ud] ≤ U2 · · ·Ud−1 . 	


8.5.3 Prenilpotent Pairs

In this final subsection we say a little more about prenilpotent pairs of twin
roots, and we describe the interval [α, β]. For both of these purposes it is
convenient to work in just one half of the twin apartment and to take a
simplicial approach. Thus Σ now denotes a (simplicial) Coxeter complex of
type (W,S), and Φ is its set of roots. If we rewrite Definition 8.37 in terms of
first components of twin roots, we are led to the following:

Definition 8.41. Given α, β ∈ Φ, the pair {α, β} is called prenilpotent if α∩β
and (−α) ∩ (−β) each contain at least one chamber. In this case we set

[α, β] := {γ ∈ Φ | γ ⊇ α ∩ β and −γ ⊇ (−α) ∩ (−β)} .

We record for future reference some immediate consequences of the defin-
ition. The proofs are easy and are left to the reader:

Lemma 8.42. Let α and β be roots.

(1) {α, β} is prenilpotent if and only if {−α,−β} is prenilpotent. In this case
[−α,−β] = −[α, β] := {−γ | γ ∈ [α, β]}.

(2) If the pair {α, β} is nested (i.e., α ⊆ β or β ⊆ α), then {α, β} is pre-
nilpotent.

(3) {α, β} is not prenilpotent if and only if the pair {α,−β} is nested. In
particular, if {α, β} is not prenilpotent, then {α,−β} is prenilpotent. 	


Example 8.43. If W is finite, then {α, β} is prenilpotent if and only if
β �= −α. (This follows for instance from Lemma 3.53 and part (3) of
Lemma 8.42.) And the definition of [α, β] in this case coincides with the one
given in Definition 7.71, since we can apply the opposition involution to the
inclusion γ ⊇ α ∩ β.

Example 8.44. Suppose W is a Euclidean reflection group, so that Σ can
be identified with a Euclidean space V decomposed into simplices by affine
hyperplanes. [Readers who are not familiar with Euclidean reflection groups,
which will not be formally introduced until Chapter 10, can think about the
case in which V is the plane tiled by equilateral triangles.] The closed half-
spaces determined by the hyperplanes can be identified with the roots. For
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each root α, let eα be the unit vector orthogonal to ∂α and pointing to the
side containing α. Thus α is defined by an inequality 〈eα,−〉 ≥ c for some
c ∈ R. The result, then, is that two roots α, β form a prenilpotent pair if and
only if eα �= −eβ . In more detail, we have the following possibilities for α, β:

(1) eα = −eβ and α = −β. Then α ∩ β = (−α) ∩ (−β) = ∂α. Neither
intersection contains a chamber, and {α, β} is not prenilpotent.

(2) eα = −eβ but α �= −β. Then ∂α and ∂β are distinct and parallel. Of the
two intersections α∩β and (−α)∩ (−β), one contains a chamber but the
other is empty. The pair {α, β} is not prenilpotent.

(3) eα = eβ . Then ∂α and ∂β are parallel and the pair {α, β} is nested. In
particular, it is prenilpotent.

(4) eα �= ±eβ . Then ∂α and ∂β intersect and divide V into four quadrants
corresponding to the four intersections ±α ∩ ±β, each of which contains
a chamber. In particular, {α, β} is prenilpotent.

We now describe the interval [α, β] in each of the prenilpotent cases. In
case (3), suppose α ⊆ β. Then [α, β] consists of the roots γ such that
α ⊆ γ ⊆ β. There are finitely many such γ, one for each wall parallel to
∂α and ∂β and between them. See Figure 8.2. In case (4), choose a maximal

α

γ

β

Fig. 8.2. A root γ ∈ (α, β); the parallel-walls case.

simplex A in ∂α ∩ ∂β. As in Lemma 7.81, one can then set up a bijection
between [α, β] and [α′, β′], where α′, β′ are the roots in the spherical rank-2
Coxeter complex Σ′ := lkΣ A obtained by intersecting α and β with Σ′. [See
Lemma 8.45 below.] In particular, the bounding wall of every γ ∈ [α, β] must
contain A, so that γ corresponds to a root γ′ of Σ′. See Figure 8.3 for an ex-
ample; we leave it to the reader to locate α′, β′, γ′ in the picture. Note in both
cases that {γ ∈ Φ | γ ⊇ α ∩ β} is much bigger than [α, β]. In fact, it is infinite,
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∂γ

∂β

∂α
A

Fig. 8.3. A root γ ∈ (α, β); the intersecting-walls case.

whereas [α, β] is finite. Thus it is crucial that we require −γ ⊇ (−α) ∩ (−β)
in the definition of [α, β].

We come now to the main point of this subsection, which is a simple
description of the interval [α, β] when {α, β} is prenilpotent (cf. Lemma 7.81).

Lemma 8.45. Let {α, β} be a prenilpotent pair of roots. Then one of the
following holds:

(a) {α, β} is nested, say α ⊆ β, in which case

[α, β] = {γ ∈ Φ | α ⊆ γ ⊆ β} .

(b) Every maximal simplex A of ∂α∩∂β has codimension 2, and the link LA

is spherical. For any such A, let α′ := α ∩ LA and β′ := β ∩ LA be the
roots of LA corresponding to α and β. Then there is a bijection

[α, β] ∼−→ [α′, β′]

given by γ �→ γ′ := γ ∩ LA for γ ∈ [α, β].

Proof. If each of the four intersections (±α)∩ (±β) contains a chamber, then
we are in case (b). Indeed, the first assertion follows from Lemma 3.164, and
the rest is proved exactly as in the proof of Lemma 7.81. [One of course
uses the definition of prenilpotence instead of the opposition involution in the
proof.] Otherwise, either α ∩ (−β) or (−α) ∩ β contains no chamber, which
says precisely that {α, β} is nested. 	


Exercise 8.46. If W is infinite, show that there is always a pair of positive
roots {α, β} that is not prenilpotent.
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8.6 General RGD Systems

In this section (W,S) will be an arbitrary Coxeter system and Σ will denote
the standard thin building (W, δW ) or, equivalently, the W-metric building
associated to the Coxeter complex Σ(W,S). We denote by Φ the set of roots
of Σ and by Φ+ (resp. Φ−) the set of positive (resp. negative) roots. Thus

Φ+ = {α ∈ Φ | 1 ∈ α}

and

Φ− = {α ∈ Φ | 1 /∈ α} .

Our goal in this section is to write down group-theoretic axioms that will
ultimately lead to a Moufang twin building. It might therefore seem more
natural to work with the standard thin twin building and its set of twin
roots. It turns out, however, that we will have to do a considerable amount of
work with the C+ half of the desired twin building before we can complete the
construction. It is therefore more convenient to work with just the ordinary
thin building Σ.

8.6.1 The RGD Axioms

To define an RGD system
(
G, (Uα)α∈Φ, T

)
of type (W,S), one simply repeats

Definition 7.82 verbatim with the exception of (RGD1). This is rewritten as
follows:

(RGD1) For all α �= β in Φ such that {α, β} is prenilpotent in the sense of
Definition 8.41,

[Uα, Uβ ] ≤ U(α,β) .

The interval (α, β), of course, now has to be interpreted as in Definition 8.41.
In view of Example 8.43, the new (RGD1) is equivalent to the original one
if W is finite, so there is no harm in continuing to call it (RGD1). This is
the definition given by Tits [261, Section 3.3], except that he defines T to be⋂

α∈Φ NG(Uα); our reasons for not doing this were explained in Remark 7.84.

Examples 8.47. (a) Let C = (C+, C−) be a strictly Moufang twin building
of type (W,S) with fundamental twin apartment (Σ+, Σ−) and fundamental
chamber C+ ∈ Σ+. We identify Σ+ with W . The set of twin roots of (Σ+, Σ−)
is then identified with the set of roots Φ defined above. For each α ∈ Φ let
Uα ≤ Aut C be the corresponding root group. Set

G := 〈Uα | α ∈ Φ〉 ≤ Aut C ,

and define T by
T = FixG(Σ) .

Then one checks, as in Example 7.83, that
(
G, (Uα)α∈Φ, T

)
is an RGD system

of type (W,S).
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(b) For a specific example, we can apply (a) to the twin building of type Ãn−1

discussed in Section 8.3.2. But it is actually easier to treat this example purely
algebraically. Namely, we start with G = SLn

(
k[t, t−1]

)
, where k is a field,

we define T to be the diagonal subgroup of SLn(k), and we define the Uα to
be the groups U l

ij ≤ G introduced in Section 8.3.2. The RGD axioms are easy
to verify. [Strictly speaking, we should take G = PSLn

(
k[t, t−1]

)
if we really

want this to be a special case of (a).]

As we mentioned above, we are heading toward a proof that every RGD
system has an associated Moufang twin building. As a first step, one proves
as in Theorem 7.115 the existence of a Tits system (G,B+, N, S), which leads
to a (generally nonspherical) building that is Moufang in a suitable sense.
This first step is not so different from our Section 7.8, and we will explain it
below. But we will have to work considerably harder to get a twin Tits system
(G,B+, B−, N, S). The proof of this will not be completed until Section 8.8.

Remarks 8.48. (a) We could simplify our development substantially if we
replaced (RGD3) by the following stronger (and symmetric) axiom:

(RGD3′′) For all s ∈ S,

U−s � U+ and Us � U− .

This would be harmless for many purposes, since in concrete examples both
statements are often easy to verify. But it is interesting and potentially use-
ful that one needs to require only the first of these two conditions, and the
second then follows. We will therefore go to some trouble in order to avoid
assuming (RGD3′′). In particular, our proof of the following assertion will be
less straightforward than it was in the spherical case:

α �= β =⇒ Uα �= Uβ for α, β ∈ Φ . (8.4)

If we were willing to assume (RGD3′′), we would be able to prove this by
a slight variant of the argument that we used in the spherical case; see Re-
mark 8.49 below.

(b) The most serious difficulty in constructing a twin BN-pair is proving the
equality

U− ∩B+ = {1} ,

to which we will devote the long and technical Section 8.7. This was much
easier in the spherical case (see Corollary 7.122), where we were able to use the
longest element w0 ∈ W . To the best of our knowledge, there is no complete
proof of this equality in the literature at the time of this writing.

(c) We will later prove, after having done the work referred to in (b), that
(RGD3′′) is a consequence of our axioms; see Section 8.8. So replacing (RGD3)
by (RGD3′′) yields an equivalent system of axioms.
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Let us now review the program we worked through in Section 7.8 and see
how it generalizes. There is no change needed in Section 7.8.2. That dealt
with the rank-1 situation and is still applicable to our present setup. It will
be important for us that in the rank-1 case, it was actually possible to replace
(RGD3) by a weaker (and symmetric) assumption; see Remark 7.86. We turn
next to the generalization of Section 7.8.3, concerning the Weyl group.

8.6.2 The Weyl Group

Here we have to use a somewhat roundabout approach because the method
we used in the spherical case was based on Lemma 7.90. That lemma, as we
saw in Exercise 7.96, is not valid for general Coxeter complexes. We proceed
in several steps.

(1) By (RGD2) and (RGD5), the group N := 〈T, {m(u) | u ∈ U∗
s , s ∈ S}〉

acts on U := {Uα | α ∈ Φ} by conjugation, and the action of T is trivial. By
statement (6) in Section 7.8.2 (applied to Gs := T 〈Us, U−s〉), we also know
that T � N . Hence we have a well-defined action of N/T on U . (However, we
cannot at this point identify U with Φ.)

(2) We wish to define an action of W on U , which we will write as conjugation.
The action of an element w ∈ W will be defined to be conjugation by a suitably
chosen w̃ ∈ N . [It will then follow that this action is conjugation by n for any
n ∈ w̃T .] We first define the action of a generator s ∈ S. Choose us ∈ U∗

s and
set s̃ := m(us) ∈ N . By the last sentence in (RGD2), the coset s̃T does not
depend on the choice of us, so we may set

sUs−1 := s̃U s̃−1

for U ∈ U . And by the first part of (RGD2), we then have

sUαs−1 = Usα (8.5)

for all α ∈ Φ. Now consider an arbitrary w ∈ W , and choose a decomposition
w = s1 · · · sl (not necessarily reduced) with si ∈ S for all i. We then write
w̃ := s̃1 · · · s̃l ∈ N . This of course depends on the chosen decomposition of w,
but by (8.5), the conjugation action of w̃ on U depends only on w. In fact,

w̃Uαw̃−1 = Uwα

for all α ∈ Φ. Hence we can set

wUw−1 := w̃Uw̃−1

for U ∈ U , and we then have

wUαw−1 = Uwα (8.6)

for all w ∈ W and α ∈ Φ. It follows from (8.6) that we have indeed defined
an action of W on U , i.e., a homomorphism W → SymU .
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We can summarize what we have done so far in the diagram

N/T

W SymU

where the dashed arrow is a reminder that we expect N/T ∼= W . We will show
shortly that there is in fact an isomorphism W ∼−→ N/T , given by w �→ w̃T .
At the moment, however, we do not have a well-defined map between W
and N/T (in either direction).

(3) For any w �= 1 in W we can find, by Exercise 7.97, a root α ∈ Φ+ and
an element s ∈ S such that wα = −αs. Then wUαw−1 = U−s and hence,
by (RGD3),

wUαw−1
� U+ .

This shows, in particular, that the action of W on U is faithful.

(4) Lemma 7.91 can now be modified as follows: Suppose s1 · · · sl = 1 in W ,
and suppose we have an element n ∈ 1̃T = s̃1 · · · s̃lT such that n ∈ Gs for
some s ∈ S. Then n ∈ T .

Proof. By (2), we have nUαn−1 = Uα for all α ∈ Φ. Since n ∈ Gs, we
conclude that n ∈ NGs

(Us) ∩ NGs
(U−s) = T , where the equality follows

from statement (15) in Section 7.8.2. 	


(5) The main argument in the proof of Lemma 7.92 can now be phrased
as follows: There exists a well-defined homomorphism µ : W → N/T with
µ(s) = s̃T for all s ∈ S. Moreover, µ is an isomorphism.

Proof. Note first that µ is automatically an isomorphism if it exists. Indeed,
it is surjective since, by the definition of N , N/T is generated by the s̃T for
s ∈ S. And it is injective since the composite W → N/T → SymU is injective
by (3). So it suffices to verify that the s̃T satisfy the Coxeter relations, i.e.,
that (s̃t̃)m(s,t) ∈ T for all s, t ∈ S. We already know that s̃2 ∈ T for all s ∈ S
by statement (7) in Section 7.8.2. So suppose s �= t, and set m := m(s, t).
As in the proof of Lemma 7.92, let w be the alternating product st · · · of
length m− 1, and let x = s or t, depending on whether m is odd or even. We
have wαx = αt and hence w̃Gxw̃−1 = Gt by (2). In particular, w̃x̃w̃−1 ∈ Gt;
hence also n := (s̃t̃)m ∈ Gt, since n ≡ w̃x̃w̃−1t̃ mod T (recall that s̃ ≡ s̃−1

and t̃ ≡ t̃−1 mod T ). Applying (4) to the relation (st)m = 1, we conclude that
n ∈ T , as required. 	


(6) We can now define ν : N � W as the composite of the natural projection
N � N/T with µ−1 : N/T →W . We then have ker ν = T as well as

nUαn−1 = Uν(n)α

for all n ∈ N and all α ∈ Φ.
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(7) The proofs of Lemma 7.93 and Corollary 7.94 now go through with no
essential change. Thus we have

B+ ∩N = T (8.7)

and
U−s ∩B+ = {1} (8.8)

for all s ∈ S.

So we have managed to prove all the relevant statements in Section 7.8.3
for general (W,S) without knowing that the root groups Uα are distinct. For
the sake of completeness, we will finish this section by proving that fact as
well. As preparation, we prove the following:

(8) For any root α ∈ Φ−, Uα � U+.

Proof. Choose s ∈ S and w ∈ W such that α = wαs and hence −α = w(−αs).
Also choose n ∈ N with ν(n) = w. Then nGsn

−1 = T 〈Uα, U−α〉 by (6). If
we had Uα ≤ U+, then we would have T 〈Uα, U−α〉 ≤ TU+ = B+. This would
imply ns̃n−1 ∈ B+ ∩ N = T and hence s̃ ∈ n−1Tn = T . But then s̃ would
normalize Us and U−s, so we have a contradiction. 	


(9) If α and β are distinct roots, then Uα �= Uβ .

Proof. Suppose, for instance, that β � α, and choose a chamber C ∈ β � α.
Let w ∈ W be the element such that wC is the fundamental chamber. Then
wβ ∈ Φ+ and wα ∈ Φ−. We have Uwα � U+ by (8), so Uwα �= Uwβ . Since
Uwα = wUαw−1 and Uwβ = wUβw−1, it follows that Uα �= Uβ . 	


Remarks 8.49. (a) Suppose we replace (RGD3) by the axiom (RGD3′′) men-
tioned in Remark 8.48(a). There is then a straightforward proof of (9), very
similar to the proof we gave in the spherical case: First, we may transform
α and β by a suitable element of W in order to reduce to the case α = −αs

for some s ∈ S. If β ∈ Φ+, then we argue as in the proof of Lemma 7.89.
If β ∈ Φ−, then we instead apply the symmetric argument to sα = αs and
sβ, which is still in Φ−. [Recall that −αs is the only negative root taken to a
positive root by s.] So if we had been willing to adopt (RGD3′′) as an axiom,
the methods of Section 7.8.3 would have gone through with no change for
general (W,S).

(b) At this point in the development of the spherical theory, we were able to
use the longest element w0 to prove that the theory is ±-symmetric. We are
not yet at that point for the general theory, but the following observations will
be useful in the meantime. Given any RGD system

(
G, (Uα)α∈Φ, T

)
, we can

try to define a new RGD system by setting U ′
α := U−α for α ∈ Φ. The new

system
(
G, (U ′

α)α∈Φ, T
)

still satisfies (RGD0), (RGD1), (RGD2), (RGD4),
and (RGD5), as well as the following weak form of (RGD3):
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(RGD3′) For all s ∈ S, U−s �= Us.

Indeed, it is clear that the new system satisfies (RGD0), (RGD3′), (RGD4),
and (RGD5). In view of Lemma 8.42(1), (RGD1) for the old system implies
(RGD1) for the new system. Finally, (RGD2) for the new system follows from
(RGD2) for the old system together with the results in Section 7.8.2; see
Remarks 7.86 and 7.87. As a consequence, everything we have proved about
RGD systems using the weaker axioms (i.e., with (RGD3′) in place of (RGD3))
is also true for

(
G, (U ′

α)α∈Φ, T
)
.

8.6.3 The Groups Uw

Almost everything in Section 7.8.4 extends to general RGD systems except, of
course, results that use the longest element w0. But some of the proofs need
modification, starting with the very first result, Lemma 7.98, whose proof
requires more work than in the spherical case:

Lemma 8.50. B+sB+ = UssB+ for all s ∈ S.

Proof. As before, it suffices to show that UαUssB+ ⊆ UssB+ for all α �= αs

in Φ+. If the pair {α, αs} is prenilpotent, then the proof of Lemma 7.98 re-
mains valid. So suppose {α, αs} is not prenilpotent. Then, by Lemma 8.42(3),
{α,−αs} is nested, hence prenilpotent. Since α ∈ Φ+ and −αs ∈ Φ−, the only
way they can be nested is if −αs ⊆ α; thus

[−αs, α] = {γ ∈ Φ | −αs ⊆ γ ⊆ α} .

It follows that every γ ∈ (−αs, α) is positive. Indeed, we have s ∈ −αs =⇒
s ∈ γ =⇒ 1 ∈ γ. [Recall that −αs is the only root containing s but not 1.]
It also follows that αs /∈ [−αs, α]. So we may apply (RGD1) to obtain

[Uα, U−s] ≤ UΦ+�{αs} . (8.9)

Next, we recall that the rank-1 group Gs = T 〈Us, U−s〉 can be written as
Gs = Us {1, s}TUs (see statement (11) in Section 7.8.2); hence GsB+ =
Us {1, s}B+. Since Gs = sGs, we also have GsB+ = sUs {1, s}B+ =
U−ss {1, s}B+ = U−s {1, s}B+. Hence

GsB+ = Us {1, s}B+ = U−s {1, s}B+ . (8.10)

Combining (8.9) and (8.10), we obtain

UαUssB+ ⊆ UαGsB+

= UαU−s {1, s}B+

⊆ U−sUα[Uα, U−s] {1, s}B+

⊆ U−sUΦ+�{αs} {1, s}B+
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= U−s {1, s}UΦ+�{αs}B+

= U−s {1, s}B+

= Us {1, s}B+

= B+ ∪ UssB+ .

So either UαUssB+ ⊆ UssB+, which is what we wanted to prove, or else
UαUssB+ meets B+. In the second case s (or rather any representative of s
in N) is in B+, and the lemma is trivial.

Remark 8.51. The second case that just arose is actually impossible by equa-
tion (8.7). But the proof of that equation required (RGD3), which we wanted
to avoid using (see Remark 8.49(b)).

The rest of Section 7.8.4 now generalizes with only minor changes to ar-
bitrary Coxeter systems (W,S). Specifically:

• Corollary 7.99 and its proof remain valid. Thus Ps := B+ ∪ B+sB+ =
B+ ∪ UssB+ = GsB+ is a subgroup of G. Note that Ps = sPs as in the
proof of Lemma 8.50 (or because Ps is a group), so we also have

Ps = s(B+ ∪ UssB+) = sB+ ∪ U−sB+ . (8.11)

This alternative description of Ps will be useful later.

• Definition 7.100 requires no modification.

• In the statement of Lemma 7.101(1) we should add the assertion that
{α, β} is prenilpotent for all α, β ∈ Φ(w); this is immediate from the
definition of Φ(w). And in the proof of (1), we of course use the definition of
[α, β] for general (W,S) instead of appealing to the opposition involution.
The rest of Lemma 7.101 requires no change.

• Lemmas 7.102 and 7.104 and their proofs remain valid. The sharpening
of Lemma 7.102 stated in Remark 7.103(b) also remains valid and will be
proved after we have constructed a building (see Proposition 8.59).

• The first part of Proposition 7.106 remains valid, with the same proof. But
we can no longer conclude that U+ is nilpotent, and in fact, U+ is never
nilpotent if W is infinite. We will explain this further in Section 8.10 (see
Remark 8.87).

• Concerning Remark 7.107(a), it is not true in general that root groups
are always nilpotent. As a practical matter, however, it is true in most
“natural” examples. Remarks 7.107(b) and 7.107(c) are still true as stated.

• Proposition 7.108, giving a presentation of Uw, remains valid. But this
presentation does not immediately apply to U+, since the latter is not
equal to a Uw in general. With considerably more work, however, one can
in fact obtain a similar presentation of U+. We will do this in Section 8.10.
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Note that the results of Section 7.8.4 that we have generalized above do
not require (RGD3), so we can apply the observations in Remark 8.49(b). For
example, here is the “dualized” version of Lemma 7.104:

Lemma 8.52. With B− := TU− and U ′
w := U−Φ(w), we have

B−wB− = U ′
wwB−

for all w ∈ W . 	


Exercise 8.53. State and prove an analogue of the result of Exercise 7.112
for general RGD systems.

8.6.4 The Building C(G, B+)

Continuing with our program, we can now construct one BN-pair.

Proposition 8.54.

(1) (G,B+, N, S) is a Tits system with Weyl group N/(B+∩N) = N/T ∼= W .
(2) For s ∈ S and w ∈W , we have B−sB−wB− = B−swB− if l(sw) > l(w)

and B−sB−wB− ⊆ B− {w,ws}B− if l(sw) < l(w).
(3) If s ∈ S and w ∈ W satisfy l(sw) < l(w), then B+sB+wB− = B+swB−

and B−sB−wB+ = B−swB+.

Proof. (1) In view of the preparations we have already made, the proof is the
same as that of Theorem 7.115.

(2) This was proved for B+ instead of B− in the course of proving (1). Since
the proof did not require (RGD3), it also applies to B− by Remark 8.49(b).

(3) Recall that B+sB+ = UssB+ and hence, by taking inverses, B+sB+ =
B+sUs. Similarly (again by Remark 8.49(b)), B−sB− = B−sU−s. If l(sw) <
l(w), then w /∈ αs, i.e., β := w−1(as) is a negative root. Hence

B+sB+wB− = B+sUswB− = B+swUβB− = B+swB−

and
B−sB−wB+ = B−sU−swB+ = B−swU−βB+ = B−swB+ . 	


As in the proof of Corollary 7.117, the proposition yields the following:

Corollary 8.55. NG(U+) = B+. 	


(We cannot, however, show that NG(U−) = B− at this point.)

Next, we introduce the building associated to the Tits system of Propo-
sition 8.54. Since we are working in the W-metric framework in this chapter,
we will denote this building by C(G,B+) instead of ∆(G,B+). We will also
use the W-metric notions of boundary panel and interior panel of a root, de-
fined as in Section 8.1. There is no difficulty getting the same consequences
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for the building C+ = C(G,B+) as in Theorem 7.116 (except that we mo-
mentarily postpone the discussion of the Moufang property). Let’s spell this
out in detail. We denote by Σ+ the fundamental apartment and by C+ the
fundamental chamber B+.

Proposition 8.56. The system of groups (Uα)α∈Φ acting on C+ satisfies the
following properties:

(1) For each α ∈ Φ, Uα fixes the root α of Σ+ pointwise.
(2) For each α ∈ Φ and each boundary panel P of α, the action of Uα is

simply transitive on C(P, α) := P � {C}, where C is the chamber in
P ∩ α.

(3) If {α, β} is a prenilpotent pair of distinct roots, then

[Uα, Uβ ] ≤ U(α,β) .

Proof. Parts (1) and (2) are proved as in the proof of Theorem 7.116, and (3)
is just one of our axioms. 	


Remarks 8.57. (a) Statement (2) shows that for every α ∈ Φ, the group Uα

can be identified with a subgroup of Aut(C+).

(b) According to Ronan [200, p. 74], a thick building C (with no isolated nodes
in its Coxeter diagram) is called Moufang if there exists, for a fixed apartment
Σ0 of C, a system (Uα)α∈Φ of subgroups of Aut0 C satisfying the conditions of
Proposition 8.56 together with (RGD2). So what we have shown so far is that
a (general) RGD system always gives rise to a (general) Moufang building,
provided the Coxeter diagram has no isolated nodes.

(c) Conversely, it is easy to see that a (general) Moufang building C always
gives rise to an RGD system

(
G, (Uα)α∈Φ, T

)
, where the Uα are as in the

definition of a Moufang building, G is the subgroup of Aut0 C generated by
the Uα, and T := 〈m(u)−1m(v) | u, v ∈ U∗

s , s ∈ S〉 (here S is the set of
reflections of Σ0 with respect to the walls of a fixed chamber C0). Note that
we easily get (RGD3) in this context, but it is not at all clear why Uα cannot
be contained in U− for α ∈ Φ+.

As Ronan observed, one important consequence of (1)–(3) in Proposi-
tion 8.56 is the property of root groups that is the defining property in the
spherical case. We already discussed this in the spherical case in Section 7.7.3,
and only minor modifications are needed in the present more general setup.

Lemma 8.58. If a building C admits a system (Uα)α∈Φ of subgroups of Aut0 C
satisfying properties (1)–(3) of Proposition 8.56, then for every α ∈ Φ and
every interior panel P of α, the group Uα fixes P pointwise.

[The proof will show that transitivity suffices in property (2).]
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Proof. The proof of Proposition 7.79 goes through with one minor change: In
that proof we had a pair of opposite roots determined by an interior panel
of α, and we arbitrarily called one of them β and applied the commutator
relations. In the present setting we instead choose β so that the pair {α, β} is
prenilpotent. This is possible by Lemma 8.42(3). 	


Finally, we show that Corollaries 7.119 and 7.120 remain valid for general
RGD systems (hence Corollary 7.121 also holds). This may not be immediately
obvious, since we do not yet have a twin building, so we will write out a proof
in detail, using a different method:

Proposition 8.59. Fix w ∈W .

(1) Given a reduced decomposition w = s1 · · · sn, let α1, . . . , αn be as in
Lemma 7.101 (2). Then every u ∈ Uw admits a unique decomposition
u = u1 · · ·un with ui ∈ Uαi

for 1 ≤ i ≤ n.
(2) Uw acts simply transitively on Cw := {C ∈ C+ | δ(C+, C) = w}. Conse-

quently,
w−1Uww ∩B+ = {1} (8.12)

for all w ∈W .

Proof. We have Uw = Uα1 · · ·Uαn
by the analogue of Lemma 7.102(1). So (1)

and the first assertion of (2) will follow if we can prove the following claim:
Given any chamber C ∈ Cw, there are unique elements ui ∈ Uαi

(1 ≤ i ≤ n)
such that C = u1 · · ·unCw, where Cw is the chamber wB+ (i.e., it is the
chamber of Σ+ at Weyl distance w from C+).

Consider the minimal gallery

Γ : B+, s1B+, s1s2B+, . . . , s1 · · · snB+ = wB+

in Σ+ corresponding to the given reduced decomposition of w. Then the roots
α1, . . . , αn in (1) are the same as the roots associated to Γ as in Lemma 7.22.
Our claim now follows at once from that lemma, applied with Γ ′ equal to the
(unique) gallery from C+ to C having type (s1, . . . , sn).

Finally, the second assertion of (2) follows from the first. 	


Let’s look at what we have achieved so far. We have a Tits system
(G,B+, N, S), and we have a Moufang building C+ = C(G,B+) on which
G acts strongly transitively. In order to get a twin Tits system, we still need
to prove N ∩ B− = T , sB−s �= B− for all s ∈ S, and B+s ∩ B− = ∅ for
all s ∈ S. In view of Proposition 8.54, the first two of these conditions would
make (G,B−, N, S) a Tits system with Weyl group W , and the third condi-
tion would then make (G,B+, B−, N, S) a twin Tits system. It is not at all
easy to verify these conditions at this point. Indeed, it is not even clear that
B− �= G.

In the spherical case, all of this was easy, since we could use conjugation
by w0 to interchange the roles of U+ and U−. See, for instance, Corollary 7.122
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and its proof. In the general case, a completely new idea is needed, involving
the covering theory of buildings (Section 5.12). So we interrupt our discussion
of the group-theoretic consequences of the RGD axioms in order to construct,
in the next section, a covering map that will enable us to prove the funda-
mental equation

U− ∩B+ = {1} . (8.13)

The proof of (8.13) is long and technical and is the only place in this
book where covering theory is needed. Some readers may therefore prefer to
take (8.13) on faith and move ahead to Section 8.8, where we will complete the
construction of a twin BN-pair and give some further algebraic consequences
of the RGD axioms.

Exercises

8.60. Show that U−WB+ = G, and give a geometric interpretation.

8.61. Given s ∈ S and w ∈W with l(sw) > l(w), show that

w−1U−sw � B+ .

8.62. Show that B+ and B− (or U+ and U−) are conjugate in G if and only if
W is finite. This shows that there is no hope of using conjugacy arguments to
interchange + and − in the nonspherical case. [The same result has already
occurred in Exercise 6.90 for twin BN-pairs, but we do not yet know that we
have a twin BN-pair.]

8.63. Explain the last sentence of Remark 8.57(c).

8.7 A 2-Covering of C(G, B+)

We continue to assume that we are given an RGD system
(
G, (Uα)α∈Φ, T

)
.

As we said above, our goal in this section is to prove equation (8.13) using the
combinatorial covering theory of buildings. The reader may need to review
Section 5.12 before proceeding. Our strategy will be to introduce a chamber
system C′, which is simply a disguised version of C+ := C(G,B+), constructed
so that U− acts on it in the way we expect U− to act on C+. We will then
exhibit a 2-covering κ : C′ → C+. The main result of Section 5.12 will then show
that κ is an isomorphism, and equation (8.13) will fall out easily. See Rémy
[195, Theorem 3.5.2] for a slightly different version of the theory presented
here. Both versions are based on hints given by Tits [260,261].
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8.7.1 The Chamber System C′

Recall some notation that was introduced in Remark 8.49(b).

Definition 8.64. For any α ∈ Φ we set U ′
α := U−α, and for any w ∈ W we

set
U ′

w := 〈U ′
α | α ∈ Φ(w)〉 = 〈Uα | α ∈ −Φ(w)〉 .

Here are some simple consequences of the definition.

Lemma 8.65. For all w,w1, w2 ∈ W , we have:

(1) U ′
w = wUw−1w−1.

(2) If l(w1w2) = l(w1) + l(w2), then U ′
w1w2

= U ′
w1

w1U
′
w2

w−1
1 . In particular,

U ′
ws = U ′

wwU ′
sw

−1 if l(ws) > l(w) (s ∈ S).

Proof. (1) follows immediately from the definition of U ′
w and the easily checked

equation −Φ(w) = wΦ(w−1).
(2) is already known for the groups Uw (see Lemma 7.102 and the remarks

in Section 8.6.3). The proof does not require (RGD3), so it also applies to the
groups U ′

w. 	


Recall now that we are expecting C+ := C(G,B+) to be the first component
of a Moufang twin building C = (C+, C−). We therefore know what C+ “ought”
to look like as a set with U−-action. Namely, the fundamental apartment Σ+

should be a fundamental domain for this action, and the stabilizers of the
chambers in Σ+ should be the groups U ′

w. (See Remark 8.35, with the roles
of + and − reversed.) This leads us to define C′ by

C′ :=
∐

w∈W

U−/U ′
w . (8.14)

Next, for any s ∈ S we define a relation of s-equivalence in C′ by

xU ′
v ∼s yU ′

w ⇐⇒ {v, vs} = {w,ws} and y−1x ∈ U ′
w ∪ U ′

ws (8.15)

for x, y ∈ U− and v, w ∈ W . Exercise 8.36 explains the motivation behind this
definition.

Remarks 8.66. (a) It follows from Lemma 8.65(2) (or directly from the def-
initions) that U ′

w ≤ U ′
ws if l(ws) > l(w) and that the opposite inclusion holds

if l(ws) < l(w). Hence the union U ′
w ∪ U ′

ws is simply equal to the larger of
these two groups. This makes it easy to verify that the relation ∼s is well
defined and is an equivalence relation.

(b) U− acts on C′ by left translation as a group of chamber-system isomor-
phisms. If we denote by Σ′ the set of chambers U ′

w (w ∈ W ), then Σ′ is a
fundamental domain for the action, and the subgroups U ′

w are the stabilizers
of the chambers of Σ′.
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(c) The interested reader can prove, as an exercise, that U ′
v = U ′

w only if
v = w (v, w ∈ W ). Using this, one can identify C′ with the collection of
subsets xU ′

w of G. We will not use this in what follows, since it will suffice
to view C′ as an abstract disjoint union. But we will then have to make the
following notational convention: If we write xUv = yUw with x, y ∈ U− and
v, w ∈ W , we want this to be understood as an equation in C′, which means,
in particular, that v = w.

Lemma 8.67. The groups U ′
w (w ∈ W ) generate U−.

Proof. Given α ∈ Φ+, choose any w ∈ −α. Then we have α ∈ Φ(w) (see
Definition 7.100); hence U ′

α ≤ U ′
w. Since U− = 〈U ′

α | α ∈ Φ+〉, this proves the
lemma. 	


Lemma 8.68. The chamber system C′ is connected.

Proof. In the following, we will use the notation C D as a schematic repre-
sentation of a gallery between two chambers C,D ∈ C′. We will also identify
U− with U−/U ′

w when w = 1, i.e., we will write x instead of x {1} for x ∈ U−.

(a) For any x ∈ U− and w ∈W , x is in the same connected component of C′
as xU ′

w.

Choose a decomposition w = s1 · · · sn with si ∈ S for all i. Then we have
a gallery

x ∼s1 xU ′
s1
∼s2 xU ′

s1s2
∼s3 · · · ∼sn

xU ′
w

in C′.
(b) For any w ∈W and x ∈ U ′

w, x is in the same connected component of C′
as 1.

In fact, we have 1 U ′
w = xU ′

w x by (a).

(c) 1 and x are in the same connected component of C′ for any x ∈ U−.

By Lemma 8.67 we can write x = x1 · · ·xn with xi ∈ U ′
wi

for some wi ∈W .
Using the U−-action and (b), we obtain

1 x1 x1x2 x1x2x3 · · · x1 · · ·xn = x .

(d) Every chamber of C′ is in the connected component of 1.

This follows immediately from (a) and (c). 	
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8.7.2 The Morphism κ : C′ → C+

Still motivated by the theory of Moufang twin buildings (see Remark 8.35),
we define a function

κ : C′ → C+
by

κ(xU ′
w) = xwC+ = xwB+ (8.16)

for x ∈ U− and w ∈ W . This is well defined because Lemma 8.65(1) implies
that

U ′
w ≤ U− ∩ wB+w−1 . (8.17)

Ultimately we will prove that κ is an isomorphism of chamber systems and
hence that equality holds in (8.17). To get started, we prove the following:

Lemma 8.69. κ is a U−-equivariant morphism of chamber systems over S.

Proof. U−-equivariance is obvious. To prove that κ preserves s-equivalence
for s ∈ S, suppose xU ′

v ∼s yU ′
w for some x, y ∈ U− and v, w ∈ W . In other

words,
v ∈ {w,ws} and y−1x ∈ U ′

w ∪ U ′
ws .

We have to show that xvB+ ∼s ywB+ in C(G,B+). From the definition of
the Weyl distance in C(G,B+) (see Section 6.2.6), we have gB+ ∼s hB+ for
g, h ∈ G if and only if gPs = hPs, where Ps is the standard parabolic subgroup
B+∪B+sB+. So the result to be proved is that xvPs = ywPs or, equivalently,
that y−1x ∈ wPsv

−1. Since v = w or ws, and since (any representative of)
s is in Ps, we have wPsv

−1 = wPsw
−1. It therefore suffices to show that

the group V := U ′
w ∪ U ′

ws is contained in wPsw
−1. If l(ws) < l(w), then

V = U ′
w = wUw−1w−1 by Lemma 8.65(1), and so

V ≤ wU+w−1 ≤ wB+w−1 ≤ wPsw
−1 .

If l(ws) > l(w), then V = U ′
ws = U ′

wwU ′
sw

−1 by Lemma 8.65(2), so V =
w(Uw−1U ′

s)w
−1. This is contained in wPsw

−1 because

U ′
s = U−s = sUss

−1 ≤ Ps . 	


Our next goal is to analyze spherical residues in C′. As preparation, we
digress to record some properties of the groups U ′

w.

8.7.3 The Groups U ′
w

We begin with a consequence of the Bruhat decomposition for (G,B+).

Lemma 8.70. If w,w1, w2 ∈W are elements such that U ′
ww1B+∩w2B+ �= ∅,

then w1 = w2.
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Proof. By Lemma 8.65(1), we can rewrite the assumption as

wUw−1w−1w1B+ ∩ w2B+ �= ∅ .

This implies that B+w−1w1B+ = B+w−1w2B+ and hence, by the Bruhat
decomposition, w−1w1 = w−1w2, i.e., w1 = w2. 	


Next, we derive some consequences of equation (8.12) in Section 8.6.4.

Lemma 8.71. For all w,w1, w2 ∈ W , we have:

(1) U ′
w ∩B+ = {1}.

(2) If l(w1w2) = l(w1) + l(w2), then U ′
w1w2

∩ w1B+w−1
1 = U ′

w1
.

(3) If l(ww1) = l(w) + l(w1) and l(w1w2) = l(w1) + l(w2), then

U ′
ww1

∩ wU ′
w1w2

w−1 = wU ′
w1

w−1 . (8.18)

Proof. (1) follows from Lemma 8.65(1) and equation (8.12) (with w replaced
by w−1).

(2) Lemma 8.65 yields w−1
1 U ′

w1w2
w1 = Uw−1

1
U ′

w2
. Since Uw−1

1
≤ U+, we

obtain

w−1
1 U ′

w1w2
w1 ∩B+ = Uw−1

1
U ′

w2
∩B+

= Uw−1
1

(U ′
w2
∩B+)

= Uw−1
1

,

since U ′
w2
∩B+ = {1} by (1). Conjugating back by w1 yields

U ′
w1w2

∩ w1B+w−1
1 = w1Uw−1

1
w−1

1 = U ′
w1

.

(3) Applying Lemma 8.65(2) and taking inverses, we obtain

U ′
ww1

= wU ′
w1

w−1U ′
w .

We also have

U ′
w ∩ wU ′

w1w2
w−1 = w(w−1U ′

ww ∩ U ′
w1w2

)w−1

= w(Uw−1 ∩ U ′
w1w2

)w−1

≤ w(B+ ∩ U ′
w1w2

)w−1

= {1} ,

where the last equation follows from (1). Using these two facts together with
the obvious inclusion wU ′

w1
w−1 ≤ wU ′

w1w2
w−1, we get

U ′
ww1

∩ wU ′
w1w2

w−1 = wU ′
w1

w−1(U ′
w ∩ wU ′

w1w2
w−1) = wU ′

w1
w−1 . 	
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8.7.4 Spherical Residues

In order to prove that κ is a 2-covering, we will need to analyze spherical
residues in C′. Let J ⊆ S be spherical. This means, by definition, that WJ is
finite. If we wanted to invoke Exercises 7.126 and the spherical case of Ex-
ercise 8.36, we could quickly conclude that κ maps the J-residue of 1 in C′
isomorphically onto the J-residue of the fundamental chamber in C+. This
would not, however, immediately imply that κ maps every J-residue isomor-
phically onto a J-residue in C+. The problem is that we do not have an obvious
chamber-transitive group action on C′, so results about the J-residue of 1 do
not immediately yield results about other J-residues. Our purpose in this sub-
section is to find other ways of relating different J-residues to one another.

Recall from Section 2.3.2 that every left WJ -coset in W (J ⊆ S) contains a
unique representative w of minimal length, which satisfies l(wv) = l(w)+ l(v)
for all v ∈ WJ . Recall further that an element w ∈ W is said to be (right)
J-reduced if it is the element of minimal length in its coset wWJ . Finally,
recall that if J is spherical then WJ has a unique element of maximal length
in WJ , which we will denote by w0(J). It is of order 2, and l(w0(J)) = l(v) +
l(v−1w0(J)) for all v ∈WJ . In what follows we will use the abbreviation

U ′
J := U ′

w0(J)

if J is spherical. Although we will not use this fact, note that U ′
J is simply

the “U−” associated to the spherical RGD system
(
GJ , (Uα)α∈ΦJ

, T
)
, where

ΦJ := {wαs | w ∈WJ , s ∈ J} and GJ := T 〈Uα | α ∈ ΦJ〉.

Lemma 8.72. Let J be a spherical subset of S. Then we have:

(1) The U−-orbit of any J-residue in C′ contains a J-residue of the form
RJ(U ′

w), where w is a J-reduced element of W .
(2) If w is J-reduced, then

RJ(U ′
w) =

{
xU ′

wv | x ∈ U ′
ww0(J) and v ∈ WJ

}
.

In particular,

RJ(1) = {xU ′
v | x ∈ U ′

J and v ∈ WJ} .

(3) If w is J-reduced and n is an element of N such that ν(n) = w, then
there is a bijective morphism fn : RJ(1) → RJ(U ′

w) of chamber systems
over J , given by fn(xU ′

v) := nxn−1U ′
wv for x ∈ U ′

J and v ∈WJ .

Proof. (1) By the definition of C′ it is clear that any J-residue is U−-equivalent
to one of the form RJ(U ′

w′) for some w′ ∈ W . Denote by w the J-reduced
element of w′WJ , and write w′ = ws1 · · · sn with all si ∈ J . As in part (a) of
the proof of Lemma 8.68, one then has a J-gallery connecting U ′

w and U ′
w′ ,

which implies that RJ(U ′
w′) = RJ(U ′

w). [Note: This part of the proof does not
require J to be spherical.]
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(2) Let QJ(U ′
w) :=

{
xU ′

wv | x ∈ U ′
ww0(J) and v ∈ WJ

}
. Note that U ′

wv ≤
Uww0(J) for any v ∈ WJ by Lemma 8.65(2) and the characteristic properties
of w and w0(J). Hence

QJ (U ′
w) =

∐

v∈WJ

U ′
ww0(J)/U ′

wv . (8.19)

In particular,
QJ(1) =

∐

v∈WJ

U ′
J/U ′

v . (8.20)

Observe first that QJ(U ′
w) ⊆ RJ(U ′

w). Indeed, for any x ∈ U ′
ww0(J) and any

v ∈WJ , we have a J-gallery

U ′
w U ′

ww0(J) = xUww0(J) xU ′
wv

as in part (a) of the proof of Lemma 8.68. So (2) will follow if we show
that QJ (U ′

w) is closed under J-equivalence. To see this, consider any chamber
C = xU ′

wv ∈ QJ(U ′
w) with x and v as above. Given s ∈ J , any chamber D

that is s-equivalent to C has the form D = yU ′
wv′ with v′ ∈ {v, vs} ⊆ WJ and

x−1y ∈ U ′
wv ∪ U ′

wvs ≤ U ′
ww0(J). Hence y is in U ′

ww0(J) and D is in QJ(U ′
w).

(3) Define fn : RJ(1) = QJ(1) → QJ (U ′
w) = RJ(U ′

w) by

fn(xU ′
v) := nxn−1U ′

wv

for x ∈ U ′
J and v ∈ WJ . It is well defined because nU ′

vn−1 = wU ′
vw−1 ≤ U ′

wv

by Lemma 8.65(2), and it takes values in QJ (U ′
w) by this same fact applied

to v = w0(J). Note further that fn preserves the decompositions in (8.20)
and (8.19). To see that it is bijective, then, it suffices to show that it maps
U ′

J/U ′
v bijectively onto U ′

ww0(J)/U ′
wv for each fixed v ∈WJ .

For surjectivity, recall that U ′
ww0(J) = U ′

wwU ′
Jw−1 and hence, taking in-

verses, U ′
ww0(J) = wU ′

Jw−1U ′
w = nU ′

Jn−1U ′
w. Since U ′

w ≤ U ′
wv for all v ∈ WJ ,

it follows that every coset in U ′
ww0(J)/U ′

wv has a representative in nU ′
Jn−1;

this is precisely what is needed for surjectivity.
For injectivity, suppose nxn−1U ′

wv = nyn−1U ′
wv with x, y ∈ U ′

J . Then

ny−1xn−1 ∈ U ′
wv ∩ wU ′

Jw−1 = wU ′
vw−1 ,

where the last equation follows from Lemma 8.71(3). Hence y−1x ∈ U ′
v, im-

plying xU ′
v = yU ′

v.
Finally, we show that fn is a morphism of chamber systems over J . Suppose

x1U
′
v1
∼s x2U

′
v2

with x1, x2 ∈ U ′
J , v1, v2 ∈ WJ , and s ∈ J . Then, first of all,

we have v2 ∈ {v1, v1s}, and hence wv2 ∈ {wv1, wv1s}. Furthermore,

nx−1
2 x1n

−1 ∈ wU ′
v1

w−1 ∪ wU ′
v1sw

−1 ≤ U ′
wv1

∪ U ′
wv1s .

Hence fn(x1U
′
v1

) = nx1n
−1U ′

wv1
∼s nx2n

−1U ′
wv2

= fn(x2U
′
v2

). 	
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8.7.5 The Main Result

Proposition 8.73. The function κ : C′ → C+ defined in (8.16) is a 2-covering.

Proof. Before beginning the proof, we remark that we could eliminate steps
(a) and (b) below using the exercises cited near the beginning of Section 8.7.4.
In order to keep the present discussion self-contained, however, we will avoid
using those exercises. We now proceed to the details.

(a) κ(Rs(1)) = Rs(B+) for all s ∈ S, where Rs is an abbreviation for R{s}.

By the definition of C′ (or by Lemma 8.72(2) with J = {s}),

Rs(1) = {x | x ∈ U ′
s} ∪ {U ′

s} .

Hence κ(Rs(1)) = {xB+ | x ∈ U ′
s} ∪ {sB+}, which is the set of left B+-cosets

in
U ′

sB+ ∪ sB+ = U−sB+ ∪ sB+ = Ps ;

here the last equality is equation (8.11) in Section 8.6.3. Now observe that the
set of left B+-cosets in Ps is precisely Rs(B+) by the definition of C(G,B+)
(see the proof of Lemma 8.69).

(b) For any spherical J ⊆ S, the restriction of κ to RJ(1) is injective.

Let C,D be arbitrary elements of RJ(1). By Lemma 8.72(2), there ex-
ist x, y ∈ U ′

J and v, w ∈ WJ such that C = xU ′
v and D = yU ′

w. Now as-
sume κ(C) = κ(D), i.e., xvB+ = ywB+. This implies first that v = w (by
Lemma 8.70) and then that y−1x ∈ wB+w−1∩U ′

J = U ′
w, where the last equa-

tion follows from Lemma 8.71(2). (Recall that l(w0(J)) = l(w)+l(w−1w0(J)).)
Hence C = D.

(c) For any spherical J ⊆ S, κ maps every J-residue of C′ bijectively onto a
J-residue of C+.

By Lemma 8.72(1), any J-residue in C′ has the form RJ(xU ′
w) for some

x ∈ U− and some J-reduced w ∈ W . Choose n ∈ N with ν(n) = w, and
consider the following diagram:

RJ(1)
fn

κ

RJ(U ′
w)

λx

κ

RJ(xU ′
w)

κ

RJ(B+)
λn

RJ(wB+)
λx

RJ(xwB+)

(8.21)

where fn is the bijection given in Lemma 8.72(3), and λx (resp. λn) is given
by left multiplication by x (resp. n). Note that the three vertical arrows la-
beled κ make sense because κ is a morphism of chamber systems and hence
maps any J-residue into a J-residue. One checks immediately that this dia-
gram is commutative. [For the right-hand square, this is just U−-equivariance
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of κ.] Since all horizontal maps are bijections, all three vertical maps are
surjective/injective/bijective if and only if the first is.

We apply this argument first to the special case J = {s} with s ∈ S.
Then we know by (a) that the first vertical map is surjective; hence so are the
other two. This shows that κ maps s-panels onto s-panels. As we observed
in Section 5.12 (see Lemma 5.220), κ therefore maps all residues of C′ onto
residues of C+ of the same type. By (b), we already know that the first vertical
map in (8.21) is injective for any spherical J , so all vertical maps are bijective.

Restricting (c) to spherical residues of rank ≤ 2, we conclude, as desired,
that κ is a 2-covering. 	


Combining Proposition 8.73, Lemma 8.68, and Proposition 5.223, we are
finally able to conclude that C′ is indeed a disguised version of C+:

Corollary 8.74. The map κ is an isomorphism of chamber systems over S.
	


We cooked up C′ so that the chamber U ′
w, which maps to wB+, would

have stabilizer U ′
w. Since κ is U−-equivariant and the stabilizer of wB+ in U−

is U− ∩ wB+w−1, this yields the following group-theoretic result:

Corollary 8.75. U ′
w = U− ∩ wB+w−1 for any w ∈ W . 	


Specializing, finally, to w = 1, we obtain the result that was the goal of
this entire section:

Proposition 8.76. U− ∩B+ = {1}. 	


8.8 Algebraic Consequences

We continue to assume that we are given an RGD system
(
G, (Uα)α∈Φ, T

)
.

Now that we have proved Proposition 8.76, we can continue the line of rea-
soning that we were pursuing in Section 8.6.4. A trivial consequence of the
proposition is that U+ ∩ U− = {1}. In particular:

Corollary 8.77. For all s ∈ S, Us � U− . 	


So the stronger axiom (RGD3′′) mentioned in Remark 8.48(a) is a conse-
quence of the RGD axioms we started with. Replacing (RGD3) by (RGD3′′),
we thus get an equivalent set of axioms. Since there is now symmetry with
respect to + and −, the system

(
G, (U ′

α)α∈Φ, T
)

with U ′
α = U−α for all α ∈ Φ

is also an RGD system (see Remark 8.49(b)). So all the results we have proved
concerning U± and B± remain true if we interchange the signs. In particular,
we obtain:

• B− ∩N = T (see (8.7)).
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• (G,B−, N, S) is a Tits system with Weyl group N/(B− ∩N) = N/T ∼= W
(see Proposition 8.54).

• NG(U−) = B− (see Corollary 8.55).

• U+ ∩B− = {1} (see Proposition 8.76).

It follows, in particular, that U+ ∩ T = {1} = U− ∩ T , so

B+ = T � U+ and B− = T � U− .

Proposition 8.76 also has the following easy consequence:

Corollary 8.78. B+ ∩B− = T .

Proof. B− ∩B+ = TU− ∩B+ = T (U− ∩B+) = T . 	


This implies (as in Corollary 7.123) the following characterization of T :

Corollary 8.79. T =
⋂

α∈Φ NG(Uα) = NG(U+) ∩NG(U−). 	


Now Remark 7.124(b) and Corollary 7.125 are true for general RGD sys-
tems as well. Remark 7.124(a), however, has to be modified using twin build-
ings instead of spherical buildings. We will get back to this in the next section.
First we have to complete the proof that we have a twin BN-pair associated
to our RGD system. As we will see, all of the work has already been done.

Theorem 8.80. (G,B+, B−, N, S) is a saturated twin Tits system with Weyl
group N/T ∼= W .

Proof. We have to check the following (see Definitions 6.78 and 6.84):

(a) N ∩B+ = N ∩B− = B+ ∩B− � N .

We have shown that all intersections are equal to T , and we already know
that T � N .

(b) (G,B+, N, S) is a Tits system.

See Proposition 8.54(1).

(c) (G,B−, N, S) is a Tits system.

See the discussion above.

(d) For all w ∈W and s ∈ S with l(sw) < l(w), we have

B+sB+wB− = B+swB− and B−sB−wB+ = B−swB+ .

See Proposition 8.54(3).

(e) B+s ∩B− = ∅ for all s ∈ S.

Elements of B+s conjugate U−s into U+, but elements of B− conjugate
U−s into U−. Since U+ ∩ U− = {1}, we must have B+s ∩B− = ∅. 	
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8.9 The Moufang Twin Building

We continue to assume that we are given an RGD system
(
G, (Uα)α∈Φ, T

)
.

We have now done all the necessary work to show that this system gives rise
to a Moufang twin building. We are therefore in a position to complete the
generalization of the theory of spherical RGD systems (Section 7.8). The main
result in the previous section (Theorem 8.80) states that (G,B+, B−, N, S) is
a saturated twin Tits system with Weyl group W = N/T , where

T = B+ ∩B− = B+ ∩N = B− ∩N .

Let C(G,B+, B−) be the associated thick twin building as in Definition 6.82.
Recall that C+ = G/B+, C− = G/B−, and G acts strongly transitively on
the twin building C := C(G,B+, B−) = (C+, C−). For ε ∈ {+,−}, we denote
by Cε the fundamental chamber in Cε (so Cε = Bε as an element of G/Bε).
The chambers C+ and C− are opposite, and the associated fundamental twin
apartment will be denoted by Σ̂ := Σ {C+, C−} = (Σ+, Σ−), where, using
the notation introduced in Definition 5.176, Σ+ := Σ(C+, C−) and Σ− :=
Σ(C−, C+). Each Σε is canonically isomorphic to Σ = Σ(W,S).

Recall from Section 6.3.3 that we can recover B+, B−, T , and N from the
action of G on C as follows: Bε is the stabilizer of Cε in G, T = B+ ∩ B− is
the (pointwise) fixer of Σ̂ in G, and N is the stabilizer of Σ̂ in G. We note in
passing that this in particular provides the generalization of Remark 7.124(a),
which we postponed in the previous section.

For any root α in Σ = Σ(W,S) and each ε ∈ {+,−}, there is an associated
root αε := {wBε | w ∈ α} in Σε, as in the discussion preceding Theorem 7.116.
There is also an associated twin root, namely α̂ := (α+,−α−). We have
α− = opΣ̂(α+) by the definition of the opposition relation in C, so α̂ is indeed
a twin root in the sense of Definition 5.190. [Warning: Note that α now denotes
a root of the Coxeter complex Σ, not a twin root. Note also the minus sign
in the definition of α̂.]

By Proposition 8.56, Uα acts simply transitively on C(P, α+) for each
boundary panel P of α+. In particular, we can identify Uα with its image
in Aut C. Furthermore, by Lemma 8.58, Uα fixes every interior panel of α+

pointwise. We now apply the symmetry argument introduced in Section 8.8
in order to obtain the analogous statements for C−. That is, we consider
the RGD system

(
G, (U ′

α), T
)

with U ′
α := U−α, and we apply the results of

Section 8.6.4 to the building C(G,B′
+) = C−, where B′

+ := TU ′
+ = B− and

U ′
+ := 〈U ′

α | α ∈ Φ+〉 = U−. In this context, Proposition 8.56 yields that
Uα = U ′

−α acts simply transitively on C(P,−α−) for each boundary panel P
of −α−, and Lemma 8.58 yields that Uα fixes every interior panel of −α−
pointwise.

In particular, Uα is a subgroup of the root group Uα̂ (in the sense of
Definition 8.16) associated to the twin root α̂, and Uα acts simply transitively
on the set A(α̂) of all twin apartments containing α̂ (see Lemma 8.17(2)).
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Furthermore, Uα is equal to Uα̂ if the latter acts freely on A(α̂), e.g., if the
Coxeter diagram of (W,S) has no isolated nodes. So we have proved the
following generalization of Theorem 7.116:

Theorem 8.81. Let C = C(G,B+, B−) be the twin building associated to the
twin Tits system (G,B+, B−, N, S) of Theorem 8.80. Then for any α ∈ Φ, Uα

acts simply transitively on A(α̂) and is a subgroup of the root group Uα̂. In
particular, C is a Moufang twin building. If, in addition, the Coxeter diagram
of (W,S) has no isolated nodes, then Uα = Uα̂, and C is strictly Moufang. 	


We conclude this section by stating the analogue of Proposition 7.127.
Given the results of Section 8.8, the proof of Proposition 7.127 works in our
present context as well.

Proposition 8.82. Let φ : G → Aut C be the map giving the action of G on
C = C(G,B+, B−), and set G1 := 〈Uα | α ∈ Φ〉.
(1) kerφ = CG(G1), and Z(G) ≤ ker φ ≤ T .
(2) If G = G1 or if T is abelian, then ker φ = Z(G).
(3) kerφ ∩G1 = Z(G1). 	


Corollary 8.83. If C is a strictly Moufang twin building, then the subgroup
of Aut C generated by the root groups has trivial center. 	


8.10 A Presentation of U+

We continue to assume that we are given an RGD system
(
G, (Uα)α∈Φ, T

)
.

The main result of this section is Theorem 8.84 below, which generalizes the
case w = w0 of Proposition 7.108. As in that proposition, choose generators
and relations for each group Uα (α ∈ Φ+). For each prenilpotent pair of
positive roots {α, β}, choose relations of the form

[uα, uβ ] = v , (8.22)

where uα ranges over the generators of Uα, uβ ranges over the generators
of Uβ , and v is a word in the generators of the groups Uγ with γ ∈ (α, β).

Theorem 8.84. One obtains a presentation of U+ by taking generators and
relations for each Uα (α ∈ Φ+) and adding the commutator relations (8.22).

We will deduce this from Theorem 8.85 below, which exhibits U+ as a
direct limit of the subgroups Uw (w ∈W ) defined in Section 8.6.3. We assume
that the reader is familiar with the notion of direct limit, as defined for instance
in [217, Section I.1.1]. Consider the system consisting of the groups Uw and the
inclusion maps Uw ↪→ Uws for all w ∈ W and s ∈ S such that l(ws) > l(w).
We write lim−→

w

Uw for the direct limit of this system. There is a canonical map
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lim−→
w

Uw −→ U+

induced by the inclusions Uw ↪→ U+.

Theorem 8.85. The canonical map lim−→
w

Uw −→ U+ is an isomorphism.

Remarks 8.86. (a) We sometimes express the conclusion of the theorem say-
ing that U+ is the amalgamated sum, or simply the amalgam, of the subgroups
Uw, relative to the family of inclusions Uw ↪→ Uws.

(b) There is a partial order on W , called the weak Bruhat order, defined by

w ≤ w′ ⇐⇒ w′ = wv with l(w′) = l(w) + l(v) .

(As the name suggests, it is weaker than the Bruhat order defined in Exercise
3.59: If w ≤ w′ in the weak Bruhat order, then w ≤ w′ in the Bruhat order,
but the converse is false in general.) The direct limit in the theorem does not
change if we use the inclusions Uw ↪→ Uw′ for all w ≤ w′ in W .

(c) Note that Theorem 8.85 is vacuous in the spherical case, since w0 is the
largest element of W with respect to the weak Bruhat order.

It is quite easy to deduce Theorem 8.84 from Theorem 8.85, using the fact
that we already have presentations for the groups Uw (Section 8.6.3):

Proof of Theorem 8.84. Let V be the group defined by the presentation in
the statement of the theorem. It comes equipped with maps iα : Uα → V
(α ∈ Φ+), and there is a surjection p : V � U+ such that the composite
p ◦ iα is the inclusion Uα ↪→ U+ for each α. We wish to show that p is an
isomorphism. For each w ∈W , the presentation of Uw that we just cited gives
us a map qw : Uw → V such that qw|Uα

= iα for each α ∈ Φ(w). Given w ∈ W
and s ∈ S with l(ws) > l(w), we have Φ(w) ⊆ Φ(ws); hence qws|Uw

= qw.
The maps qw therefore induce a map q : lim−→Uw −→ V , which is surjective
since every positive root α occurs in Φ(w) for some w ∈ W . (See the proof of
Lemma 8.67.) The composite pq of our two surjections is the isomorphism of
Theorem 8.85, so p is an isomorphism. 	


Remark 8.87. We can now explain our claim near the end of Section 8.6.3
that U+ is not nilpotent if W is infinite. Note first that our presentation of U+

does not involve any relations between Uα and Uβ if the pair {α, β} is not
prenilpotent. In fact, it can be shown that no such relations exist, i.e., that
the group generated by Uα and Uβ is their free product Uα ∗ Uβ (see [73]).
Now a nonprenilpotent pair of positive roots always exists if W is infinite; this
was proved in Exercise 8.46, all the work having been done in Corollary 3.166.
So our claim follows from the fact that a free product of nontrivial groups is
never nilpotent.
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We turn now to the proof of Theorem 8.85. It is possible to deduce this the-
orem from a general result of Tits, as we will explain briefly in Section 14.1.3.
But since we do not prove that general result in this book, we will give a
different proof of the theorem, in the spirit of [260, proof of Theorem 2]. The
basic idea is easy to state: By symmetry we may consider U− instead of U+

and U ′
w instead of Uw, where the notation is that of Section 8.7. We will then

examine the arguments in that section and show that everything goes through
if we replace U− by Ũ := lim−→

w

U ′
w, which admits a canonical surjection

p : Ũ � U− .

The fact that p is an isomorphism will fall out at the end. Here are the details.
The definition of Ũ gives us maps iw : U ′

w → Ũ such that p ◦ iw is the
inclusion U ′

w ↪→ U− for each w ∈ W . It follows that iw is injective, and we
denote by Ũw its image. Note that Ũw ≤ Ũws whenever l(ws) > l(w). More
generally,

Ũw ≤ Ũw′ if w ≤ w′

in the weak Bruhat order. Note further that we have canonical isomorphisms

U ′
w
∼−→ Ũw

∼−→ U ′
w

whose composite is the identity, where the first isomorphism is given by iw
and the second is the restriction of p. Thus we could identify Ũw with U ′

w,
but it will help avoid confusion in what follows if we maintain the distinction
between them.

Next, we introduce some conjugation operations that will be needed below.
Suppose w ≤ w′ as above, and write w′ = wv. Recall from Lemma 8.65(2)
that U ′

w′ = U ′
w(wU ′

vw−1). We now set wŨvw−1 := iw′(wU ′
vw−1), so that

Ũw′ = Ũw(wŨvw−1). For a fixed representative n of w in N and any x ∈ Ũv,
we define nxn−1 := iw′(np(x)n−1); this makes sense, since p(x) ∈ U ′

v and
np(x)n−1 ∈ wU ′

vw−1. This also shows that nŨvn−1 = wŨvw−1.
We now work our way through Section 8.7. Define a chamber system C̃ by

C̃ :=
∐

w∈W

Ũ/Ũw ,

with

xŨv ∼s yŨw ⇐⇒ {v, vs} = {w,ws} and y−1x ∈ Ũw ∪ Ũws

for s ∈ S, x, y ∈ Ũ , and v, w ∈ W . This is an equivalence relation because
the union Ũw ∪ Ũws is equal to the larger of these two groups. As in the proof
of Lemma 8.68, we have the following:

Lemma 8.88. The chamber system C̃ is connected. 	
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Now define κ̃ : C̃ → C+ by κ̃(xŨw) := p(x)wB+ for x ∈ Ũ and w ∈ W .
This is well defined because p(Ũw) = U ′

w ≤ wB+w−1.

Lemma 8.89. κ̃ is a Ũ -equivariant morphism of chamber systems over S.

Proof. Note that y−1x ∈ Ũw ∪ Ũws =⇒ p(y)−1p(x) ∈ U ′
w ∪ U ′

ws. The proof
of Lemma 8.69 now goes through with no change. 	


Lemmas 8.70 and 8.71 record some facts about the groups U ′
w, and we

do not require Ũ -analogues of most of them. But we will need the following
consequence of 8.71(3):

Corollary 8.90. Given w,w1, w2 ∈W satisfying

l(ww1w2) = l(w) + l(w1) + l(w2) ,

we have
Ũww1 ∩ wŨw1w2w

−1 = wŨw1w
−1 . (8.23)

(Here the conjugates by w are defined as explained above.)

Proof. Under the hypothesis of the corollary, all the groups occurring in (8.18)
are subgroups of U ′

ww1w2
. Apply iww1w2 to both sides to obtain (8.23). 	


Note that it would not be clear how to deal with the intersection in (8.23)
under the weaker hypotheses of Lemma 8.71(3). Fortunately, the corollary will
suffice. We turn now to the analogue of Lemma 8.72. As in that setting, we
set

ŨJ := Ũw0(J)

if J ⊆ S is spherical.

Lemma 8.91. Let J be a spherical subset of S. Then we have:

(1) The Ũ -orbit of any J-residue in C̃ contains a J-residue of the form
RJ(Ũw), where w is a J-reduced element of W .

(2) If w is J-reduced, then

RJ(Ũw) =
{

xŨwv | x ∈ Ũww0(J) and v ∈ WJ

}
.

In particular,

RJ(1) =
{

xŨv | x ∈ ŨJ and v ∈ WJ

}
.

(3) If w is J-reduced and n is an element of N such that ν(n) = w, then
there is a bijective morphism fn : RJ(1) → RJ(Ũw) of chamber systems
over J , given by fn(xŨv) := nxn−1Ũwv for x ∈ ŨJ and v ∈WJ .
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Proof. The proof of Lemma 8.72 goes through with the following minor
changes. First, the definition of fn in (3) uses the remarks we made about con-
jugation above. It is well defined and surjective as in the proof of Lemma 8.72.
The proof of injectivity is also the same, except that we apply Corollary 8.90
instead of Lemma 8.71(3). [To see that this is possible, note that for any
v ∈ WJ , there exists v′ ∈ WJ such that w0(J) = vv′ and l(wvv′) =
l(w) + l(v) + l(v′). Note also that for x, y ∈ ŨJ ,

n(y−1x)n−1 ∈ wŨvw−1 =⇒ y−1x ∈ Ũv ,

since the map ŨJ → Ũww0(J) given by z �→ nzn−1 is injective and nŨvn−1 =
wŨvw−1.] Finally, the proof that fn is a morphism is unchanged. 	


Proposition 8.92. κ̃ : C̃ → C+ is a 2-covering.

Proof. Step (a) is the same as in the proof of Proposition 8.73 (since p(Ũs) =
U ′

s). Step (b) is also basically the same: We just start with x, y ∈ ŨJ but then
derive the same conclusions from p(x)vB+ = p(y)wB+ as before. Note that
p(y−1x) ∈ U ′

w =⇒ y−1x ∈ Ũw since Ũw ≤ ŨJ .
Finally, only minor changes are needed in step (c), which uses a diagram

as in (8.21). Here C′-residues are replaced by C̃-residues in the top row. And
λx becomes λp(x) in the second row, since x is now in Ũ . The left-hand square
is commutative because p(nyn−1) = p(iww0(J)(np(y)n−1)) = np(y)n−1 for
y ∈ ŨJ . 	


As before, the proposition has the following consequence:

Corollary 8.93. κ̃ is an isomorphism of chamber systems over S. 	


This quickly yields what we have been aiming for:

Proof of Theorem 8.85. It suffices to show that p : Ũ � U− is injective. Given
x ∈ ker p, we have κ̃(x) = p(x)B+ = B+ = κ̃(1). So the injectivity of κ̃ implies
x = 1. 	


Exercise 8.94. The proof of Theorem 8.84 may have seemed unnecessarily
roundabout. Why couldn’t we have just manipulated the direct limit lim−→Uw

(using the known presentations of the groups Uw) to arrive at the presentation
given in Theorem 8.84?

8.11 Groups of Kac–Moody Type

Kac–Moody groups can be viewed as infinite-dimensional generalizations of
semisimple linear algebraic groups. The theory of twin buildings was developed
to provide a geometric framework for studying these groups, in the same way
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that spherical buildings provide a geometric framework for studying ordinary
(finite-dimensional) semisimple groups. We give here a very brief introduction
to Kac–Moody theory, referring to [73] for a detailed survey and many refer-
ences. We assume that the reader is familiar with the theory of root systems
and Lie algebras. We will freely use the notation of Appendix B, which the
reader may need to review before proceeding.

8.11.1 Cartan Matrices

Let Φ be a crystallographic root system in a Euclidean vector space V .
Choose a fundamental chamber for the Weyl group W = WΦ, and let
Π = {α1, . . . , αn} be the corresponding system of simple roots. The coroots
α∨

i of the αi correspond to elements hi ∈ V ∗, also called coroots, under the
canonical isomorphism between V and V ∗ (i = 1, . . . , n). Thus the fundamen-
tal reflections si that generate W are given by

si(x) = x− 〈hi, x〉αi

for x ∈ V , where the angle brackets denote the canonical pairing between V
and V ∗. In particular,

si(αj) = αj − aijαi ,

where aij = 〈hi, αj〉. The matrix A = (aij) is the Cartan matrix of Φ relative
to Π; it consists of nonpositive integers except on the diagonal, where we have
aii = 2. It is related to the Coxeter matrix M = (mij) by

aij = −2
‖αj‖
‖αi‖

cos
π

mij
,

which implies
aijaji = 4 cos2

π

mij
; (8.24)

see Exercise B.3. The left side of (8.24) is an integer, and the right side is in
the interval [0, 4) if i �= j. Thus the only possible values for aijaji, if i �= j,
are 0, 1, 2, 3, and we have

mij = 2 3 4 6
if aijaji = 0 1 2 3 . (8.25)

More briefly, aijaji is the number of bonds between i and j if one uses the
convention for Coxeter diagrams described in Remark 1.98(c).

Remarks 8.95. (a) One can also prove (8.24), and hence (8.25), by direct
computation. To do this, write out the 2 × 2 matrices that represent the
restrictions of si and sj to the plane spanned by ei and ej . Multiply them
together, compute the eigenvalues of the product, and deduce (8.24).
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(b) The discussion above shows that the Coxeter matrix is determined by the
Cartan matrix. Conversely, the Cartan matrix is determined by the Coxeter
matrix in the simply laced case, i.e., the case in which the Coxeter diagram
contains no double or triple bonds. This is equivalent to saying that mij = 2
or 3 for i �= j, or that aij = 0 or −1 for i �= j.

8.11.2 Finite-Dimensional Lie Algebras

Root systems arose historically from the study of finite-dimensional complex
semisimple Lie algebras. Every such algebra g gives rise to a crystallographic
root system Φ, and one can recover g from the Cartan matrix of Φ. We review
this briefly here.

Choose a maximal subspace h of g consisting of commuting elements h
such that ad h is diagonalizable. Here “ad” refers to the adjoint representa-
tion of g. Then h is an abelian subalgebra of g, called a Cartan subalgebra.
Elementary linear algebra now implies that the elements h ∈ h are simulta-
neously diagonalizable in the adjoint representation, so we can decompose g

into eigenspaces for h. On a given eigenspace, the adjoint action of any h ∈ H
is given by

[h, x] = α(h)x .

Here the eigenvalue α(h) is a scalar that depends linearly on h, so α is an
element of the dual space h∗. The nonzero linear functionals α that arise in
this way are called roots, because the numbers α(h) are roots of the charac-
teristic polynomial of adh. The 0-eigenspace is h itself. Thus the eigenspace
decomposition takes the form

g = h⊕
⊕

α∈Φ

gα ,

where Φ is the set of roots and gα is the α-eigenspace. One shows that each
“root subspace” gα is 1-dimensional. We have essentially seen all of this al-
ready in Section 7.9.3, in slightly different language.

It is a fact that the set Φ of roots is a crystallographic root system in h∗.
More precisely, since we have defined root systems only in real vector spaces,
we should say that Φ is a root system in the real vector space V ⊂ h∗ spanned
by Φ. [Note: It is possible to use the Lie algebra structure to put a canonical
inner product on V .] The coroots hi discussed in Section 8.11.1 then live in V ∗,
which can be viewed as a real subspace of the complex vector space h = h∗∗.

Another basic fact is that one can reconstruct the Lie algebra g from the
root system Φ. There is more than one way to see this, but the one that is
relevant to Kac–Moody theory is the following. Choose a system of simple
roots αi ∈ h∗, i = 1, . . . , n, and let hi ∈ h be the coroot of αi. This yields
a Cartan matrix A as in Section 8.11.1, with aij = 〈hi, αj〉, the eigenvalue
of hi acting on the αj-root space. One can now recover the algebra g from the
matrix A by writing down a presentation by generators and relations due to
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Chevalley, Harish-Chandra, and Serre. Namely, g is generated by the vector
space h and 2n additional elements ei, fi [eigenvectors for the roots ±αi],
subject to the relations

[h, h] = 0 ,

[h, ei] = 〈h, αi〉ei for h ∈ h ,

[h, fi] = −〈h, αi〉fi for h ∈ h ,

[ei, fi] = hi ,

[ei, fj ] = 0 if i �= j ,

(ad ei)−aij+1ej = 0 if i �= j ,

(ad fi)−aij+1fj = 0 if i �= j .

See Serre [213, p. VI-13] for details.

8.11.3 Kac–Moody Algebras

Suppose now that we are given a pair of dual finite-dimensional complex
vector spaces h, h∗ with elements hi ∈ h and αi ∈ h∗. Define A = (aij) by
aij = 〈hi, αj〉, and assume that A is a generalized Cartan matrix ; this means,
by definition, that aij ∈ Z, aii = 2, aij ≤ 0 for i �= j, and aij = 0 ⇐⇒ aji =
0. Then the presentation above still makes sense, but it defines a Lie algebra
that is infinite-dimensional in general.

The Kac–Moody algebras that one obtains by this construction have turned
out to be quite important and to have unexpected connections with many
areas of mathematics and physics. See [141, 164, 165] for more information
and a more general formulation. [Note: Our definition is not precisely the
same as the one that appears in some of the literature. In the symmetrizable
case, for instance, our Kac–Moody algebra is the commutator subalgebra of
the one introduced by Kac.]

Example 8.96. Let g = sln(C) (matrices of trace 0). The standard Cartan
subalgebra h consists of the diagonal matrices in g, and the corresponding
simple roots α1, . . . , αn−1 ∈ h∗ are given by αi = xi − xi+1, where xi gives
the ith diagonal entry of a matrix in h (cf. Example 7.144). Let α0 = −α̃,
where α̃ =

∑n−1
i=1 αi. [This is the “highest root,” although we do not need to

know that here. It will arise naturally in Section 10.1.8 when we work out
the structure of the fundamental chamber for a Euclidean reflection group.]
Let h0, h1, . . . , hn−1 be the coroots of the αi, and let ãij = 〈hi, αj〉 for i, j =
0, . . . , n− 1. Then Ã = (ãij) is a generalized Cartan matrix, and the resulting
Kac–Moody algebra turns out to be the “loop algebra”

g̃ = g⊗ C[t, t−1] = sln
(
C[t, t−1]

)
.

If we think of C[t, t−1] as the ring of trigonometric polynomials, we can view
g̃ as the algebra of polynomial maps from the circle to g.
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Notice that the αi are dependent:
∑n−1

i=0 αi = 0. Similarly,
∑n−1

i=0 hi = 0.
There is a slight variation on this example. Replace h by an n-dimensional
vector space ĥ with basis denoted by h0, h1, . . . , hn−1, and define αi in the
dual so that we get the same matrix ãij = 〈hi, αj〉. Thus we have a surjection
ĥ � h with a 1-dimensional kernel, generated by z :=

∑n−1
i=0 hi. This time the

Kac–Moody algebra is a central extension ĝ of g̃ (with kernel Cz), which may
be more familiar to those who have seen Kac–Moody algebras before.

8.11.4 The Weyl Group

Before proceeding further, let’s note that there is a Coxeter group associated
with a generalized Cartan matrix A in a natural way. Set mii = 1 and, for
i �= j, define mij in terms of A by

mij = 2 3 4 6 ∞
if aijaji = 0 1 2 3 ≥ 4 .

Now define the Weyl group of A to be the Coxeter group W with generators
s1, . . . , sn and relations (sisj)mij = 1. The definition of mij is motivated by
Section 8.11.1, where the case aijaji ≥ 4 does not occur. But this case is
no harder to explain: Suppose A comes from vectors and covectors hi, αi as
above, with the αi pairwise independent. [This is forced by the conditions on A
unless aijaji = 4.] Define linear reflections si on h∗ by the usual formula:

si(x) = x− 〈hi, x〉αi

for x ∈ h∗. Then a straightforward computation (as in Remark 8.95(a)) shows
that sisj has infinite order if aijaji ≥ 4.

Note that the Weyl group is infinite in general. For the matrix Ã in Ex-
ample 8.96, W is the Weyl group that arose in Section 6.9 when we studied
the BN-pair associated to SLn over a field with a discrete valuation.

As in Remark 8.95(b), we call attention to the simply laced case, in which
aij ∈ {0,−1} for i �= j or, equivalently, mij ∈ {2, 3} for i �= j. The Coxeter di-
agram is then just a finite graph with no further decoration, and it determines
the generalized Cartan matrix and hence the Kac–Moody algebra.

8.11.5 Kac–Moody Groups

If there are infinite-dimensional Lie algebras g, there should be corresponding
“infinite-dimensional Lie groups” G. Tits [260] gave a general construction of
such groups.

Start with a pair Λ,Λ∨ of free Z-modules of finite rank that are dual
to one another, together with families αi ∈ Λ and hi ∈ Λ∨, i = 1, . . . , n.
Let aij = 〈hi, αj〉, and assume that the matrix A = (aij) is a generalized
Cartan matrix. This is a refinement of what we had in Section 8.11.3; we
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can set h∗ = C ⊗ Λ and h = C ⊗ Λ∨ to get back to the previous situation.
This refinement allows one to distinguish between different groups with the
same Lie algebra, just as in the finite-dimensional theory. [Think of Λ as the
character group X of a maximal torus; see Section 7.9.3.]

Tits associates to these data not just a group, but a group functor G on
the category of commutative rings. The restriction of this functor to fields
yields Kac–Moody groups G(k) (where k is a field), generalizing the Chevalley
groups discussed in Sections 6.4 and 7.9.2. For example, there are various
group functors corresponding to the Kac–Moody algebra g̃ of Example 8.96,
depending on the choice of the lattices Λ,Λ∨. One natural choice is to let Λ∨

be the lattice spanned by the coroots, in which case Λ is necessarily its dual
(called the weight lattice). Then G is given by G(k) = SLn

(
k[t, t−1]

)
. For

instance, G(C) is the “loop group” SLn

(
C[t, t−1]

)
of polynomial maps from

the circle to SLn(C).
The details of Tits’s construction in [260] are quite technical. (One can

also find an expository account in [257].) All we will say here is that G(k)
is generated by a torus T (k) = Hom(Λ, k∗) and a family of “root groups”
Uα(k), α ∈ Φ, where Φ is the set of roots of Σ(W,S). Here W is the Weyl
group associated with A as in Section 8.11.4. Each root group is isomorphic to
the additive group k. Tits proves that the torus and root groups form an RGD
system in G(k). Such RGD systems were, historically, the motivating examples
for the theory of RGD systems and twin buildings. In our canonical example,
with G(k) = SLn

(
k[t, t−1]

)
, we recover the RGD system of Example 8.47(b).

The groups given by Tits’s construction are now usually called “split”
Kac–Moody groups (of minimal type). There are also nonsplit versions of
Kac–Moody groups (see Rémy [195]), which still have RGD systems and hence
give rise to (Moufang) twin buildings.

Remark 8.97. Note that there is a great deal of freedom in choosing the
generalized Cartan matrix A. In particular, one has a huge variety of twin
BN-pairs, and hence thick twin buildings. The Weyl group can be any Coxeter
group such that the entries mij of the Coxeter matrix are in {2, 3, 4, 6,∞} for
i �= j. The theory of Euclidean and hyperbolic reflection groups to be treated
in Chapter 10 provides many concrete examples of such Coxeter groups, but
the reader can also make up examples at random. See also Rémy [195, Sec-
tion 13.3] for a detailed discussion of some specific hyperbolic examples.

8.11.6 The Simply Laced Case

The Kac–Moody groups G(k) are easy to describe in the simply laced case
mentioned at the end of Section 8.11.4 (for a suitable choice of Λ,Λ∨). For
each index i = 1, . . . , n, G(k) has a subgroup Gi(k) isomorphic to SL2(k). For
each pair of indices i < j, G(k) has a subgroup Gij(k), which is isomorphic
to SL3(k) if there is an edge joining i and j in the Coxeter diagram and
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to SL2(k)× SL2(k) otherwise. The group Gij(k) contains Gi(k) and Gj(k) as
subgroups. These are the subgroups

⎛

⎝
∗ ∗
∗ ∗

1

⎞

⎠ and

⎛

⎝
1
∗ ∗
∗ ∗

⎞

⎠

of Gij(k) = SL3(k) if there is an edge joining i and j; otherwise, they are the
two obvious copies of SL2(k) in Gij(k) = SL2(k)× SL2(k).

The result, then, is that G(k) is the direct limit (or amalgam) of the system
consisting of the groups Gi(k) and Gij(k) and the inclusions

Gi(k)

Gij(k)

Gj(k)

(8.26)

This means, concretely, that one can get a presentation for G(k) by taking
generators and relations for the groups Gi(k) and Gij(k) and then adding
further relations to express the inclusions in (8.26).

We explain briefly how this description of G(k) relates to Tits’s construc-
tion mentioned in Section 8.11.5. The latter, whether the diagram is sim-
ply laced or not, involves a Steinberg-type presentation of G(k). If the twin
building C associated to G(k) is 2-spherical and satisfies condition (co) of
Section 5.11 (which is always the case by Remark 5.212 if the diagram is sim-
ply laced), then the action of G(k) on C can be used to reduce considerably
the set of Steinberg relations needed in the presentation; see Abramenko and
Mühlherr [12]. [We will explain this further in Section 14.1.2.] For instance,
one always gets a finite presentation of G(k) if the field k is finite. And in
the simply laced case, we obtain (for arbitrary k) the amalgam presentation
described above. See Caprace [69] for more details about presentations of
2-spherical Kac–Moody groups.

Example 8.98. The reader can get some feeling for the amalgam above by
looking at the familiar example of the An−1 diagram (n ≥ 3), where the Kac–
Moody functor G (restricted to fields) reduces to SLn. The result, then, is that
SLn(k) is the amalgam of the copies of SL2(k), SL3(k), and SL2(k)× SL2(k)
embedded block diagonally in SLn(k).

Returning to the general (simply laced) case, suppose we take k to be a
finite field Fq. Then, as we noted above, we always obtain a finitely presented
group G(Fq). A striking result of Caprace and Rémy [71,72] is that this finitely
presented group is quite often simple, or at least simple modulo its center, if
(W,S) is irreducible and not Euclidean. [Note that the group is automatically
perfect, as a consequence of the amalgam presentation described above.] In
the Euclidean case, on the other hand, one can get linear groups such as
SLn

(
Fq[t, t−1]

)
, which are residually finite and hence far from simple.
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Remark 8.99. Although we have emphasized Kac–Moody theory as a source
of RGD systems, there are also other examples. See, for instance, Ronan–
Rémy [197] and further references cited there.
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The Classification of Spherical Buildings

9.1 Introduction

One of Tits’s greatest achievements is the classification of thick, irreducible,
spherical buildings of rank at least 3, proved in [247]. Roughly speaking, the
result is that such buildings correspond to simple algebraic groups (of relative
rank at least 3) defined over an arbitrary field. We have seen several examples
of this correspondence in Chapters 6 and 7. And we have also seen a proof
(modulo the extension theorem) of the remarkable fact that all of the build-
ings in question come from groups with BN-pairs; see Proposition 7.11 and
Theorem 7.59. It is equally remarkable that one can specify precisely the class
of groups that can occur.

Our rough statement above captures the spirit of the classification theorem
but is inaccurate in two respects:

(1) There are classical groups that are not algebraic groups but still give rise
to buildings. For example, if D is a noncommutative division ring, then
GLn(D) is a classical group (with a closely associated simple group), but
it is not an algebraic group unless D is a finite-dimensional algebra over
a field. The associated building is nothing exotic; it is simply the flag
complex of proper nontrivial subspaces of an n-dimensional vector space
over D (see Section 4.3, including Exercise 4.32). For a second example,
consider a quadratic form of finite Witt index on an infinite-dimensional
vector space (see Remark 6.103); the orthogonal group is not an algebraic
group, but it still has an associated building gotten from totally isotropic
subspaces.

(2) There is a family of buildings of type F4 associated to groups that again
are something like algebraic groups but are not algebraic groups. There
is a group of this type for every pair of fields k,K of characteristic 2 with
K2 < k < K. These groups, and the associated buildings, are said to
be mixed. [Note: The construction actually produces a building with a
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specific type function, having values in {1, 2, 3, 4}. Replacing (k,K) by
(K, k1/2) yields the same building, with the types reversed.]

So a more accurate statement of the classification system says that there are
three classes of thick, irreducible, spherical buildings of rank ≥ 3:

(a) Classical buildings (associated to classical groups).
(b) Algebraic buildings (associated to algebraic groups).
(c) Mixed buildings (associated to mixed groups).

Note that “most” algebraic groups are classical, so there is a big overlap
between classes (a) and (b). If we wanted to avoid this, we could confine
ourselves to exceptional (i.e., nonclassical) algebraic groups in (b). Class (c)
can be thought of as “truly exceptional”; it consists of a single family of
buildings of type F4, involving imperfect fields of characteristic 2.

Remarks 9.1. (a) The terminology here is potentially confusing. A building
can be exceptional, in the sense that it corresponds to a nonclassical algebraic
group, but its type (determined by its Coxeter diagram) need not be one of
the exceptional types E6, E7, E8, F4. [We have omitted types H3 and H4 from
this list because they cannot occur; see Corollary 7.61.] For example, we will
see below that there is a family of (exceptional) algebraic buildings of type C3,
corresponding to a family of nonclassical algebraic groups. This confusion can
occur only for groups defined over fields that are not algebraically closed.

(b) The remaining sections of this chapter will give a more detailed state-
ment of the classification theorem, from which it will follow that all thick,
irreducible, spherical buildings of rank ≥ 9 are classical.

The restriction to rank ≥ 3 in the classification theorem cannot be avoided.
Indeed, the “free construction” given by Tits [251] suggests that there is no
hope of classifying buildings of rank 2. And even if we consider only finite
buildings of type A2, for example, the problem is equivalent to classifying
finite projective planes; this is a well-known problem that seems to be out of
reach.

If, however, we impose the Moufang property, then the classification ex-
tends to rank 2. This result is due to Tits and Weiss and can be found in [262],
which also includes a simplified proof of the original classification theorem.
The simplification is possible because buildings of rank ≥ 3 can be treated
much more systematically once the rank-2 Moufang buildings have been clas-
sified. We will say a few more words about it in Section 9.11.

The statement of the classification theorem for thick, irreducible, Moufang,
spherical buildings of rank ≥ 2 is, in outline, exactly the same as in the
case of rank ≥ 3 above: Every such building is classical, algebraic, or mixed.
And as above, one can replace “algebraic” by “exceptional” in order to avoid
overlap between the first two classes. There are five families of mixed buildings,
including those of type F4 already mentioned plus four families of rank-2
buildings. Three of these four involve fields k,K of characteristic 2 as in the
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F4 case, while the fourth involves a pair of fields of characteristic 3, with
K3 ≤ k < K.

At the center of the proof of the classification theorem is Tits’s exten-
sion theorem, which we stated without proof in Section 5.10. As we showed
in Section 7.6, the extension theorem implies (after a little work) that all
thick, irreducible, spherical buildings of rank ≥ 3 have the Moufang property;
this explains why Tits did not need to add the latter as a hypothesis in his
classification theorem.

Our purpose in this chapter is to survey, in slightly more detail than above,
the thick, irreducible, spherical buildings of rank ≥ 3. We will omit some tech-
nicalities, but we hope that the reader will get the flavor of the classification.
We will also give a few hints about rank-2 Moufang buildings, but we will be
even more sketchy there. For more precise (but more technical) statements,
see [200,207,247,262,281].

We now proceed case by case according to type, as determined by the
Coxeter diagram; see Definition 4.37.

9.2 Type An

By a building of type An we will mean a (simplicial) building that comes
equipped with a coloring having values in {1, . . . , n}, in such a way that the
resulting Coxeter diagram is the standard An-diagram with the vertices num-
bered 1, 2, . . . , n from left to right. Any such building is isomorphic to the flag
complex of proper subspaces of an n-dimensional projective space X. Vertices
of type 1 correspond to the points of X, vertices of type 2 correspond to the
lines of X, and so on. The building is thick if and only if every line in X has
at least 3 points. For n ≥ 3, any such X comes from an (n + 1)-dimensional
vector space over a division ring; thus the building comes from a vector space
as in Section 4.3 (and Exercise 4.32). The building can also be described in
terms of a BN-pair in a general linear group, as in Section 6.5. In particular,
thick buildings of type An for n ≥ 3 are all classical, and there is one such
(up to type-preserving isomorphism) for every isomorphism class of division
rings.

If we want to classify our buildings up to arbitrary simplicial isomorphism
(not necessarily type-preserving), then the result is that thick buildings of
type An (n ≥ 3) correspond to equivalence classes of division rings, where
two division rings are equivalent if they are isomorphic or if one is isomorphic
to the opposite of the other (see Exercise 4.32 and its solution).

Remarks 9.2. (a) The equivalence between buildings of type An and projec-
tive spaces is fairly straightforward. So the classification of such buildings is
equivalent to the classification of projective spaces. In particular, the fact that
a building of type An (for n ≥ 3) uniquely determines a division ring follows
from the fundamental theorem of projective geometry.
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(b) In view of (a), we can think of Tits’s classification of spherical buildings
as a generalization of the fundamental theorem of projective geometry.

Finally, if we allow n = 2 but impose the Moufang condition, then the clas-
sification is similar except that a new family of buildings arises, coming from
Cayley division algebras. Many readers will have heard of the Cayley num-
bers, also called the octonions, which form an 8-dimensional “nonassociative
division algebra” over the field R of real numbers. Analogues, called Cayley
division algebras, exist over fields k other than R, and it is possible to con-
struct a Moufang projective plane, and hence a Moufang building of type A2,
for each Cayley division algebra. In terms of the “classical/algebraic/mixed”
trichotomy in the introduction to this chapter, these buildings are algebraic
but not classical, i.e., they are exceptional.

Remark 9.3. The classification simplifies if we consider only finite buildings,
since there are no finite Cayley division algebras or finite noncommutative di-
vision rings. The result, then, is simply that the finite, thick Moufang buildings
of type An (n ≥ 2) are the buildings associated with the standard projective
spaces over finite fields. Equivalently, they are the buildings associated with
the linear groups GLn+1(k) (or SLn+1(k) or PSLn+1(k)), where k is a finite
field Fq. In particular, they are all classical.

9.3 Type Cn

Just as buildings of type An correspond to projective spaces, buildings of
type Cn correspond to polar spaces. These were first introduced by Veld-
kamp [268] in order to give an axiomatic description of the geometry of
isotropic subspaces relative to a polarity in a projective space. The most
familiar examples are given by totally isotropic subspaces in a vector space
with a suitable form: symmetric bilinear, alternating bilinear, Hermitian, or
quadratic. Tits [247] simplified the axioms and also introduced a new class of
forms, called “pseudoquadratic,” which are needed in characteristic 2. [The
division ring of scalars for the underlying vector space is allowed to be noncom-
mutative in this case.] A fundamental theorem of Buekenhout and Shult [63]
provides an even simpler set of axioms.

Although we will not give the axioms for polar geometry here, the reader
can find many examples in Chapter 6 in our discussions of symplectic, or-
thogonal, and unitary groups. [But recall from Section 6.7 that the resulting
building of type Cn is not necessarily thick; there is one family of quadratic
forms for which one needs to form an “oriflamme complex” in order to get
a thick building, which is then of type Dn rather than Cn.] In all cases the
rank n of the building is the Witt index of the corresponding form; recall that
this is the common dimension of the maximal totally isotropic subspaces.
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The precise conditions on the forms that arise in the theory of polar spaces
are technical and will be omitted, but a convenient summary is given in Schar-
lau [207, Section 4.2]. See also Hahn–O’Meara [127] and Bruhat–Tits [59, Sec-
tion 10], and see Aschbacher [24, Chapter 7] for a simplified treatment, suffi-
cient to cover the case that the division ring is a finite field k = Fq.

The theory of forms on vector spaces gives a complete classification of
thick buildings of type Cn if n ≥ 4. For n = 3, there is another family of thick
buildings of type C3 that we will not attempt to describe, one for each Cayley
division algebra. They correspond to polar spaces that are not embeddable
in projective spaces, where “embeddable” is understood in the sense of Tits
[247, Chapter 8]. These buildings are algebraic (and exceptional).

Finally, if n = 2 and we impose the Moufang condition, then there are six
families of thick buildings of type C2, summarized in [262, Chapter 16, Fig-
ure 3]. They all admit algebraic descriptions, which are more complicated than
in the higher-rank cases. Two of the six families consist of mixed buildings,
and the other four are algebraic or classical.

Remark 9.4. As in the An case, the classification simplifies drastically if the
buildings are finite. First, all finite, thick Moufang buildings of type Cn for
n ≥ 2 come from the geometry of totally isotropic subspaces associated to
forms of Witt index n on vector spaces over finite fields k. In particular, the
buildings are all classical. Second, the forms that yield thick Cn-buildings, as
well as the corresponding groups, can easily be listed:

• There is an alternating form on k2n as in Section 6.6, corresponding to the
symplectic group Sp2n(k).

• If char k �= 2, there is a quadratic form on k2n+1, described in Section 6.7.1,
corresponding to the special orthogonal group SO2n+1(k).

• There is a quadratic form on k2n+2 of Witt index n, corresponding to a
special orthogonal group SO−

2n+2(k). [This exists regardless of the charac-
teristic of k; we described it in Section 6.7.2 only when char k �= 2.]

• Given a quadratic extension k < K of finite fields, there are Hermitian
forms of Witt index n on K2n and K2n+1 as in Section 6.8, corresponding
to the special unitary groups SU2n(K) and SU2n+1(K).

9.4 Type Dn

The thick buildings of type Dn (n ≥ 4) are all classical. They are precisely
the ones studied in Section 6.7.1 (with appropriate modifications for the
characteristic-2 case), corresponding to the group SO2n(k) for an arbitrary
field k. Recall that this group is defined via the standard quadratic form; if k
is finite, it is usually denoted by SO+

2n(k) as we explained in Section 6.7.2.
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9.5 Type En

The thick buildings of type En (n = 6, 7, 8) are precisely the buildings associ-
ated to the Chevalley groups of those types over an arbitrary field k. (Recall
that Chevalley groups are the groups constructed by Chevalley [81] that we
mentioned in Section 6.4.) In particular, these buildings are all algebraic (and
exceptional).

9.6 Digression: Twisted Chevalley Groups

In the finite case, all of the groups that arise in connection with Moufang
buildings are either Chevalley groups or twisted Chevalley groups. We digress
to explain what these are, starting with a familiar example. Consider the
classical special unitary group SUn(C), which can be described as the sub-
group of SLn(C) fixed by the automorphism g �→ ḡ−t, where the bar denotes
complex conjugation and the superscript −t denotes transpose inverse. The
existence of the transpose-inverse automorphism can be traced to the fact
that the Coxeter diagram of type An−1 has a symmetry of order 2. Thus we
can view SUn(C) as arising from an automorphism of SLn(C) obtained by
combining a field automorphism and a diagram automorphism.

Similar constructions exist for some of the other types of Chevalley groups
whose Coxeter diagrams have symmetry, and, like the Chevalley groups them-
selves, the twisted groups have BN-pairs and hence buildings. Here is the list
of diagrams with symmetry and the corresponding twisted groups:

• Type B2 (or C2): The diagram has an automorphism of order 2. Let K
be a field of characteristic 2 with an automorphism σ such that σ2 is
the Frobenius automorphism x �→ x2. [If K is finite, this means that
K = Fq with q an odd power of 2.] Then one can combine σ with the
diagram automorphism to construct a twisted Chevalley group, said to
be of type 2B2. The left superscript 2 indicates the order of the diagram
automorphism. The associated building in this case has rank 1, so it will
play no role in what follows.

• Type Dn: The diagram again has an automorphism of order 2, but the
resulting twisted groups are orthogonal groups, so we get nothing new.

• Type D4: The diagram has an automorphism of order 3. If K is any field
with an automorphism of order 3, then we get a twisted Chevalley group,
said to be of type 3D4. It gives rise to an (exceptional) algebraic building
of type G2.

• Type E6: The diagram has an automorphism of order 2. If K is any field
with an automorphism of order 2, then we get a twisted Chevalley group,
said to be of type 2E6. It gives rise to an (exceptional) algebraic building
of type F4.
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• Type F4: The diagram has an automorphism of order 2. Let K be a field
of characteristic 2 with an automorphism σ such that σ2 is the Frobe-
nius automorphism. Then we get a twisted Chevalley group, said to be of
type 2F4. It gives rise to a building of type I2(8), which is “mixed” in the
terminology of [262].

• Type G2: The diagram has an automorphism of order 2. Let K be a field
of characteristic 3 with an automorphism σ such that σ2 is the Frobenius
automorphism x �→ x3. [If K is finite, this means that K = Fq with q
an odd power of 3.] Then we get a twisted Chevalley group, said to be of
type 2G2. The associated building has rank 1, so it will play no role in
what follows.

The notion of a twisted Chevalley group is a special case of a more gen-
eral construction that is needed to account for all absolutely simple algebraic
groups and hence most Moufang spherical buildings. In the general (possibly
infinite) case, one can have “twists” that act trivially on the Coxeter diagram;
see Tits [245].

Chevalley groups and twisted Chevalley groups are often called groups
of Lie type. We will have more to say about them in Section 9.10. See [75;
110, Chapters 2–4] for detailed treatments, with emphasis on the finite case,
and see [107, Section 2.1] for an outline.

We now return to our survey of spherical buildings.

9.7 Type F4

One description of the buildings of type F4 is geometric: They are flag com-
plexes of “metasymplectic spaces,” which are incidence geometries with points,
lines, planes, and “symplecta.” We will say no more about these.

There is also an algebraic description of the buildings, which classifies them
into five families. Let k be a field, and let K be a k-algebra that is either a
division algebra (possibly commutative) or a Cayley division algebra. Assume
that one of the following five conditions is satisfied:

(a) K = k.
(b) K is a separable quadratic extension of k.
(c) K is a quaternion division algebra.
(d) K is a Cayley division algebra.
(e) char k = 2, and K is an extension of k such that K2 < k < K.

There is then a thick building of type F4 associated to the pair (k,K). The
buildings in cases (a)–(d) are algebraic (exceptional). Case (a) corresponds
to the Chevalley group of type F4 over k, and case (b) corresponds to the
twisted Chevalley group of type 2E6. The buildings that arise in case (e) are
the mixed buildings mentioned in the introduction to this chapter. Cases (a)
and (b) are the only ones that can yield finite buildings.
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In summary, thick buildings of type F4 are classified by pairs (k,K) as
above, with one proviso: In case (e) the pairs (k,K) and (K, k1/2) give iso-
morphic buildings, as we already noted in the introduction to this chapter.

9.8 Type G2

Thick Moufang buildings of type G2 are classified by algebraic objects called
“hexagonal systems.” See Tits–Weiss [262, Chapter 15] for the definition.
There are six families of these, summarized in [262, Chapter 15, Figure 2].
These include the buildings associated to the Chevalley group of type G2

(over an arbitrary field) and the twisted Chevalley group of type 3D4. These
are the only two cases that can arise if the building is finite. Of the remaining
four families, three are (exceptional) algebraic and the fourth is mixed; it is
the mixed family mentioned in Section 9.1 that involves imperfect fields of
characteristic 3.

9.9 Type I2(8)

Thick Moufang buildings of type I2(8) are classified by “octagonal sets” [256;
262, Chapter 10]. Here an octagonal set is a field K of characteristic 2 together
with an endomorphism σ : K → K such that σ2 is the Frobenius map x �→ x2.
The corresponding group is the twisted Chevalley group of type 2F4 if σ is an
automorphism (i.e., if K is a perfect field). The building is of mixed type in
the terminology of [262].

The finite fields K that can arise here are the fields Fq with q an odd
power of 2. The group 2F4(Fq) has order

q12(q6 + 1)(q4 − 1)(q3 + 1)(q − 1) ,

and it is simple unless q = 2. In this case its commutator subgroup is of
index 2 and is simple; it is the Tits group mentioned in Section 6.4.

9.10 Finite Simple Groups and Finite Buildings

In about 1980, Daniel Gorenstein announced that the classification of finite
simple groups was complete. This appeared to mark the end of an unprece-
dented long-term cooperative effort involving many mathematicians and over
10,000 pages of journal articles. Many parts of the proof had not yet been
published at the time of the announcement, and some parts had not even
been written up completely. It is not surprising, therefore, that gaps were
discovered over the next few years.

Most of the gaps were relatively easy to fix, but one of them, involving
the “quasithin” case, turned out to be quite serious. By the mid-1990s the
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classification had reverted to being a conjecture rather than a theorem. But
the quasithin case has now been dealt with by Aschbacher and Smith [25,26]
in about 1200 pages, and at this writing most experts seem to believe the
classification theorem as originally stated in 1980.

Shortly after the first announcement, Gorenstein, Lyons, and Solomon
began a “revision” project, hoping to write a proof that is clear, careful,
and, as much as possible, self-contained. It is currently expected that this
proof will occupy 11 or 12 volumes, of which 6 have been completed as of
this writing [108–113]. There is also a second revision project underway, by
Meierfrankenfeld, Stellmacher, Stroth, and others. This is not as far along,
but there is an overview in [162].

The statement of the classification theorem is remarkably clean. It says
that every nonabelian finite simple group is isomorphic to one of the following:

• An alternating group.
• A finite group of Lie type.
• One of 26 sporadic groups.

Recall from Section 9.6 that the finite groups of Lie type are the Chevalley
groups and twisted Chevalley groups defined over finite fields. With a few
exceptions that are easy to list, finite groups of Lie type are either simple or
else have a closely related subquotient that is simple. For example, SLn(Fq)
is a group of Lie type, as is its quotient PSLn(Fq) (n ≥ 2). As we know
from Section 6.2.7, the latter is simple unless n = 2 and q = 2 or 3. Another
example was mentioned at the end of Section 9.9.

All finite groups of Lie type have BN-pairs and hence associated buildings.
For a few of the families the building is of rank 1 and hence provides a per-
mutation representation but no geometry. In the “generic” case of rank ≥ 2,
however, we get a Moufang building ∆, and the corresponding simple group
of Lie type is almost always the subgroup G1 of Aut ∆ generated by the root
groups, which we discussed in Section 7.8.7. [There are three exceptions, all in
rank 2, in which the simple group is not G1 but rather a subgroup of index 2.
These are listed in [262, Proposition 37.3]; see also the paragraph following
the proof of that proposition.] Thus an informal statement of the classification
theorem is that the generic finite simple group is essentially the automorphism
group of a finite, thick, irreducible Moufang building of rank ≥ 2. The list of
such buildings and the corresponding groups has been given in the previous
sections.

Remarks 9.5. (a) This correspondence between buildings and groups (for
the “generic” case of rank ≥ 2) is almost 1–1. The only exception is the “coin-
cidence” that the projective symplectic group PSp4(F3) is isomorphic to the
projective special unitary group PSU4(F4), but the corresponding buildings
of type C2 are different. (This coincidence is called a sporadic isomorphism
by finite-group theorists.)
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(b) It is easy to describe the building ∆ associated to a finite simple group G
of Lie type, once one knows the characteristic p of the finite field over which G
is defined. In fact, it turns out that the minimal parabolics (i.e., the conjugates
of the B of the BN-pair) are the normalizers of the Sylow p-subgroups of G.
So ∆ can be identified with the set of subgroups that contain the normalizer
of a Sylow p-subgroup, ordered by reverse inclusion.

(c) The classification of finite, rank-2, thick Moufang buildings, for which we
have cited Tits–Weiss [262], can also be deduced from the classification by
Fong and Seitz [103] of finite, rank-2, split BN-pairs. (We omit the definition
of “split.”)

*9.11 Remarks on the Simplified Proof

We mentioned in Section 9.1 that it was possible to simplify the proof of the
classification theorem once the rank-2 Moufang buildings (also called Mou-
fang polygons) were classified. In this section we briefly elaborate on that
statement.

Tits’s extension theorem (5.209) says that a building ∆ (irreducible, spher-
ical, of rank ≥ 3) is uniquely determined by E2(C), the union of the rank-2
residues containing a fixed chamber C. Here E2(C), which is sometimes called
a foundation for the building, should be viewed as a set with some structure
(e.g., an adjacency relation). Now we also know, again as a consequence of the
extension theorem, that ∆ is Moufang, so the rank-2 residues that are glued
together to form the foundation are Moufang polygons; see Theorem 7.59 and
Proposition 7.32. Since Moufang polygons have been classified [262], one can
now systematically work out which Moufang polygons fit together to form a
foundation and in how many different ways. See [262, Chapter 40] for details
and [281, Chapter 12] for an overview. Tits had to work much harder in his
original proof of the classification theorem, since he could not list a priori the
possible rank-2 residues that might occur in a foundation.

One final remark: Given the extension theorem and the classification of
Moufang polygons, one can break the classification problem into two steps.
First, one has to figure out all ways to glue Moufang polygons together to
form a structure that looks as if it could be the foundation for a spherical
building. Next, one has to prove that every candidate for a foundation is in fact
realized by a spherical building (which is then unique). For this second step,
the existence of enough spherical buildings, Tits originally relied on the theory
of algebraic groups. Later, Ronan and Tits [204] introduced blueprints. The
results of that paper, which apply to general buildings, lead in particular to
a uniform construction of all spherical Moufang buildings that is independent
of the theory of algebraic groups. A write-up of this construction (just in the
spherical case) can be found in [262, Sections 40.53–40.56].
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*9.12 The Classification of Twin Buildings

Since there is an extension theorem for (most) 2-spherical twin buildings (The-
orem 5.213), one might hope that the methods used in the spherical case would
lead to a classification theorem for thick 2-spherical twin buildings. A program
for doing this was proposed by Tits [261]. There were some highly nontrivial
technical details that he did not anticipate, but the program has in fact been
completed due to the efforts of Tits, Ronan, and Mühlherr. The complete
proof has not been published yet, but we refer to Mühlherr [176] for a survey
and for references to the literature. We confine ourselves here to a few very
brief comments.

First, the proof of the classification theorem is similar in broad outline
to the proof for the spherical case sketched in the previous section. Namely,
there is first a uniqueness assertion, which says that a 2-spherical twin building
is uniquely determined by a foundation, which is again a union of Moufang
polygons. This was completely settled, at least under the hypothesis (co) of
Section 5.11, in the papers [177,203,261].

Next, there is an existence question, in which one must determine which
foundations are realizable by twin buildings. This step involves new difficulties
that did not arise in the spherical case, in which (at least in Tits’s original
proof) algebraic groups essentially provided all the buildings. In the twin case,
by contrast, Kac–Moody theory is not (or at least not yet) rich enough to
directly yield the desired twin buildings. Moreover, the theory of blueprints
mentioned above has not been extended to twin buildings. Indeed, it is an
interesting open question whether this can be done.

What is true, however, is that (very roughly speaking) all thick, irreducible,
2-spherical twin buildings of rank at least 3 can be obtained by starting with
twin buildings that come from Kac–Moody groups and then doing certain geo-
metric constructions. One construction, for example, involves letting a group
act on a known twin building and then taking the fixed-point set. The details
of the existence proof for a special class of twin buildings can be found in [175].
The general case is treated in Mühlherr’s Habilitationsschrift [174].

We close by mentioning one interesting and surprising aspect of Mühlherr’s
work. Recall that we have a standing convention that the generating set S of
a Coxeter group W is always assumed to be finite. In particular, all of our
buildings are of finite rank. But in order to carry out the existence part of the
classification theorem, Mühlherr had to introduce certain twin buildings of
infinite rank with group actions. He then obtained the desired twin buildings
of finite rank by taking fixed points.
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Euclidean and Hyperbolic Reflection Groups

Our study of the building associated to SLn over a discretely valued field (Sec-
tion 6.9) led to examples of buildings in which the apartments are Euclidean
spaces. And readers of Chapter 8 saw that the theory of Kac–Moody groups
leads to examples of buildings in which the apartments are hyperbolic spaces
(Section 8.11). These examples motivate a systematic study of such buildings.
But first we need to understand the apartments themselves, which means we
need to start with the corresponding reflection groups. We will study these in
the present chapter and then return to buildings in Chapters 11 and 12.

We begin with the Euclidean case, where our first task is to redo some of
Chapter 1 in a more general setting.

10.1 Euclidean Reflection Groups

Let V be a real vector space of finite dimension n ≥ 1. All of the geometric
notions introduced in Chapter 1 treated the origin of V as a distinguished
point. Our hyperplanes, for instance, were required to go through the origin.
Our reflection groups therefore fixed the origin, and our cells were all cones
with the origin as cone point. By the end of that chapter it had become
clear that we were not doing Euclidean geometry at all, but rather spherical
geometry. In Euclidean geometry, there is nothing special about the origin. So
let’s introduce the appropriate language for talking about reflections whose
fixed hyperplane does not necessarily pass through the origin.

10.1.1 Affine Concepts

An affine subspace of V is a subset of the form x + V0 with x ∈ V and V0 a
linear subspace of V . In other words, it is a coset of a linear subspace. The
dimension of x + V0 is defined to be the dimension of V0. If the dimension
is n − 1 (i.e., if V0 is a linear hyperplane), then x + V0 is called an affine
hyperplane. Equivalently, an affine hyperplane is a subset defined by a linear
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equation of the form f = c, where f : V → R is a nonzero linear map and c is
a constant.

For any nonempty subset X ⊆ V , there is a smallest affine subspace con-
taining X, called the affine span of X. An affine frame for V is a subset X
such that V is the affine span of X but not of any proper subset of X. Such
a frame necessarily has exactly n + 1 elements; for we may assume that one
of the elements is the origin, in which case the remaining elements form a
basis for V . When n = 2, for instance, an affine frame is simply a set of 3
noncollinear points.

An affine map from V to a vector space V ′ is a map a of the form a(x) =
g(x) + v′, where g : V → V ′ is linear and v′ is a vector in V ′. In other words,
a is the composite τv′g, where τv′ is the translation x′ �→ x′ + v′. We will
mainly be interested in the case that V ′ = V and g is an automorphism, in
which case we will call a an affine automorphism of V . Such an a is uniquely
expressible as τvg with v ∈ V and g ∈ GL(V ), where GL(V ) is the group
of linear automorphisms of V . One deduces easily that the group Aff(V ) of
affine automorphisms of V is the semidirect product

Aff(V ) = V � GL(V ) ,

where V is identified with the (normal) subgroup consisting of translations.
The GL(V )-component g of an element a ∈ Aff(V ) will be called the linear
part of a.

Assume, now, that V is Euclidean, by which we mean that it comes
equipped with a positive definite inner product 〈−,−〉. We then have a dis-
tance function on V given by d(x, y) := ‖x − y‖, where ‖v‖ :=

√
〈v, v〉, and

we will be interested in affine maps that are isometries. With the notation
above, the affine map a is an isometry if and only if its linear part g is in the
orthogonal group O(V ) < GL(V ), consisting of automorphisms that preserve
the inner product. Thus the group of affine isometries of V is V � O(V ). It
is worth noting that the word “affine” is redundant here; see Exercise 10.3
below.

Let H be an affine hyperplane and let H0 be the linear hyperplane parallel
to H, i.e., satisfying H = x1 + H0 for some x1 ∈ V . Let s0 be the orthogonal
reflection sH0 , and let s1 := τx1s0τ−x1 ; in other words, s1 is the conjugate
of s0 by some translation taking H0 to H. Explicitly, we have

s1(x) = x1 + s0(x− x1) = s0(x) + (1− s0)(x1) (10.1)

for any x ∈ V . In particular, s1 is an affine isometry whose linear part is s0.
It is easy to check that s1 depends only on H, and not on the choice of the
representative x1; this follows, for instance, from (10.1) together with the
observation that x1 is unique mod H0 = ker(1 − s0). We can therefore write
s1 = sH and call s1 the reflection with respect to H.
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Exercises

10.1. Let x0, x1, . . . , xn be an affine frame. Show that a point x ∈ V is com-
pletely determined by the n + 1 numbers d(x, xi), i.e., if d(x, xi) = d(x′, xi)
for all i, then x = x′.

10.2. Let x0, . . . , xn be an affine frame and let y0, . . . , yn be points such that
d(yi, yj) = d(xi, xj) for all i, j. Show that there is an affine isometry a such
that a(xi) = yi for all i. In particular, y0, . . . , yn is an affine frame.

10.3. Deduce from Exercises 10.1 and 10.2 that every isometry V → V is
affine.

10.4. Show that the reflection sH can be characterized as the unique nontrivial
isometry of V that fixes H pointwise.

10.5. Let X and X ′ be isometric subsets of V . Show that every isometry
X → X ′ extends to an isometry of V .

10.1.2 Formulas for Affine Reflections

In this brief subsection we elaborate on formula (10.1), to pave the way for
a connection between Euclidean reflection groups and root systems that we
will give in Section 10.1.8. We will need to use some notation defined in
Appendix B. The reader may prefer to skip this subsection (and the appendix)
and refer back to them as necessary.

Let H be a linear hyperplane and let α be a nonzero vector in H⊥. Recall
from the appendix just cited that the reflection s0 with respect to H is given
by

s0(x) = x− 〈α∨, x〉α , (10.2)

where α∨ is the scalar multiple of α satisfying

〈α∨, α〉 = 2 . (10.3)

Note that we could have used α∨ instead of α as our nonzero vector in H⊥,
so we can interchange α and α∨ in (10.2) and write

s0(x) = x− 〈α, x〉α∨ . (10.4)

Hence the rank-1 linear map 1− s0 that occurs in formula (10.1) is given by

(1− s0)(x) = 〈α, x〉α∨ . (10.5)

Let H1 be the affine hyperplane given by 〈α, x〉 = 1. Substituting (10.5)
into (10.1), we obtain the following formula for the reflection s1 with respect
to H1:

s1(x) = s0(x) + α∨ . (10.6)
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Note, in particular, that the composite s0s1 is the translation x �→ x− α∨.
Finally, we remark that equation (10.3) can also be written as

α∨/2 ∈ H1 ,

so the relation between α and α∨ can be illustrated as in Figure 10.1.

α∨/2

〈α,−〉 = 0 〈α,−〉 = 1

0

Fig. 10.1. The relation between α∨ and α.

Exercise 10.6. For any constant c, let Hc be the hyperplane given by 〈α, x〉 =
c. Show that the reflection sc with respect to Hc is given by

sc(x) = s0(x) + cα∨ .

Hence
sc(x) = x− (〈α, x〉 − c)α∨ .

10.1.3 Affine Reflection Groups

We continue to assume that V is a Euclidean vector space of dimension n ≥ 1.
Let W be a group of affine isometries of V .

Definition 10.7. We say that W is an affine reflection group if there is a
set H of affine hyperplanes in V satisfying:

(a) W is generated by the reflections sH for H ∈ H.
(b) H is W -invariant.
(c) H is locally finite, in the sense that every point of V has a neighborhood

that meets only finitely many H ∈ H.
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Note that if we were only to assume that W is generated by reflections,
then we could find a set H satisfying (a) and (b), but there is no reason to
expect (c) to hold. Condition (c) plays the role in the affine setting of the
requirement in the linear case (Chapter 1) that W be finite.

Much of what we did in Chapter 1 goes through with little or no change for
affine reflection groups, although some of the arguments get slightly longer,
since we now have only local finiteness of H instead of finiteness. We will
sketch the theory, including proofs only for those results that require new
ideas or are special to the affine case. Assume for the rest of this subsection
that W is an affine reflection group and H is as in Definition 10.7.

The hyperplanes H ∈ H yield a partition of V into convex cells, these
being nonempty sets A defined by linear equalities or strict inequalities, one
for each H ∈ H. More precisely, if H is defined by a linear equality f = c, then
the definition of A will involve either the same equality or else an inequalitiy
f > c or f < c. A cell A has a support, defined as in Section 1.4.1; the support
is an affine subspace of V , and A is open relative to its support. The dimension
of A is the dimension of its support. The cells of maximal dimension n are
called chambers; they are the connected components of the complement in V
of
⋃

H∈H H. The cells of dimension n − 1 are called panels. Cells have faces,
with properties similar to those proven in Chapter 1.

The supports of the panels of a chamber C are called the walls of C, and
C is defined by its walls (i.e., by the inequalities corresponding to the walls).
This is the first assertion we have made for which it is not entirely a routine
matter to generalize the proof given in Chapter 1. To prove it, go back to
the proof of Proposition 1.32. In the locally finite case, the same argument
allows us to remove finitely many nonwalls from H and still have a defining
set of hyperplanes. To finish the proof, let C ′ be the subset of V defined by
the inequalities corresponding to the walls of C. It might, a priori, be bigger
than C, so we must show that C ′ ⊆ C. Given x ∈ C ′, consider the closed line
segment joining x to a point of C. By local finiteness of H and compactness
of the line segment, the latter can meet only finitely many hyperplanes. It
remains to show that x is on the C-side of these. None of them are walls, since
x is on the C-side of every wall. So x is on the C-side of all hyperplanes except
perhaps finitely many nonwalls. Since we can remove these and still have a
defining set of hyperplanes for C, we have x ∈ C, as required. [Alternatively,
one can argue as in Exercise 1.34.]

Everything we have said so far applies to any locally finite collection of
affine hyperplanes. Now let’s bring W into the picture. Choose a chamber C
and let S be the set of reflections with respect to the walls of C. Note that S,
a priori, might be infinite; we will return to this question below. Let Hs for
s ∈ S be the hyperplane fixed by s, and let es be the unit vector perpendicular
to Hs and pointing to the side of Hs containing C. Thus es

⊥ is the linear
hyperplane parallel to Hs, and one of the defining inequalities for C has the
form 〈es,−〉 > c. Let m(s, t) for s, t ∈ S be the (possibly infinite) order of st.

The following basic facts proved in the finite case remain valid:
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(a) W is simply transitive on the chambers.
(b) W is generated by S.
(c) H necessarily consists of all affine hyperplanes H with sH ∈W .
(d) (W,S) is a Coxeter system.
(e) 〈es, et〉 = − cos

(
π/m(s, t)

)
for all s, t ∈ S. Moreover, m(s, t) = ∞ if and

only if s �= t and Hs is parallel to Ht.
(f) C is a strict fundamental domain for the action of W on V , and the

stabilizer of a point x ∈ C is the standard subgroup of W generated by
Sx := {s ∈ S | sx = x}.
Everything except (d) is proved as in Chapter 1. For (d), one can argue

as in Section 2.2, or one can verify the exchange condition as a byproduct of
the proof of (a). Incidentally, the possibility m(s, t) = ∞ mentioned in (e)
hardly ever occurs. In fact, we will see in Section 10.1.5 that the infinite
dihedral group provides the only irreducible example whose Coxeter matrix
involves ∞. [Alternatively, instead of appealing to Section 10.1.5, one can
apply Corollary 3.27; for we will see below that the Coxeter complex Σ(W,S)
triangulates V if W is infinite and irreducible.]

10.1.4 Finiteness Results

Let’s now settle the question of the finiteness of S, along with some related
questions:

Theorem 10.8.

(1) C has only finitely many walls, and hence S is finite.
(2) The hyperplanes H ∈ H fall into finitely many classes under the rela-

tion of parallelism; in other words, there are only finitely many linear
hyperplanes H0 such that H contains a translate of H0.

(3) Let W ≤ GL(V ) be the set of linear parts of the elements w ∈ W , i.e., the
image of W under the projection Aff(V ) � GL(V ). Then W is a finite
reflection group.

Proof. (1) The inner product formula in (e) above shows that the angle
�(es, et) between es and et satisfies �(es, et) ≥ π/2 for s �= t. But if S were
infinite, then the es would have a cluster point on the unit sphere and hence
there would be s, t with �(es, et) very small.

(2) Let Φ := {±eH | H ∈ H}, where eH is the unit vector perpendicular
to H and pointing to the side containing C. We must show that Φ is finite. As
in the proof of (1), it suffices to show that �(e, e′) is bounded away from 0 for
e �= e′ in Φ. We will show that in fact, there are only finitely many possibilities
for this angle.

Let H and H ′ be elements of H perpendicular to e and e′, respectively.
If H and H ′ are parallel, then �(e, e′) = π [since e �= e′]. Otherwise, choose
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x ∈ H∩H ′ and choose w ∈ W with wx ∈ C; this is possible by (f) above. Then
wH and wH ′ are elements ofH that meet C, and they are perpendicular to the
vectors w̄e, w̄e′, where w̄ is the linear part of w. Since �(e, e′) = �(w̄e, w̄e′),
the proof will be complete if we show that only finitely many elements of H
meet C. Now C has only finitely many walls by (1); so it is defined by finitely
many inequalities and hence has only finitely many faces. And each face meets
only finitely many elements ofH by local finiteness and the definition of “cell.”
The union C of the faces therefore meets only finitely many elements of H.

(3) The set Φ defined in the proof of (2) is W -invariant. Since it was proven
to be finite, W is a finite reflection group by Lemma 1.4. 	


10.1.5 The Structure of C

Call W essential if the associated finite reflection group W is essential. It is
easy to reduce the general case to the essential case, as in Chapter 1. Similarly,
we can decompose V according to the irreducible components of the Coxeter
diagram of (W,S) and thereby reduce to the irreducible case. In this case we
will prove the following theorem:

Theorem 10.9. Assume that W is essential and irreducible. Then C is either
a simplex or a simplicial cone. More precisely, one of the following holds:

(1) W is finite and has a fixed point. In this case C has exactly n walls, where
n = dim V , and C is a simplicial cone.

(2) W is infinite, C has exactly n + 1 walls, and any n of the n + 1 vec-
tors es are linearly independent. The essentially unique linear relation∑

s∈S λses = 0 among the es has all of its coefficients λs nonzero and of
the same sign. The chamber C is a simplex.

Remarks 10.10. (a) If W has a fixed point x, then we can always assume
that x = 0; for we can replace W by its conjugate τ−xWτx. But if W fixes 0,
then W is linear. Thus case (1), for practical purposes, is precisely the “spheri-
cal” case treated in Chapter 1. Case (2), then, describes the “genuinely Euclid-
ean” irreducible reflection groups.

(b) If we drop the assumption that W is essential and irreducible, then C
is a product of a vector space [corresponding to the inessential part of V ], a
simplicial cone [corresponding to the product of the finite irreducible factors
of W ], and simplices [one for each infinite irreducible factor of W ].

(c) It follows from the theorem that the numbers m(s, t) are always finite
when W is irreducible, unless n = 1 and W = D∞; for an n-simplex with
n ≥ 2 cannot have parallel walls. In fact, a stronger statement is true:

Corollary 10.11. With W as in case (2) of the theorem, the stabilizers of
the points of C are precisely the proper standard subgroups of W , and all of
these are finite.
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Proof. Given x ∈ C, let Sx be as in statement (f) in Section 10.1.3. If A is the
face of C containing x, then Sx can also be described as the set of s ∈ S such
that the Hs-component of the sign vector of A is 0. Since C is a simplex, the
possible sets Sx that can occur are precisely the proper subsets of S, whence
the first assertion of the corollary. To prove that the stabilizer Wx is finite,
consider the homomorphism W → W that sends each w ∈ W to its linear
part. The kernel of this homomorphism is the set of translations in W ; hence
the restriction of the homomorphism to Wx is trivial. [A nontrivial translation
has no fixed points.] Thus Wx injects into the finite reflection group W and
hence is finite. 	


Proof of the theorem. Let H1, . . . , Hr be the walls of C, and let e1, . . . , er

be the corresponding unit vectors (pointing to the side containing C). Then
e1, . . . , er span V ; for [e1, . . . , er]⊥ is the fixed-point set of W , and hence it is
the trivial subspace. We therefore have r ≥ n.

Suppose r = n, so that the vectors e1, . . . , er form a basis. Then C is
defined by n inequalities 〈ei,−〉 > ci and is therefore a simplicial cone; its
cone point is the unique x ∈ V such that 〈ei, x〉 = ci for all i. Replacing W
by a conjugate, we may assume that x = 0. Then the generating reflections
of W are linear, so W = W and we are in case (1).

Now suppose r > n, so that e1, . . . , er are linearly dependent. Choose a
linear relation ∑

i∈I

λiei = 0

with ∅ �= I ⊆ {1, . . . , r} and λi �= 0 for all i ∈ I. Since 〈ei, ej〉 ≤ 0 for i �= j,
we can replace I by a subset, if necessary, to get a relation with λi > 0 for all
i ∈ I; this follows from the first paragraph of the proof of Proposition 1.37. We
can now deduce from the irreducibility assumption that I is the entire set of
indices {1, . . . , r}. For suppose it is not, and let J be the complementary set.
Then for any j ∈ J we have

∑
i∈I λi〈ei, ej〉 = 0, which implies that 〈ei, ej〉 = 0

for all i ∈ I. But then the parts of the Coxeter diagram corresponding to I
and J are disjoint, contradicting irreducibility.

Our relation now has the form
∑r

i=1 λiei = 0, with λi > 0 for all i. But we
arrived at this relation by starting with an arbitrary relation among a subset
of the ei and then possibly passing to a further subset. It follows that every
proper subset of the ei is linearly independent; hence r = n + 1.

Since e1, . . . , en form a basis for V , the intersection
⋂n

i=1 Hi consists of a
single point, which we may take to be the origin. The chamber C is therefore
defined by inequalities 〈ei,−〉 > 0 for i = 1, . . . , n and 〈en+1,−〉 > c for some
constant c. Since en+1 is a negative linear combination of e1, . . . , en, the last
inequality can be rewritten in the form

∑n
i=1 µi〈ei,−〉 < c′ with µi > 0. The

constant c′ is necessarily positive [and hence our original c was negative], since
otherwise C would be empty. So we may multiply the inequality by a scalar
in order to arrange that c′ = 1. Thus C is defined by inequalities fi > 0 for



10.1 Euclidean Reflection Groups 519

i = 1, . . . , n and
∑

fi < 1, where fi := µi〈ei,−〉. Since the fi form a basis for
the dual space V ∗, these inequalities define an open n-simplex.

Everything in (2) has now been proved except for the assertion that W
is infinite. But this follows from the fact that W has compact fundamental
domain C; for if W were finite, then V =

⋃
w∈W wC would be compact. 	


Definition 10.12. By a Euclidean reflection group we will mean an essential,
irreducible, infinite, affine reflection group, as in case (2) of Theorem 10.9.

Notice that in contrast to the situation for finite reflection groups, the
poset of cells has no smallest element and so cannot be a simplicial complex.
In particular, it cannot be isomorphic to Σ(W,S). We therefore adjoin to the
poset of cells a smallest element, which one can think of as corresponding to
the empty set, and we denote this new poset by Σ or Σ(W,V ). Since the
chambers are simplices, it is easy to see (as in Section 1.5.8) that Σ is an
abstract simplicial complex and that there is a canonical homeomorphism
|Σ| ∼= V .

It is immediate from property (f) in Section 10.1.3, together with Corol-
lary 10.11, that Σ(W,V ) ∼= Σ(W,S). We summarize some of these observa-
tions for future reference:

Proposition 10.13. Let W be a Euclidean reflection group.

(1) The simplicial complex Σ = Σ(W,V ) is isomorphic to the Coxeter com-
plex Σ(W,S).

(2) Σ triangulates V .
(3) The poset of cells in V is isomorphic to the subposet Σf (W,S) of Σ(W,S)

consisting of the finite standard cosets (ordered by reverse inclusion). 	


We reiterate that the finite standard cosets are the same as the proper stan-
dard cosets, i.e., only the coset W is excluded, so statement (3) may seem
superfluous. But we have stated it explicitly for comparison with the hyper-
bolic case that we will treat in Section 10.3.4.

Examples 10.14. We will treat some examples of Euclidean reflection groups
rigorously in Section 10.1.7, and we will show how to construct the general
Euclidean reflection group in Section 10.1.8. In the meantime, the reader might
find it helpful to visualize the 2-dimensional examples. There are in fact pre-
cisely three of these, corresponding to the three possible shapes of a Euclidean
triangle with angles of the form π/m, where m is an integer ≥ 2.

(a) There is a Euclidean reflection group whose chambers are equilateral tri-
angles, which we have discussed in Example 3.7. Its Coxeter diagram is

and it is said to be of type Ã2.
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(b) There is a Euclidean reflection group whose chambers are isosceles right
triangles. Its Coxeter diagram is

4 4

and it is said to be of type B̃2 or C̃2. The corresponding Coxeter complex can
be obtained by first tiling the plane by squares and then drawing all of the
diagonals. Alternatively, first tile the plane by squares and then barycentri-
cally subdivide all the squares. [One has to rotate by 45 degrees in order to
see that these two constructions give the same result.]

(c) There is a Euclidean reflection group whose chambers are 30-60-90 trian-
gles. Its Coxeter diagram is

6

and it is said to be of type G̃2. The corresponding Coxeter complex can be ob-
tained by first tiling the plane by equilateral triangles and then barycentrically
subdividing all the triangles.

Our requirement that (W,V ) be irreducible in order to be called a Euclid-
ean reflection group was made for convenience, so that we would not have
to leave the world of simplicial complexes. Another possible definition would
replace irreducibility by the requirement that each irreducible component be
infinite; this is equivalent to requiring that the action have a compact fun-
damental domain (which is then a product of simplices). We will have a few
occasions to talk about such reflection groups, so we give them a name.

Definition 10.15. By a semi-Euclidean reflection group we will mean an es-
sential affine reflection group such that each of its irreducible components is
infinite.

Note that the rank of the Coxeter system (W,S) is then n + k, where
k is the number of irreducible factors of W and n is the dimension of V .
(We may also call n the dimension of (W,S).) Note also that the poset of
cells associated to a semi-Euclidean reflection group is still isomorphic to the
poset of finite standard cosets (ordered by reverse inclusion), but this is no
longer a simplicial complex in the reducible case. It is the poset of cells of a
cell complex in which the cells are products of simplices. Such complexes are
sometimes said to be polysimplicial.

Exercise 10.16. Let (W,V ) be a Euclidean reflection group. In the proof
of Theorem 10.9 we arranged, for simplicity, for the origin to be one of the
vertices of the simplex C. What would the n + 1 inequalities defining C look
like if we had not done this?
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10.1.6 The Structure of W , Part I

Let W be a Euclidean reflection group as above. Recall that we have a surjec-
tion W � W , where W is the finite reflection group consisting of the linear
parts of the elements of W . The kernel of this surjection is the group T of
translations in W . The first result about the structure of W is that the short
exact sequence

1 → T →W →W → 1

always splits:

Proposition 10.17. There exist points x ∈ V such that the stabilizer Wx

maps isomorphically onto W , so that W = T � Wx.

Proof. LetH be the set of linear hyperplanes H such that H is parallel to some
element of H. Then W is generated by

{
sH | H ∈ H

}
. Since W is essential, it

follows from Chapter 1 that W is actually generated by n such reflections sH ,
whose hyperplanes H form the walls of a simplicial cone. Choose H1, . . . , Hn ∈
H parallel to these walls, and let si := sHi

. Then
⋂n

i=1 Hi consists of a single
point x, which is fixed by each si, and the linear parts of the si generate W .
This shows that Wx surjects onto W . But Wx also injects into W , as we saw
in the proof of Corollary 10.11. 	


Definition 10.18. A point x as in the proposition is called a special point.

It is easy to characterize the special points:

Proposition 10.19. A point x ∈ V is special if and only if every hyperplane
in H is parallel to a hyperplane in H passing through x.

Proof. If the condition on hyperplanes is satisfied, then the map Wx → W
is surjective and hence an isomorphism, as in the proof of Proposition 10.17.
So x is special. For the converse, it is convenient to assume (without loss of
generality) that x = 0. Suppose, then, that 0 is a special point. Since the
elements of Wx = W0 are linear, the isomorphism W0 ∼−→ W is the identity
map. Thus W contains the linear part of each of its elements. Now for any
H ∈ H, formula (10.1) shows that the linear part of sH is the reflection s0

with respect to the hyperplane H0 through the origin that is parallel to H.
So s0 belongs to W and hence H0 is in H, as required. 	


Remarks 10.20. (a) The criterion of the proposition makes it simple to lo-
cate the special points if one has a picture of the Coxeter complex. In Example
10.14(a), for instance, all vertices are special. In Example 10.14(b), two types
of vertices are special and one is not. In Example 10.14(c), only one type of
vertex is special.
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(b) The criterion of the proposition has a geometric consequence that will be
useful later. Take the special vertex x to be the origin, as in the proof, and let
C be any chamber with the origin as a vertex. Then C, being a simplex, has
n+1 walls, n of which pass through the origin and are the walls of a simplicial
cone C. The remaining wall cuts off C as a “corner” of C. [This is precisely
what we showed in the proof of Theorem 10.9.] We will call C the conical
extension of C from the vertex x. Because the origin is a special point, the
cone C is in fact a W -chamber. Indeed, C is defined by some of the W -walls,
and C lies on one side of every W -wall. [Why?] So a scaling argument shows
that C lies on one side of every W -wall and hence is a W -chamber, as claimed.
Note further that every W -chamber C arises in this way from a W -chamber C
having the origin as a vertex. For if we move along a straight line from the
origin into C, then we enter a chamber C having the origin as a vertex, and
C is the unique W -chamber containing C. It must therefore be the conical
extension of C.

From now on we assume, as in the proof of Proposition 10.19, that 0 is
a special point, so that W0 = W and W = T � W . Identifying T with the
additive group

L := {v ∈ V | τv ∈ W} ≤ V ,

we then have
W = L � W ≤ V � GL(V ) = Aff(V ) .

Our next step in the analysis of the structure of W is to show that L is a
lattice in V , by which we mean a subgroup of the form Ze1 ⊕ · · · ⊕ Zen for
some R-basis e1, . . . , en of V .

Lemma 10.21. L is a discrete subgroup of the additive group of V , i.e., there
is a neighborhood U of 0 in V such that U ∩L = {0}. The quotient group V/L,
with the quotient topology, is compact.

Proof. Pick a chamber C and a point y ∈ C. Since the transforms wC for
w ∈W are all disjoint, the same is true of the translates C + l for l ∈ L. So if
we set U := {v ∈ V | y + v ∈ C}, then U is a neighborhood of 0 in V such that
U ∩ L = {0}. Recall now that the closed simplex C is a strict fundamental
domain for the action of W . It follows that every point of V is equivalent
mod L to a point of the compact set

⋃
w∈W wC; hence V/L is compact. 	


Lemma 10.22. If L is a discrete subgroup of the additive group of a finite-
dimensional vector space V , then L = Ze1 ⊕ · · · ⊕Zer for some linearly inde-
pendent vectors e1, . . . , er. If, in addition, V/L is compact, then L is a lattice.

Proof. The second assertion follows immediately from the first. The following
proof of the first assertion is taken from Pontryagin [189, Chapter 3, Sec-
tion 19, Example 33], where a more general result is proved. We argue by in-
duction on dimV . If L = 0 there is nothing to prove, so assume L �= 0. Give V
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an arbitrary inner product and choose (by discreteness) a nonzero vector e ∈ L
of minimal length δ. Then any l ∈ L that is not in Ze has distance at least δ/2
from the line Re. For if y ∈ Re, then we can find l′ ∈ Ze with d(y, l′) ≤ δ/2;
since d(l, l′) = ‖l − l′‖ ≥ δ, the triangle inequality implies that d(l, y) ≥ δ/2,
as claimed. Consider now the subgroup L/(L ∩ Re) = L/Ze ≤ V/Re. If we
give V/Re the metric induced by the canonical isomorphism e⊥ ∼= V/Re, then
what we have just proven is that every nonzero element of L/Ze has distance
at least δ/2 from the origin of V/Re. So L/Ze is a discrete subgroup of V/Re.
The lemma now follows easily from the induction hypothesis. 	


Returning now to our group L := {v ∈ V | τv ∈W}, the lemmas yield the
following result on the structure of L and W :

Proposition 10.23. L is a lattice in V . In particular, the Euclidean reflection
group W is isomorphic to a semidirect product Z

n
� W . 	


Remarks 10.24. (a) Recall that V can be identified with the geometric re-
alization of a Coxeter complex Σ = Σ(W,V ). So the vertices have types, and
these are precisely the W -orbits. If x is a special vertex and t is its type,
we can therefore identify the set of vertices of type t with W/Wx. Proposi-
tion 10.17 now implies that the lattice L acts simply transitively on the set
of vertices of type t. So if we want to “see” L, we need only color the vertices
in the essentially unique way, locate a special vertex x, and then look at all
vertices of the same color. (More precisely, the arrows from x to the vertices
of the same color represent translations, and these are the elements of L.)

(b) There is a fairly obvious way to topologize the group Aff(V ), and the
proof of Lemma 10.21 shows that an affine reflection group W is a discrete
subgroup of Aff(V ). Conversely, any discrete subgroup W of Aff(V ) generated
by reflections is an affine reflection group. For one can use the discreteness
assumption to prove that the set of hyperplanes H with sH ∈ W is locally
finite. Details are left to the interested reader.

Proposition 10.23 shows that there is a nontrivial condition satisfied by the
finite reflection group W , namely, it leaves a lattice invariant. One says that W
is crystallographic. One can go much further, with only a little additional work,
and show that there is an associated (crystallographic) root system Φ such
that W is the Weyl group of Φ and W is completely determined by Φ. More
precisely, W is the so-called affine Weyl group of Φ. Since the root systems
are classified, this gives a classification of Euclidean reflection groups.

We will return to this in Section 10.1.8, after working out an example in
Section 10.1.7.

10.1.7 Example

Let W be the symmetric group on n letters (n ≥ 2). Recall that W is an
essential, irreducible, finite reflection group acting on the (n− 1)-dimensional
space
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V := {(x1, . . . , xn) ∈ R
n |
∑

xi = 0} .

The associated linear hyperplanes in V are defined by the equations

xi − xj = 0 (i �= j) .

We wish to construct an affine analogue of this example by introducing a
lattice of translations.

Let L := Z
n ∩ V . Then L is a W -invariant lattice in V . It is generated,

as an abelian group, by the vectors ei − ej (i �= j), where {e1, . . . , en} is the
standard basis for R

n. We now set

W := L � W ≤ V � GL(V ) = Aff(V ) .

Note that W , as an abstract group, is the Weyl group that arose in Section 6.9.
To see that W is a Euclidean reflection group, let H be the set of affine
hyperplanes in V of the form xi − xj = k with i �= j and k ∈ Z. It is easy
to check that H is locally finite and W -invariant. It is also easy to compute
the reflection with respect to the hyperplane xi − xj = k; one finds that it is
given by

x �→ sij(x) + k(ei − ej) ,

where sij is the transposition that interchanges the ith and jth coordinates.
(This is a special case of the first formula in Exercise 10.6.) Thus W contains
the reflection sH for all H ∈ H.

The subgroup generated by these reflections contains W , and hence it
contains the translations x �→ x+k(ei−ej). It follows that this subgroup is the
whole group W , which is therefore an affine reflection group. We will compute
its Coxeter diagram below and see that W is irreducible; alternatively, the
irreducibility of W follows from that of W . Since W is obviously infinite, it is
a Euclidean reflection group.

As fundamental chamber C we take the subset of V defined by

x1 > · · · > xn > x1 − 1 . (10.7)

This is an intersection of half-spaces associated to n of the elements of H, and
it lies on one side of every H ∈ H. So it is indeed a chamber. The reflections
with respect to the walls xi = xi+1 are the basic transpositions si := si,i+1

(i = 1, . . . , n− 1). And the reflection sn with respect to the wall xn = x1 − 1
is the map x �→ sn,1(x) + (e1 − en). The canonical unit vectors f1, . . . , fn

associated to C are given by

fi =

⎧
⎪⎪⎨

⎪⎪⎩

ei − ei+1√
2

if i ≤ n− 1,

en − e1√
2

if i = n.

Notice that they satisfy the linear relation
∑

fi = 0, which has positive coef-
ficients.



10.1 Euclidean Reflection Groups 525

One can now find the Coxeter diagram of W , either by computing the
orders of the products sisj or by computing the inner products 〈fi, fj〉. The
diagram is ∞ if n = 2 and

. . .

(with n vertices) if n ≥ 3. In case n = 3, the diagram shows that the fun-
damental triangle C has all of its angles equal to π/3. Thus the Coxeter
complex Σ in this case is the Euclidean plane tiled by equilateral triangles,
which we discussed in Example 10.14(a).

We finish this example by indicating briefly how to get an explicit isomor-
phism between Σ(W,V ) and the fundamental apartment for SLn(K) (Sec-
tion 6.9). We will need such an isomorphism in Section 11.8.6. For this pur-
pose it is convenient to replace V by the canonically isomorphic vector space
R

n/V ⊥ = R
n/R·(1, 1, . . . , 1). One can check that the set of vertices of Σ(W,V )

is the subset Z
n/Z · (1, . . . , 1) of this quotient. A further calculation yields the

following description of Σ(W,V ):
Given u = (u1, . . . , un) and v = (v1, . . . , vn) in Z

n, write u  v if

ui ≤ vi ≤ ui + 1

for all i. Call two elements of Z
n/Z · (1, . . . , 1) incident if they admit repre-

sentatives u, v with u  v. This incidence relation is symmetric, and one can
check that the resulting flag complex is Σ(W,V ). Recall now that we gave a
description of the building for SLn(K) in terms of classes of A-lattices in Kn.
The fundamental apartment Σ of this building has as vertices the classes
[[πa1e1, . . . , π

anen]], where e1, . . . , en is the standard basis for Kn. In view of
the definition of the incidence relation on the set of lattice classes, it is now
evident that there is an isomorphism Σ ∼−→ Σ(W,V ) that sends the vertex
[[πa1e1, . . . , π

anen]] to the class of (a1, . . . , an) mod (1, . . . , 1).
The group W we have been discussing is called the affine Weyl group of

the root system of type An−1. Recall that this root system consists of the
vectors ei − ej that played such a prominent role above. We show next that
every Euclidean reflection group admits a similar description in terms of a
root system.

Exercises

10.25. What are the vertices of the fundamental chamber (10.7)? What are
the corresponding elements of Z

n/Z · (1, . . . , 1)?

10.26. When n = 3, we remarked above that the Coxeter complex Σ is the
plane tiled by equilateral triangles. Use this to get a picture of the lattice L.



526 10 Euclidean and Hyperbolic Reflection Groups

*10.1.8 The Structure of W , Part II; Affine Weyl Groups

This subsection is optional and will not be referred to later in the book except
for a very brief mention at the end of Chapter 11. But it is included in order
to give a more complete picture of Euclidean reflection groups. We will use
some notation and terminology defined in Appendix B, and we will use the
results of Section 10.1.2.

We return to the situation of Section 10.1.6. Thus W is a Euclidean re-
flection group acting on V , and we are assuming that the origin is a special
point so that W = L � W for some W -invariant lattice L. Recall that the
subset of H consisting of linear hyperplanes is precisely the set H of hyper-
planes associated with the finite reflection group W . Moreover, H contains a
representative of every parallelism class of hyperplanes in H.

What we will see in this subsection is that there is a root system Φ canon-
ically associated with (W,V ) such that:

(1) W is the Weyl group WΦ.
(2) The lattice L is the coroot lattice of Φ.

Thus W is completely determined by Φ. Note that (1) and (2) are consistent
with the example in Section 10.1.7, where Φ is the root system of type An−1.
(We did not need to call attention to the occurrence of the coroot lattice in
that example, since the root system of type An−1 is self-dual.)

We begin by examining H in more detail. Consider an arbitrary H ∈ H,
and let H′ ⊆ H be the set of hyperplanes in H that are parallel to H. Note
first that H′ consists of more than just H. For it contains l + H for any
l ∈ L, and these cannot all equal H, since then the rank-n lattice L would be
contained in H. We claim that in fact, the hyperplanes in H′ form a doubly
infinite equally spaced family, i.e., there is a nonzero vector α such that H′

consists of the hyperplanes Hα,k for k ∈ Z, where Hα,k is defined by the
equation 〈α, x〉 = k. See Figure 10.2. One can prove this by an easy direct
argument (Bourbaki [44, Section VI.2.5, proof of Proposition 8]). But one can
also deduce it quickly from what we have already done:

Let W ′ ≤ W be the subgroup generated by the reflections with respect
to the hyperplanes in H′. Then W ′ is infinite [why?], and H′ is W ′-invariant.
Since all the reflections generating W ′ have the same linear part, W ′ is essen-
tially 1-dimensional. (More precisely, the essential part consists of W ′ acting
on the line H⊥.) Now the results we have proven earlier in the chapter, when
specialized to the 1-dimensional case, show that (W ′,H⊥) must look like D∞
acting on R as in Section 2.2.2, up to rescaling. The existence of the vector α
follows at once.

The pair of vectors±α is uniquely determined by H, and the collection Φ of
all such vectors ±α for H ∈ H is a W -invariant set of vectors whose reflections
generate W . Thus Φ is a (possibly generalized) root system with WΦ = W .

Lemma 10.27. Φ is a root system and L is the coroot lattice.
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Hα,−1 Hα,1

α∨/2α∨/2

Hα,0

· · · · · ·

Fig. 10.2. The hyperplanes parallel to H.

Proof. Let L′ be the additive group generated by the α∨ for α ∈ Φ. For-
mula (10.6) shows that α∨ is the translation component of the reflection with
respect to Hα,1. So L′ ≤ L. On the other hand, L′ contains the translation
component kα∨ of the reflection with respect to Hα,k (see Exercise 10.6). So
W ′ := L′

� W contains all the generating reflections of W = L � W ; hence
W ′ = W and L′ = L.

We now make use of the fact that H is L-invariant. The content of this,
in view of the previous paragraph, is that for each α, β ∈ Φ and k ∈ Z, the
translate α∨+Hβ,k is again inH. Now this translate is defined by the equation
〈β, x − α∨〉 = k, or 〈β, x〉 = k + 〈β, α∨〉. So 〈β, α∨〉 must be an integer, and
we have proved the crystallographic condition (Cry) stated in Section B; thus
Φ is a root system. 	


Remark 10.28. Note how naturally condition (Cry) and the coroot lattice
arose. Even if we had never heard of root systems before, an analysis of Euclid-
ean reflection groups would have forced us to consider them.

The lemma motivates the following definition:

Definition 10.29. The affine Weyl group of a root system Φ is the group

L � WΦ ≤ V � GL(V ) = Aff(V ) ,

where L is the coroot lattice of Φ.

It is not hard to show that the affine Weyl group is in fact a Euclidean
reflection group if Φ is irreducible; the proof is similar to the proof in Sec-
tion 10.1.7 for the An−1 case. In view of the lemma, we obtain every Euclidean
reflection group in this way:

Theorem 10.30. Every Euclidean reflection group with the origin as a special
point is the affine Weyl group of an irreducible root system. 	
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For more information about root systems and affine Weyl groups, see
Bourbaki [44] or Humphreys [133]. We close our discussion by returning to
the description of a typical W -chamber C (Section 10.1.5), and restating it in
the language of root systems.

We may assume that the origin is one of the vertices of C. As we noted in
Remark 10.20(b), C has n+1 walls, n of which pass through the origin and are
the walls of a W -chamber (which we will call the fundamental W -chamber)
containing the simplex C as a “corner.” Thus C is a truncated W -chamber,
obtained by cutting across the latter with some hyperplane Hα,k. [In the
An−1-case, this was the hyperplane x1 − xn = 1.] We may take α to be a
positive root (where positivity is defined with respect to the fundamental
W -chamber); in this case k > 0, since Hα,k meets C. We must then have
k = 1, since otherwise Hα,1 would meet C. Thus C is defined by inequalities
〈αi, x〉 > 0 for i = 1, . . . , n, together with the inequality 〈α, x〉 < 1, where
α1, . . . , αn are the simple roots and α is some particular positive root that we
wish to determine.

To this end, note that for any root β ∈ Φ we have

〈β, x〉 ≤ 〈α, x〉 (10.8)

for all x ∈ C; for if this failed, then we would be able to scale x to arrange
〈β, x〉 = 1 > 〈α, x〉, so that Hβ,1 would meet C. The inequality (10.8) extends
to the entire fundamental W -chamber by scaling, so α is the largest element
of Φ with respect to the partial order defined by

β ≤ α ⇐⇒ 〈β,−〉 ≤ 〈α,−〉 on the fundamental W -chamber

or, equivalently,

β ≤ α ⇐⇒ α− β =
n∑

i=1

λiαi with all λi ≥ 0.

(The last equivalence is proved as in the solution to Exercise 1.120.) This
largest root α is often denoted by α̃ and called the highest root.

See Figure 10.3 for an illustration of the description of C that we have
arrived at. The following result restates the description in the language of
root systems and affine Weyl groups.

Proposition 10.31. Let W be the affine Weyl group of an irreducible root
system Φ, and let α1, . . . , αn be the system of simple roots associated with a
choice of fundamental W -chamber. Then there is a W -chamber given by the
inequalities 〈αi, x〉 > 0 (i = 1, . . . , n) and 〈α̃, x〉 < 1, where α̃ is the highest
root. 	


Example 10.32. Let Φ be the root system of type An−1, with fundamental
W -chamber
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Hα̃,0

Hα1,0

Hα2,0

Hα̃,1

Fig. 10.3. A W -chamber as a truncated W -chamber.

x1 > · · · > xn . (10.9)

The simple roots are αi := ei− ei+1 (i = 1, . . . , n− 1), and the highest root is

α̃ = α1 + · · ·+ αn−1 = e1 − en .

The resulting W -chamber as in Proposition 10.31 is gotten by adjoining
to (10.9) the inequality x1 − xn < 1. This is the same chamber we gave
in Section 10.1.7.

Remarks 10.33. (a) Note that our analysis of W -chambers has led to a proof
that a root system has a highest root. This is a standard fact; direct proofs can
be found in Bourbaki [44, Section VI.1.8] and Humphreys [131, Lemma 10.4A].
One can also explain the highest root in terms of the representation theory of
the Lie algebra associated to the root system: It is the highest weight of the
adjoint representation.

(b) In view of Theorem 10.30 and the classification of root systems, we know
exactly what the Euclidean reflection groups are. Up to isometry and rescaling,
they are the affine Weyl groups of the root systems of type An (n ≥ 1),
Bn (n ≥ 3), Cn (n ≥ 2), Dn (n ≥ 4), En (n = 6, 7, 8), F4, and G2. The
corresponding Coxeter systems (W,S) are said to be of type Ãn, B̃n, and so
on. For example, the infinite dihedral group is the Coxeter group of type Ã1,
and the group of isometries of the plane generated by the reflections with
respect to the sides of an equilateral triangle is the Coxeter group of type Ã2

(see Example 10.14(a)). The subscript denotes the dimension of the Euclidean
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space, which is 1 less than the rank of the Coxeter system, i.e., the size of the
generating set S. (Note: The reflection group of type C̃2 is also said to be of
type B̃2; see Exercise 1.17.)

(c) We have already seen that the Coxeter group of type Ãn−1 arises from a
BN-pair in SLn(K) (which is the Chevalley group of type An−1), where K is
a field with a discrete valuation. The other Euclidean reflection groups arise
similarly from Chevalley groups over K. For example, the Coxeter group of
type C̃n is the Weyl group of a BN-pair in Sp2n(K).

(d) In the literature on affine Weyl groups, the W -chambers are often called
alcoves, the word “chamber” being reserved for the W -chambers. We will
continue to use the word “chamber,” however, which is consistent with the
standard terminology in the theory of Coxeter complexes and buildings.

Exercise 10.34. Draw a picture of the Coxeter complex for the Euclidean
reflection group of type C̃2. Identify the special vertices, and draw a picture
of the lattice L.

10.2 Euclidean Coxeter Groups and Complexes

Definition 10.35. A Coxeter system (W,S) will be called Euclidean if it
is isomorphic to the Coxeter system associated with a Euclidean reflection
group and a choice of fundamental chamber. Similarly, a Coxeter complex Σ
will be called Euclidean if it is isomorphic to Σ(W,S) for some Euclidean
Coxeter system (W,S) or, equivalently, if it is isomorphic to Σ(W,V ) for
some Euclidean reflection group (W,V ).

The main point of this section is that a Euclidean Coxeter complex Σ
has a well-defined Euclidean structure in a sense that will be made precise.
Note that there is an obvious way to define a semi-Euclidean Coxeter system,
based on the notion of semi-Euclidean reflection group (Definition 10.15). We
will not, however, define semi-Euclidean Coxeter complexes. The problem is
that the “natural” space on which a semi-Euclidean Coxeter group acts is a
polysimplicial complex that in the reducible case is not simplicial. It could
therefore be confusing to speak of semi-Euclidean Coxeter complexes.

10.2.1 A Euclidean Metric on |Σ|

Let Σ be a Euclidean Coxeter complex. Choose a Euclidean reflection group
(W,V ) and an isomorphism Σ ∼= Σ(W,V ). Since there is a canonical bijection
between |Σ(W,V )| and V (Section 10.1.3), we obtain a bijection |Σ| ∼= V . We
wish to use this to transport to |Σ| the notions of Euclidean geometry. The
lemma below will enable us to show that these notions are independent of the
choice of (W,V ) and the choice of isomorphism Σ ∼= Σ(W,V ).
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The intuitive content of the lemma is that one can reconstruct the Euclid-
ean space V (up to a dilation of its metric) from the abstract simplicial com-
plex Σ(W,V ). Here is the precise statement:

Lemma 10.36. Let (W,V ) and (W ′, V ′) be Euclidean reflection groups. Let
φ : Σ(W,V ) → Σ(W ′, V ′) be a simplicial isomorphism. Then the composite
bijection

V ∼= |Σ(W,V )| |φ| |Σ(W ′, V ′)| ∼= V ′

is a similarity map, i.e., an affine isomorphism whose linear part g satisfies
〈gv, gv′〉 = λ〈v, v′〉 for some positive constant λ and all v, v′ ∈ V .

Proof. Choose a chamber C in V , with panels Ai (i = 1, . . . , n + 1). Let Hi

be the support of Ai, let ei be the canonical unit normal to Hi (pointing to
the side containing C), and let si be the reflection with respect to Hi. As in
the proof of Theorem 10.9, we may conjugate W by a translation in order to
arrange that Hi is defined by 〈ei,−〉 = 0 if i ≤ n and by 〈en+1,−〉 = c if
i = n + 1, where c < 0. Conjugating W by a dilation, we can further arrange
that c = −1. Let C ′ := φ(C) and A′

i := φ(Ai). Let H ′
i, e′i, and s′i be the

associated wall, unit vector, and reflection, respectively. We may assume that
H ′

i is defined by 〈e′i,−〉 = 0 if i ≤ n and by 〈e′n+1,−〉 = −1 if i = n + 1.
Recall now that the Coxeter matrix M := (mij)1≤i,j≤n+1 of W is a com-

binatorial invariant of the Coxeter complex (Section 3.2); namely, mij is the
diameter of the link of Ai ∩Aj . In view of the isomorphism φ, it follows that
M is also the Coxeter matrix of W ′. Consequently, we have

〈ei, ej〉 = 〈e′i, e′j〉

for all i, j. We can now construct a linear isometry ψ : V → V ′ such that
ψ(ei) = e′i for all i. For if we take ψ to be the linear map such that ψ(ei) =
e′i for i ≤ n, then ψ preserves inner products and satisfies 〈ψ(en+1),−〉 =
〈e′n+1,−〉, whence ψ(en+1) = e′n+1.

Note that ψ(Hi) = H ′
i, so that ψsiψ

−1 = s′i and ψWψ−1 = W ′. Thus ψ
induces an isomorphism of pairs (W,V ) → (W ′, V ′), and hence a simplicial
isomorphism Σ(W,V ) → Σ(W ′, V ′). This isomorphism takes C to C ′ and
Ai to A′

i, so it coincides with our original isomorphism φ by the standard
uniqueness argument. The lemma now follows from the commutative diagram

|Σ(W,V )| |Σ(W ′, V ′)|

V V ′

where the vertical arrows denote the canonical bijections and the horizontal
arrows are induced by ψ. 	
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We now have a “Euclidean structure” on |Σ| for any Euclidean Coxeter
complex Σ, by which we mean that we can apply to |Σ| any notion of Euclid-
ean geometry that is invariant under similarity maps. In particular, |Σ| has a
well-defined equivalence class of metrics, where two metrics are equivalent if
one is a positive scalar multiple of the other.

It will be convenient in what follows to have a canonical representative
of this equivalence class. We can achieve this in many ways; for example, we
could normalize the metric so that the chambers have diameter 1 or volume 1,
or we could use the normalization that was suggested in the solution to Exer-
cise 10.16. (The reader who works through the next subsection will see that
this same normalization arises in connection with the canonical linear repre-
sentation of (W,S).) The particular method of normalizing the metric choice
makes no difference in what follows, so let’s just agree that we have chosen one
that we will stick with throughout the book. Thus |Σ| is now a metric space,
and any abstract isomorphism φ : Σ → Σ′ of Euclidean Coxeter complexes
induces an isometry |Σ| → |Σ′|.

We close this section by introducing one last bit of terminology.

Definition 10.37. By a Euclidean space we mean a metric space E that is
isometric to R

n for some n.

What we have done above, then, is to give |Σ| a canonical Euclidean space
structure.

Note that we are making a somewhat pedantic distinction between the
notions of Euclidean space and Euclidean vector space; recall that we have
defined the latter to mean “vector space with an inner product.” As a practical
matter, the only difference between the two concepts is that a Euclidean vector
space comes equipped with a preferred origin. More precisely, suppose E is
a Euclidean space and x0 is an arbitrary point in E. Then we can give E
the structure of Euclidean vector space with x0 as origin by choosing an
isometry ψ : R

n → E with ψ(0) = x0 and using ψ to transport the vector
space structure and inner product from R

n to E. It follows from Exercise 10.3
that this structure is independent of the choice of ψ.

Exercises

10.38. Convince yourself that the following assertion is meaningful and true:
If Σ is a Euclidean Coxeter complex, then the Euclidean space E := |Σ|
contains a canonical locally finite collection H of hyperplanes, from which one
can recover the decomposition of E into simplices.

10.39. State and prove an analogue of Exercise 1.68 for subcomplexes of
Euclidean Coxeter complexes.



10.2 Euclidean Coxeter Groups and Complexes 533

*10.2.2 Connection with the Tits Cone

The results of this somewhat technical subsection will not be used in any seri-
ous way in what follows, but they provide some motivation for the hyperbolic
theory to be discussed in the next section. Assume throughout this subsection
that (W,S) is a Euclidean Coxeter system of rank n + 1.

We have two geometric objects on which W acts with a good “chamber
geometry.” The first is |Σ(W,S)|; it is an n-dimensional Euclidean space, as we
have just explained, decomposed into chambers that are simplices. The second
is the Tits cone in V ∗, where V is the space on which W acts by the canonical
linear representation (see Sections 2.5 and 2.6); it is (n + 1)-dimensional and
is decomposed into chambers that are simplicial cones. We will show here that
the first model can be obtained from the second by cutting across the Tits
cone with a suitable hyperplane. We have already seen this in Section 2.2.2
for the Coxeter group of type Ã1.

Recall that the construction of the canonical linear representation of W
(Section 2.5) started with a bilinear form B on the vector space V := R

S ,
given by

B(es, et) := − cos
(
π/m(s, t)

)

for s, t ∈ S. Recall further that B is positive definite if (and only if) W is
finite. Here is the analogous result in the present Euclidean setup:

Proposition 10.40. The bilinear form B is positive semidefinite with a 1-di-
mensional radical, spanned by a vector v =

∑
s∈S λses such that λs > 0 for

all s.

Here the radical of B is V ⊥ := {v ∈ V | B(v, u) = 0 for all u ∈ V }.

Proof. We may assume that W is given as a Euclidean reflection group acting
on a Euclidean vector space V ′, and that S is the set of reflections with respect
to the walls of a fundamental chamber C ′. Let (e′s)s∈S be the canonical unit
normals to the walls of C ′. Then we have a linear surjection φ : V → V ′ given
by es �→ e′s for s ∈ S. It satisfies

〈
φ(x), φ(y)

〉
= B(x, y) for all x, y ∈ V .

Since the inner product in V ′ is positive definite, it follows immediately that
B is positive semidefinite and that its radical is the kernel of φ. This kernel
is 1-dimensional, since dim V ′ = n = dim V − 1. A nonzero vector

∑
s λses

in ker φ corresponds to a relation
∑

s∈S λse
′
s = 0 in V ′. The proposition now

follows from the fact that the coefficients of such a relation all have the same
sign, as we saw in the proof of Theorem 10.9. 	


For definiteness, we choose a canonical v as in the proposition by requiring∑
s∈S λs = 1. The proposition implies that the quotient V/Rv inherits from V

a positive definite bilinear form B′, making V/Rv an n-dimensional Euclidean
vector space [which can be identified with the space called V ′ in the proof of
the proposition]. Note next that in the action of W on V , the fixed-point set is
the intersection of the hyperplanes B(es,−) = 0, which is precisely the radical
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of B. In particular, W fixes the vector v, and hence W leaves invariant the
hyperplane in V ∗ that annihilates v, i.e., the n-dimensional space

E0 := {ξ ∈ V ∗ | 〈ξ, v〉 = 0} .

Here, as in Section 2.5, we use angle brackets to denote the canonical pairing
between a vector space and its dual.

Note that E0 can be identified with the dual of V/Rv and hence with
V/Rv itself, since the bilinear form B′ induces an isomorphism between V/Rv
and its dual. In particular, E0 inherits via this isomorphism the structure of a
Euclidean vector space, given by a positive definite bilinear form B′′ computed
as follows: Given ξ, η ∈ E0, write ξ = B(x,−) and η = B(y,−) with x, y ∈ V ;
then B′′(ξ, η) = B(x, y). Let’s work this out with η = ηs := B(es,−) for
s ∈ S. Then we have

B′′(ξ, ηs) = B(x, es) = 〈ξ, es〉 . (10.10)

The vectors ηs arise when we compute the action of s on V ∗. Namely,
equation (2.14) says precisely that

s(ξ) = ξ − 2〈ξ, es〉ηs (10.11)

for ξ ∈ V ∗. In particular, if we take ξ ∈ E0 and use (10.10), this becomes

s(ξ) = ξ − 2B′′(ξ, ηs)ηs .

In other words:

Lemma 10.41. The generator s acts on E0 as the orthogonal reflection with
respect to ηs

⊥, where

ηs
⊥ = {ξ ∈ E0 | B′′(ξ, ηs) = 0} = {ξ ∈ E0 | 〈ξ, es〉 = 0} . 	


We now introduce the affine hyperplane E in V ∗ that we will use to cut
across the chambers in the Tits cone. It is parallel to E0 and is defined by

E := {ξ ∈ V ∗ | 〈ξ, v〉 = 1} .

Note that E is invariant under the action of W and that it has a natural
Euclidean metric, since it is a translate of E0. Indeed, we need only choose an
“origin” ξ0 ∈ E and use the bijection ξ �→ ξ0 + ξ from E0 to E to transport
the metric from E0 to E. The resulting metric is independent of the choice
of ξ0.

We claim that any s ∈ S acts on E as the reflection with respect to the
hyperplane Hs := {ξ ∈ E | 〈ξ, es〉 = 0}. Note first that Hs is indeed an affine
hyperplane in E. To see this, we must check that the linear hyperplane in V ∗

given by 〈−, es〉 = 0 is not parallel to E, i.e., is not E0. In other words, we must
check that es is not parallel to v, and this is immediate from Proposition 10.40



10.2 Euclidean Coxeter Groups and Complexes 535

and the fact that |S| ≥ 2 (since W is infinite). Returning now to the claim,
choose ξ0 ∈ Hs. Then a typical element of E has the form ξ0 + ξ for ξ ∈ E0.
Now equation (10.11) shows that s(ξ0) = ξ0, so we have s(ξ0 + ξ) = ξ0 + s(ξ).
In view of Lemma 10.41 and the definition of the Euclidean structure on E,
it follows that s acts on E as the reflection with respect to the hyperplane
ξ0+ηs

⊥ in E. This hyperplane is precisely Hs by the second description of ηs
⊥

in Lemma 10.41, whence the claim.
We have done almost all the work needed to realize W as a Euclidean

reflection group acting on E. There is more than one way to carry out the
remaining details, but the simplest method, given what we have done already,
is to make use of the fact that W is already known to be realizable as a
Euclidean reflection group, acting on a space that we called V ′ in the proof
of Proposition 10.40. With the notation of that proof, we have a fundamental
chamber C ′ in V ′ whose walls are given by 〈e′s,−〉 = cs for some constants cs

(s ∈ S). Since the inequalities 〈es,−〉 > 0 define a nonempty set, we must
have

∑
s λscs < 0 (see the solution to Exercise 10.16), and we normalize the

metric on V ′ to make λscs = −1.
Note that everything about the realization of W as a Euclidean reflection

group acting on V ′ is completely determined by the Gram matrix calculation

〈e′s, e′t〉 = − cos
π

m(s, t)
(10.12)

together with the equalities 〈e′s,−〉 = cs defining the walls of C ′. In fact,
(10.12) allows us to reconstruct V ′ as a Euclidean vector space, and the de-
scription of the walls lets us reconstruct the action of the generators of W
on V ′.

We now show that the action of W on E has a similar description. Note
first that the vectors ηs in E0 have the same Gram matrix as the e′s; this
follows from (10.10) or directly from the original definition of the metric on E0.
Next, we need to choose a suitable origin ξ0 ∈ E so that we can view E as
a Euclidean vector space (via the bijection E0 → E given by ξ �→ ξ0 + ξ).
To this end we take ξ0 := −

∑
s cse

∗
s, where (e∗s)s∈S is the basis of V ∗ dual

to (es)s∈S . Now our hyperplane Hs in E, when translated back to E0, is
the affine hyperplane −ξ0 + Hs, on which B′′(ηs,−) takes the constant value
〈−ξ0, es〉 = cs. Thus the generators of W acting on E are defined by the same
formulas as the generators of W acting on V ′. It follows that W is indeed a
Euclidean reflection group acting on E, with H := {wHs | w ∈ W, s ∈ S} as
the set of walls.

To summarize what we have done so far, we started with an abstract
Euclidean Coxeter system (W,S), and we realized W as a Euclidean reflection
group in a completely canonical way. Note that the construction actually
yields an action of W on a Euclidean metric space E that does not come with
a preferred origin, as is appropriate for a canonical construction. It does come
with a fundamental chamber C, however, as it should, since we are given the
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set S of fundamental reflections, and a choice of origin is equivalent to a choice
of constants cs determining the walls of C as above, with

∑
s λscs = −1.

The following theorem recaps the main points:

Theorem 10.42. Any Euclidean Coxeter system (W,S) has a canonical re-
alization as a Euclidean reflection group, acting on an affine hyperplane E
in V ∗, where V = R

S. The cells into which E is decomposed by the reflecting
hyperplanes are precisely the intersections with E of the cells other than {0}
in the Tits cone.

Proof. The only thing that we have not yet proved is the description of the
cells in terms of those of the Tits cone. Recall that the fundamental chamber C
in the Tits cone is a simplicial cone with walls given by 〈−, es〉 = 0 (s ∈ S).
Thus our hyperplanes Hs in E are precisely the intersections with E of the
walls of C. Using the W -action, we conclude that the set H of walls in E
consists of the intersections with E of the walls defining the decomposition
of the Tits cone. The proof will be complete once we observe that every
ray R+ξ in the Tits cone (ξ �= 0) intersects E. We may assume ξ ∈ C, so
that 〈ξ, es〉 ≥ 0 for all s ∈ S, and strict inequality must hold for at least
one s. Then 〈ξ, v〉 =

∑
s λs〈ξ, es〉 > 0, so we may scale ξ to get a vector in

R+ξ ∩ E. 	


Remark 10.43. Our argument based on V ′ could have been replaced by a
more detailed analysis of the action of W on E. We would then have had
to prove directly that H is locally finite, a fact that can be deduced from
the discreteness of W in the group of isometries of E (Theorem 2.59). The
advantage of this approach is that it leads to the proposition below, which
we already stated without proof in Section 2.5.5. We have now given the
main ideas behind its proof, and the missing details can be found in Bourbaki
[44, Chapter V, Section 4.9].

Proposition 10.44. Let (W,S) be an irreducible Coxeter system with Coxeter
matrix M , and let B be the canonical bilinear form on R

S, given by

B(es, et) := − cos
π

m(s, t)
. (10.13)

Then (W,S) is Euclidean if and only if B is positive semidefinite and degen-
erate. 	


Remark 10.45. Combining the proposition with the analogous characteri-
zation of finite reflection groups (Corollary 2.68), we see that a (possibly
reducible) Coxeter system (W,S) can be realized as an affine reflection group
if and only if it is of positive type. Each irreducible component of the Coxeter
diagram then corresponds to either a finite reflection group or a Euclidean
reflection group. Note that if the Euclidean space on which W acts has dimen-
sion n, then (W,S) has rank n+k, where k is the number of infinite irreducible
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factors of W . The number n will be called the dimension of (W,S). One can
also speak of the rank of the bilinear form B (which is simply the rank of the
matrix in (10.13)), and this is precisely the dimension n (it is not the rank of
the Coxeter system (W,S)).

*10.3 Hyperbolic Reflection Groups

It would take us too far afield to give a complete treatment of hyperbolic
reflection groups analogous to our treatment of Euclidean reflection groups.
But the reader who wants to read the current literature on buildings needs at
least a passing acquaintance with them. We will therefore give a sketch of the
theory in this section. The standard reference for readers who want to know
more is Vinberg [274], which is summarized by Margulis [158, Appendix C,
Section 1]. See also Ratcliffe [193, Chapter 7], Maskit [159, Chapter IV], Davis
[89, Chapter 6], and de la Harpe [95]. And there is a useful introduction to
hyperbolic space in Bridson–Haefliger [48, Section I.1.2 and Chapter I.6].

10.3.1 Hyperbolic Space; Hyperplanes and Reflections

We will use the hyperboloid model of hyperbolic space (cf. Exercise 2.9),
defined as follows. Fix an integer n ≥ 2, and consider Lorentz space R

n,1. By
this we mean the vector space R

n+1 endowed with the standard symmetric
bilinear form of signature (n, 1):

(x, y) �→ 〈x, y〉 := x1y1 + · · ·+ xnyn − xn+1yn+1 , (10.14)

where x = (x1, . . . , xn+1) and y = (y1, . . . , yn+1). The associated quadratic
form Q is given by

Q(x) := 〈x, x〉 = x2
1 + · · ·+ x2

n − x2
n+1 .

We define n-dimensional hyperbolic space, denoted by H
n, to be the upper

sheet of the hyperboloid Q(x) = −1, i.e.,

H
n :=

{
x ∈ R

n,1 | x2
1 + · · ·+ x2

n − x2
n+1 = −1 and xn+1 > 0

}
.

Alternatively, we can identify H
n with the set of rays in the cone U+ defined

by Q(x) < 0 and xn+1 > 0. This identification is useful when we want to talk
about points at infinity, which correspond to rays in the boundary of U+.

Although we will not make use of this fact, H
n has a canonical Riemannian

metric making it a complete simply connected manifold of constant sectional
curvature −1. The resulting distance function d is characterized by the equa-
tion

cosh d(x, y) = −〈x, y〉 . (10.15)
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By a hyperplane in H
n we mean a nonempty subset H gotten by intersect-

ing H
n with a linear hyperplane in R

n,1. Equivalently, H is a subset of H
n

defined by an equation of the form 〈α, x〉 = 0, where α is a vector such that
Q(α) > 0 (see Exercise 10.46 below). We can normalize α to make it a unit
vector (i.e., to make Q(α) = 1), in which case we will usually denote it by e
and call it a unit normal to H. It is uniquely determined by H up to sign.
A choice of one of the two unit normals will be called an orientation of H,
and we will then call H an oriented hyperplane. Giving an orientation of H is
the same as singling out one of the two half-spaces determined by H as the
positive half-space.

Let H1 and H2 be distinct hyperplanes, oriented by unit normals e1, e2.
If H1 ∩ H2 �= ∅, then there is a well-defined angle θ between H1 and H2,
with 0 < θ < π. One can of course define this by pure geometry (it is the
dihedral angle formed by the two positive half-spaces), but one can also take
the equation

〈e1, e2〉 = − cos θ (10.16)

as the definition. Exercise 10.47 below implies that this equation determines
a well-defined angle θ. If H1 ∩H2 = ∅, on the other hand, then the exercise
just cited implies that |〈e1, e2〉| ≥ 1. In this case there is still a geometric
interpretation of 〈e1, e2〉. To describe it, we may assume that the positive
half-spaces of H1 and H2 are not nested (i.e., neither is contained in the
other); for if they are nested, we can simply reverse the orientation of one of
them. Then 〈e1, e2〉 ≤ −1, with equality if and only if H1 and H2 are parallel,
i.e., they meet at infinity; see Exercise 10.48. Otherwise, they are said to be
ultraparallel, and there is a unique line segment going from one to the other
and orthogonal to both. The length of this segment is the distance d(H1,H2)
between them, and one has

〈e1, e2〉 = − cosh d(H1,H2) . (10.17)

The reflection s = sH of H
n with respect to a hyperbolic hyperplane H is

given by
s(x) = x− 2〈e, x〉e ,

where e is a unit normal to H. It is an isometry of order 2, and it is the unique
nontrivial isometry of H

n that fixes H pointwise. As in Euclidean space, one
can talk about the two half-spaces determined by a hyperplane H, and these
are interchanged by the reflection sH .

Finally, we remark that any two points of H
n can be connected by a unique

geodesic, so one has notions of convexity, convex hull, and so on. The geodesic
can be defined via differential geometry or directly [48].

Exercises

10.46. Given a nonzero vector α ∈ R
n,1, show that α⊥ intersects H

n if and
only if Q(α) > 0. Here α⊥ is defined with respect to the bilinear form 〈−,−〉.
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10.47. Let H1 = α1
⊥ ∩ H

n and H2 = α2
⊥ ∩ H

n be distinct hyperbolic hy-
perplanes. Show that H1 ∩ H2 �= ∅ if and only if the bilinear form 〈−,−〉 is
positive definite on the 2-dimensional space spanned by α1 and α2.

10.48. Let H1 and H2 be disjoint hyperbolic hyperplanes, oriented by unit
vectors e1 and e2. Show that |〈e1, e2〉| ≥ 1, with equality if and only if e1

⊥∩e2
⊥

contains a nonzero vector x with Q(x) ≤ 0. [Geometrically, this says that H1

and H2 meet at infinity.]

10.3.2 Reflection Groups in H
n

Our starting point is the same as in the spherical and Euclidean cases. Let W
be a group of isometries of H

n generated by reflections sH , where H ranges
over a locally finite W -invariant collection H of (hyperbolic) hyperplanes.
As before, H induces a partition of H

n into convex “cells,” with those of
top dimension called chambers. In the Euclidean case, we were able to quickly
reduce to a situation in which we could prove finiteness results and, ultimately,
prove that the chambers were simplices. This does not work in hyperbolic
space. The first problem is that the finiteness results might not hold. For
example, a closed chamber (which is still a strict fundamental domain for the
W -action) might have infinitely many walls. We therefore have to build the
desired finiteness into the definition. We introduce some terminology first.

By a polyhedron in hyperbolic space we mean a subset P that has non-
empty interior and is an intersection of finitely many closed half-spaces. As
in Euclidean space, there is a unique minimal family of such half-spaces, and
the bounding hyperplanes are called walls. Each wall comes with a canoni-
cal orientation, with the positive side being the side that contains P . Note
that the positive half-spaces corresponding to two walls cannot be nested, so
equation (10.17) holds whenever two walls are ultraparallel.

We denote by P̂ the intersection of the closed half-spaces in R
n,1 corre-

sponding to the defining half-spaces of P . It is a closed polyhedral cone of the
sort that we studied in Section 1.4.

We call a polyhedron P a polytope if it is compact. It can be shown, as
in the theory of Euclidean polytopes, that a polytope P is the convex hull
of finitely many vertices. The vertices of P correspond to the faces of P̂ that
are rays. Moreover, P̂ −{0} is contained in the open cone U+ that we defined
in Section 10.3.1. Thus P̂ is the cone over P , and we recover P from P̂ by
cutting the latter with the upper sheet of the hyperboloid Q(x) = −1. The
faces of P (including the empty face) are in 1–1 correspondence with the faces
of P̂ .

We call a polyhedron P a generalized polytope if it has finite volume. A
generalized polytope P is again the convex hull of its vertices, but some of
these might be “at infinity.” This is less mysterious than it sounds. What
happens is that P̂ is not contained in U+ in the noncompact case, but it is
contained in the closure of U+. Vertices at infinity correspond to faces of P̂
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that are rays in the boundary of U+. But there are no higher-dimensional faces
of P̂ in the boundary of U+. Thus the faces of P are in 1–1 correspondence
with those of P̂ other than the rays in ∂U+.

We have already seen an example of a generalized polytope in our discus-
sion of a fundamental domain for PGL2(Z) in Section 2.2.3. This fundamental
domain is a triangle with one vertex at infinity, and we noted the correspond-
ing ray in ∂U+ in our treatment from the point of view of linear algebra.

Remark 10.49. The terminology in the literature concerning polytopes in
hyperbolic space is not consistent. Our terminology agrees with that of Rat-
cliffe [193, Section 6.5], but other authors, such as Vinberg [274], use the terms
differently.

Returning now to our group W generated by reflections sH , we introduce
the central concept of this section.

Definition 10.50. we say that W is a hyperbolic reflection group if some (or
every) closed chamber is a generalized polytope.

Thus the finiteness results that were proved in the Euclidean case have been
taken as part of the definition in the hyperbolic case.

There is a second major difference between the Euclidean and hyperbolic
theories. Namely, the chambers need not be simplices, even if we extend the
notion of “simplex” to allow vertices at infinity. For example, there exists a
regular right-angled pentagon in H

2, and this can occur as the fundamental
chamber for a hyperbolic reflection group. It is still true, however, that if
we choose a fundamental chamber P and let S be the corresponding set of
fundamental reflections, then (W,S) is a Coxeter system, which always turns
out to be irreducible. In the pentagon example that we just mentioned, we
get a Coxeter system (W,S) of rank 5.

A third difference between the hyperbolic theory and the Euclidean theory
is that the connection between the Coxeter matrix M and the Gram matrix A
is more complicated. Here A =

(
a(s, t)

)
s,t∈S

is defined by

a(s, t) := 〈es, et〉 ,

where es is the canonical unit normal to the wall Hs of P fixed by s (corre-
sponding to the orientation of the wall described above, so that 〈es,−〉 > 0
on P ). The equation

a(s, t) = − cos
π

m(s, t)
(10.18)

still holds if m(s, t) < ∞, which is the case if and only if Hs ∩ Ht �= ∅. If
Hs ∩ Ht = ∅, on the other hand, then m(s, t) = ∞, but as we noted in our
discussion of oriented hyperplanes in Section 10.3.1, we do not necessarily have
a(s, t) = −1. This happens if and only Hs and Ht are parallel; otherwise, they
are ultraparallel, and
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a(s, t) = − cosh d(Hs,Ht) < −1 . (10.19)

When s �= t and m(s, t) <∞, equation (10.18) says that the angle between
the oriented hyperplanes Hs and Ht is π/m(s, t) (cf. (10.16)). In fact, more
is true: The closed panels Ps and Pt of P supported by Hs and Ht form a
dihedral angle of π/m(s, t). The extra content in this statement is that Ps∩Pt

has codimension 2, so that it makes sense to speak of the dihedral angle that
they form. [An arbitrary polyhedron, or even polytope, can have panels whose
intersection has codimension < 2 even if their walls intersect.]

In view of (10.19), the Gram matrix contains more information in gen-
eral than the Coxeter matrix. To capture the extra information, we modify
the Coxeter diagram as follows: Whenever a(s, t) < −1, we replace the corre-
sponding edge in the Coxeter diagram (labeled∞) by a dashed edge labeled by
the number −a(s, t) = cosh d(Hs,Ht) > 1. Thus a hyperbolic reflection group
has a modified Coxeter diagram, from which we can reconstruct (W, Hn) up
to isomorphism, and which in some cases contains more information than the
Coxeter diagram of the underlying Coxeter system (W,S). We will give an
example in the next subsection. See [158, Appendix C] for further examples.

Motivated by the special nature of the fundamental chamber P , we define
a Coxeter polyhedron to be a polyhedron whose dihedral angles all have the
form π/m for some integer m ≥ 2. The importance of this notion comes from
the following fact, known as Poincaré’s theorem: A generalized polytope P
in H

n can occur as a closed chamber for a hyperbolic reflection group if and
only if it is a Coxeter polyhedron; see [95, Chapter 3; 159, Section IV.F;
193, Section 7.1].

10.3.3 Example

Consider a quadrilateral P in the hyperbolic plane as in Figure 10.4, with right
angles at the base and vertical sides of equal length. The study of these quadri-
laterals goes back to Omar Khayyám in the eleventh century [130, pp. 170–
171], but they are usually called Saccheri quadrilaterals. Let b be the base
length, θ the angle at the upper vertices, and h the “height,” i.e., the length
of the line segment from the midpoint of the upper edge to the midpoint of
the base. The quadrilateral P is determined up to isometry by any two of the

θ

h

b

Fig. 10.4. A Saccheri (Khayyám) quadrilateral.
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three parameters b, h, θ, and there are formulas that relate these parameters
to one another (and to others) in [118, p. 415]. One can deduce, in particular,
the equation

cosh2 h =
cosh b + cos 2θ

cosh b− 1
, (10.20)

giving h as a function of b and θ.
If we now take θ = π/m for some integer m ≥ 3, then the hypotheses of

Poincaré’s theorem are satisfied, so there is a hyperbolic reflection group with
P as fundamental chamber. The underlying Coxeter system (W,S) of rank 4
depends only on m. Figure 10.5 shows the Coxeter diagram, and Figure 10.6
shows the modified Coxeter diagram, where c = cosh h and d = cosh b. Note
that d can be any number > 1 and c is then determined by (10.20), which
becomes

c2 =
d + cos(2π/m)

d− 1
.

Thus for each fixed m ≥ 3 we have a 1-parameter family of inequivalent
hyperbolic reflection groups with the same underlying Coxeter group.

∞
m

m

∞

Fig. 10.5. The Coxeter diagram associated to a Saccheri quadrilateral.

d

m

m

c

Fig. 10.6. The modified Coxeter diagram.

Remark 10.51. This phenomenon does not occur for hyperbolic reflection
groups in dimensions n > 2. Indeed, Mostow’s rigidity theorem [166, 167], as
strengthened by Prasad [191], implies that (W,S) determines the reflection
group (W, Hn) up to isomorphism when n > 2. [See also the reviews of [167]
and [191] by Raghunathan in Mathematical Reviews, MR52 #5874–5.]

10.3.4 The Poset of Cells

Let W be a hyperbolic reflection group of dimension n (i.e., acting on H
n),

let P be a fundamental chamber, and let S be the set of fundamental re-
flections, one for each wall of P . As in the Euclidean case (Corollary 10.11),
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the stabilizers of the nonempty faces of P (not including the vertices at in-
finity) are precisely the finite standard subgroups of W ; this follows from
Vinberg [274, Theorem 3.1]. In contrast to the Euclidean case, however, not
all the proper standard subgroups are finite unless the chambers happen to be
simplices with no vertices at infinity. But the stabilizer calculation still yields
the following analogue of Proposition 10.13(3):

Proposition 10.52. If W is a hyperbolic reflection group, then the poset of
cells in H

n is isomorphic to the subposet Σf (W,S) of Σ(W,S) consisting of
the finite standard cosets (ordered by reverse inclusion). 	


In order to incorporate the vertices at infinity, and therefore have a genuine
cell complex, we cite another theorem, which characterizes the stabilizers of
the vertices of P at infinity [274, Theorem 3.2]. The characterization requires
the modified Coxeter diagram:

Theorem 10.53. Let W be a hyperbolic reflection group acting on H
n with

fundamental chamber P and modified Coxeter diagram D. Then the stabilizers
of the vertices of P at infinity are the standard subgroups WJ (J ⊆ S) such
that the induced subdiagram DJ with vertex set J is the Coxeter diagram of a
semi-Euclidean reflection group of dimension n− 1.

(See Definition 10.15 for the notion of semi-Euclidean reflection group.)

The Coxeter diagram of a semi-Euclidean reflection group is an ordinary
(not modified) diagram, so part of the requirement on DJ in the theorem is
that it not contain any dashed edges. The example in Section 10.3.3 is instruc-
tive. Note that W does contain two standard subgroups that are 1-dimensional
Euclidean reflection groups, corresponding to the two edges labeled ∞ in the
Coxeter diagram. But those edges are dashed in the modified Coxeter dia-
gram, so they do not correspond to vertices at infinity. And of course, we
know from the construction of W that there are four ordinary vertices but
none at infinity. The four vertex stabilizers are the finite standard subgroups
of rank 2, corresponding to the two edges labeled m and the two nonexistent
edges (for which m(s, t) = 2).

It might seem strange that a hyperbolic reflection group can have sub-
groups that act as reflection groups on Euclidean space, but this has a geo-
metric explanation: If x is a vertex at infinity, then its stabilizer acts on a
“horosphere” at x, which is an (n − 1)-dimensional Euclidean space (plus a
point at infinity). [To explain this geometrically, we switch to Poincaré’s unit
ball model of H

n. The point x at infinity is then a point on the bounding
sphere of the ball, and the horosphere at x is the Euclidean sphere inside the
ball that is tangent at x to the bounding sphere. If remove x, we get a sub-
manifold of H

n, which, with the induced Riemannian metric, is a Euclidean
space.]

In view of Theorem 10.53, we have the following:
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Proposition 10.54. Let W be as in Theorem 10.53. Then the poset of cells,
including the vertices at infinity, is isomorphic to the subposet of Σ(W,S)
consisting of the finite standard cosets together with the cosets wWJ with J
as in the theorem. 	


We repeat, for emphasis, that there is no easy way, in general, to find the
subgroups WJ unless one knows the modified Coxeter diagram. More precisely,
one needs to know which edges are dashed.

10.3.5 The Simplicial Case

Let (W,S) be the Coxeter system associated with a hyperbolic reflection group
acting on H

n with fundamental chamber P . The simplest case to understand
is the case in which P is a simplex, possibly with some vertices at infinity.
This happens if and only if P has n + 1 panels, i.e., if and only if (W,S) has
rank n+1. This case is simpler than the general case for several reasons. First,
the modified Coxeter diagram coincides with the ordinary Coxeter diagram.
Indeed, any two walls must intersect (possibly at infinity) since n ≥ 2, so
there are no ultraparallel pairs of walls. Second, there is an easy criterion
for deciding whether a Coxeter system can arise as the Coxeter system of a
hyperbolic reflection group with simplicial chambers:

Theorem 10.55. An irreducible Coxeter system (W,S) arises from a hyper-
bolic reflection group with simplicial chambers if and only if it has the following
properties:

(1) The canonical bilinear form B on R
S is nondegenerate but not positive

definite.
(2) Each proper standard subgroup WJ < W (J ⊂ S) is of positive type.

(See Section 2.5.5 for the terminology.)

Note that it suffices to consider J of the form S � {s} in (2), in which
case WJ is a vertex stabilizer. Thus the discussion in the previous subsection
explains geometrically why it is of positive type. For a proof of the theorem, see
Humphreys [133, Section 6.8] or Bourbaki [44, Chapter V, Section 4, Exercises
12 and 13]. Note also that one can check (2) by glancing at the Coxeter
diagram of (W,S), since the diagrams of the finite and Euclidean Coxeter
groups are known.

Theorem 10.55 has been used to classify hyperbolic reflection groups with
simplicial chambers. In dimension n = 2 (so that the rank of (W,S) is 3),
the result is that almost all irreducible (W,S) are hyperbolic reflection groups
of this type; the only exceptions are the three that are finite (types A3, C3,
and H3) and the three that are Euclidean (types Ã2, C̃2, and G̃2). For n ≥ 3,
however, it turns out that there are only finitely many possibilities (72 of
them). The list can be found in [133, Section 6.9]. There are 32 in dimension
three, 14 in dimension four, 12 in dimension five, 3 in dimension six, 4 in
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dimension seven, 4 in dimension eight, and 3 in dimension nine. Only 14 of
these groups have compact fundamental chambers, 9 in dimension three and
5 in dimension four.

As in the Euclidean case (see Section 10.2.2), there is a close connec-
tion with the canonical linear representation and the Tits cone. In fact, the
canonical bilinear form B turns out to have signature (n, 1), so that the
space V := R

S (which is canonically isomorphic to its dual, since B is non-
degenerate) can be identified with the space R

n,1 that we used in our definition
of H

n. The hyperbolic space on which W acts is then one sheet of the hy-
perboloid B(x, x) = −1, and the cells into which it is decomposed (including
the empty cell and the vertices at infinity) correspond to the cells of the Tits
cone.

10.3.6 The General Case

Much less is known in the general case. It is still possible to give criteria for
recognizing the (possibly modified) Coxeter diagram of a hyperbolic reflection
group, but the criteria are more complicated, and such diagrams have not been
classified. In stating the criteria, we will use the term “modified diagram” for
a finite graph D with labeled edges (possibly dashed), of the sort that arose
in Section 10.3.2. Thus an ordinary edge joining vertices s, t may be labeled
by m ∈ {4, 5, . . . ,∞}, and a dashed edge is labeled by a real number c > 1.
Any such diagram has an associated Coxeter matrix M =

(
m(s, t)

)
s,t∈S

, and
the diagram then encodes a symmetric matrix A = (a(s, t)) with a(s, t) =
− cos

(
π/m(s, t)

)
if m(s, t) <∞ and a(s, t) ≤ −1 if m(s, t) = ∞.

Theorem 10.56. Let D be a connected modified diagram with vertex set S,
and let A be the corresponding symmetric matrix. Then D arises from a hy-
perbolic reflection group acting on H

n if and only if the following conditions
hold:

(1) Let B be the bilinear form on V = R
S with matrix A. Then the induced

form on the quotient of V by the radical of B has signature (n, 1).
(2) There is at least one subset J of S such that the induced subdiagram DJ

of D is the Coxeter diagram of a spherical or semi-Euclidean Coxeter
group WJ of dimension n− 1.

(3) For any J1 satisfying the condition in (2) and any K ⊂ S such that WK

is a spherical reflection group of dimension n− 2, there is a set J2 ⊃ K
distinct from J1 and also satisfying the condition in (2).

This criterion, which is due to Vinberg, follows from [274, Theorem 2.1
and Proposition 4.2]. The geometric meaning of (2) is that the fundamental
chamber P must have at least one vertex, possibly at infinity, and the geo-
metric meaning of (3) is that any edge emanating from a vertex must lead to
another vertex. Note that as in the simplicial case, one can check conditions
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(2) and (3) by glancing at the diagram D. But in contrast to the simplicial
case, one really needs D, and not just the Coxeter diagram.

Hyperbolic reflection groups, even those with compact fundamental cham-
ber, have not been classified, in spite of Vinberg’s criterion 10.56. One major
problem is that for a given n, there is no a priori upper bound on the size
of S. It is known, however, as in the simplicial case, that the dimension n
cannot be arbitrarily large. For example, Vinberg [273] showed that there are
no such groups with compact fundamental domain in dimensions n > 29.
[This bound is probably not sharp. The largest known compact example was
constructed by Bugaenko [64], and it has dimension 7.] If we drop the com-
pactness assumption, then there is an even bigger gap between the examples
and the known upper bound, which is 995 (see [143]). [Again the bound is
probably not sharp. The known examples of highest dimension [271,272,275]
have n = 19.]

*10.4 Hyperbolic Coxeter Groups and Complexes

There are at least three different notions of “hyperbolic Coxeter group” in
the literature. For example, Bourbaki [44] and Humphreys [133] use this term
for hyperbolic reflection groups whose chambers are simplices, as in Sec-
tion 10.3.5. Another possible definition is that a hyperbolic Coxeter group
is one that is hyperbolic in the sense of Gromov [119]. Such groups were char-
acterized by Moussong [170]; see Section 12.3.9 below for a statement of his
result. We will adopt a definition that is different from both of these:

Definition 10.57. We call a Coxeter system (W,S) hyperbolic if it arises from
a hyperbolic reflection group as defined in Section 10.3.2.

This class of Coxeter groups properly includes the hyperbolic Coxeter
groups in the sense of Bourbaki and Humphreys. But a hyperbolic Coxeter
group as just defined is not necessarily hyperbolic in the sense of Gromov
if the chambers are not compact. In fact, we have seen that such groups can
contain Euclidean reflection groups of dimension ≥ 2, and hence they can con-
tain free abelian subgroups of rank ≥ 2. But hyperbolic groups in the sense
of Gromov cannot have such subgroups.

It is less clear what we should mean by a “hyperbolic Coxeter complex.”
One could, for instance, use this term for a Coxeter complex Σ that is iso-
morphic to Σ(W,S) for some hyperbolic Coxeter system (W,S). With this
definition, a hyperbolic Coxeter complex would always be simplicial, but it
would generally have higher dimension than that of the hyperbolic space on
which W acts as a reflection group.

On the other hand, it is usually more useful to work with the “metric
polyhedral complex” consisting of hyperbolic space decomposed into cells by
the reflecting hyperplanes. This is a more complicated object than a simplicial
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complex or even a cell complex, because it can have vertices at infinity. See
Bridson–Haefliger [48] for a comprehensive treatment of ordinary metric poly-
hedral complexes (with no vertices at infinity), and see Gaboriau–Paulin [104]
for the more general theory. We indicate briefly how to construct such an ob-
ject for a given hyperbolic Coxeter group W .

We already know from the examples in Section 10.3.3 that the desired
complex (taking the metric into account) is not in general uniquely deter-
mined by (W,S), at least in the important case n = 2. So we must first
choose the modified Coxeter diagram that we want to use, or, equivalently,
the generalized polytope P that is to be the fundamental chamber, with pan-
els Ps indexed by S. Next, note that the space X we are trying to con-
struct should consist of translates wx (w ∈ W , x ∈ P ), with wx = w′x′ if
and only if x′ = x and w′ ∈ w〈Sx〉, where Sx := {s ∈ S | x ∈ Ps}. So we
simply define X to be the quotient of W × P by the equivalence relation
(w, x) ∼ (w′, x′) ⇐⇒ x′ = x′ and w′ ∈ w〈Sx〉. Equivalently, this relation
is generated by declaring (w, x) ∼ (ws, x) if x ∈ Ps. Thus we are taking a
copy of P for each w ∈ W , and we are identifying the faces Ps in copies
of P that correspond to s-adjacent elements of W . This construction is due
to Vinberg [270].

The resulting set X has an obvious action of W , with a copy of P as
strict fundamental domain. We have a hyperbolic metric on P , and we can
metrize X by minimizing the lengths of piecewise geodesic paths between two
given points. In this way we have reconstructed the hyperbolic space on which
W acts. We will return to this in Section 12.1, where we will be able to explain
the construction of the metric in detail in a more general setting.
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Euclidean Buildings

Having introduced Euclidean Coxeter complexes in Section 10.2, we can now
develop a systematic theory of buildings whose apartments are Euclidean
spaces. Recall that we gave an example of such a building in Section 6.9.3.

Definition 11.1. By a Euclidean building we mean a building ∆ whose apart-
ments are Euclidean Coxeter complexes.

One also says that ∆ is an affine building, or a building of affine type.
But we use the word “Euclidean,” as Tits did in [248], in order to empha-
size the fact that there is a well-defined Euclidean metric in every apartment
(Section 10.2.1). In this chapter, which is based on Bruhat–Tits [59], we in-
vestigate the geometry that these Euclidean metrics impose on the building
as a whole.

An important fact that will emerge is that the geometric realization X of a
Euclidean building ∆ has a natural metric that satisfies a curvature condition
called the CAT(0) property. The theory of CAT(0) spaces has become quite
important in recent years, and many readers will already be familiar with
it. For the sake of those who are not, we begin this chapter by giving the
relevant definitions, so that we do not have to interrupt the flow of ideas
when the CAT(0) property arises in connection with buildings.

11.1 CAT(0) Spaces

The standard reference for this section is Bridson–Haefliger [48]. See also
Ballmann [28] for a more concise treatment.

Definition 11.2. Let X be a metric space with metric denoted by d(−,−)
or dX(−,−). A geodesic, or geodesic segment, in X is a subset isometric to a
closed interval of real numbers. We say that X is a geodesic metric space if
any two points of X can be connected by a geodesic. We denote by [x, y] any
geodesic joining x and y, even though we are not assuming that this geodesic
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is unique. We will always parametrize [x, y] by t �→ pt (0 ≤ t ≤ 1), where
d(x, pt) = td(x, y) for all t.

Given three points x, y, z in a metric space X, the triangle inequality
implies that there is a comparison triangle in the Euclidean plane R

2, whose
vertices x̄, ȳ, z̄ have the same pairwise distances as x, y, z. It is unique up to
an isometry of R

2. Given a geodesic [x, y] and a point p = pt ∈ [x, y], there is
a corresponding point p̄ = p̄t [= (1− t)x̄+ tȳ] on the line segment [x̄, ȳ] in R

2;
see Figure 11.1, which illustrates this for t = 1/2. The picture also indicates

z

x

y

p z̄

x̄

ȳ

p̄

Fig. 11.1. A geodesic triangle in X and its comparison triangle in R
2.

choices of geodesics from z to x and y as an aid to the intuition, so that we
have a “geodesic triangle” in X; but the comparison triangle does not depend
on these choices.

Definition 11.3. A metric space X is called a CAT(0) space if for any x, y
in X there is a geodesic [x, y] with the following property: For all p ∈ [x, y]
and all z ∈ X, we have

dX(z, p) ≤ dR2(z̄, p̄) , (11.1)

with z̄ and p̄ as above.

This should be thought of intuitively as being related to nonpositive cur-
vature, as we have tried to suggest in Figure 11.1. The intuition is justified
by a theorem in differential geometry that says that a Riemannian manifold
has sectional curvature ≤ 0 if and only if it is locally a CAT(0) space; a proof
can be found in Bridson–Haefliger [48, Appendix to Chapter II.1]. See also
Exercise 11.22 below. The “CAT” terminology is explained in [48, p. 159;
119, Section 2.4]; we will explain the “0” below.

We have used one of several possible equivalent definitions of CAT(0). For
example, there is a variant of the definition that does not explicitly mention
the comparison triangle. Such a definition exists because there is a formula
for the distance from a vertex of a Euclidean triangle to any point on the
opposite side: Given x, y, z ∈ R

2 and t ∈ [0, 1], let pt = (1− t)x + ty; then the
formula is

d2(z, pt) = (1− t)d2(z, x) + td2(z, y)− t(1− t)d2(x, y) . (11.2)
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This is best known when t = 1/2, in which case it can be found in Pappus
[185, Book VII, Proposition 122].∗ It is essentially the parallelogram law in
that case, so we will call (11.2) the generalized parallelogram law. To prove it,
we may assume that z = 0. Then

d2(z, pt) = ‖pt‖2 = (1− t)2‖x‖2 + t2‖y‖2 + 2t(1− t)〈x, y〉 ;

one obtains (11.2) from this by using the formula

d2(x, y) = ‖x‖2 + ‖y‖2 − 2〈x, y〉

to eliminate 〈x, y〉.
The following reformulation of the CAT(0) property is now immediate:

Proposition 11.4. A metric space X is a CAT(0) space if and only if for
any x, y ∈ X there is a geodesic [x, y] with the following property: For any
point p = pt ∈ [x, y] and any z ∈ X,

d2(z, p) ≤ (1− t)d2(z, x) + td2(z, y)− t(1− t)d2(x, y) . (11.3)

	


Note that both versions of the definition allow for the possibility that there
is more than one geodesic joining two given points. But we can quickly deduce
that in fact this does not happen:

Proposition 11.5. For any two points x, y in a CAT(0) space X, there is a
unique geodesic [x, y] joining them. It is characterized by

[x, y] = {z ∈ X | d(x, y) = d(x, z) + d(z, y)} . (11.4)

Proof. Any geodesic joining x and y is contained in the set on the right side
of (11.4). It therefore suffices to show that the right side is contained in the
left, with [x, y] as in the definition of “CAT(0) space.” Suppose z satisfies
d(x, y) = d(x, z) + d(z, y), and let p = pt ∈ [x, y], where t := d(x, z)/d(x, y),
so that d(x, p) = d(x, z) and d(p, y) = d(z, y). Then the comparison triangle
in R

2 with vertices x̄, ȳ, z̄ degenerates to the line segment [x̄, ȳ], and z̄ = p̄.
Hence d(z, p) = 0 by (11.1), so z = p ∈ [x, y]. (Alternatively, check that the
right side of (11.3) is equal to 0 under our assumptions.) 	


Remarks 11.6. (a) Our definition of “CAT(0)” is similar to one of several
equivalent conditions given in Bridson–Haefliger [48, I.1.7(2)], but it is super-
ficially different from the latter. Where we stated “there is a geodesic [x, y]”
with a certain property, they require the property to hold for all geodesics.
But the two definitions are in fact equivalent, since our definition implies
uniqueness of geodesics.
∗ Pappus’s version is d2(z, x) + d2(z, y) = 2

(
d2(z, m) + d2(m, y)

)
, where m := p1/2

is the midpoint of [x, y].
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(b) The “0” in “CAT(0)” refers to the fact that the comparison space R
2 has

curvature 0. More generally, there is a notion of CAT(κ) space for any real
number κ, where R

2 is replaced by the complete simply connected 2-manifold
of constant curvature κ. This is the sphere of radius 1/

√
κ if κ > 0, and it is

the hyperbolic plane with metric scaled by 1/
√
−κ if κ < 0. In case κ > 0,

some care is needed in formulating the definition because comparison triangles
in the sphere will exist only if the points x, y, z are sufficiently close together.
When κ = 1, for example, one assumes in the definition that d(x, y) < π,
and one considers only points z such that d(x, y) + d(y, z) + d(z, x) < 2π. In
particular, X is not required to be a geodesic metric space; we require only
that geodesics exist between points at distance < π from one another. [And
these geodesics then turn out to be unique.]

We will use Proposition 11.4 to prove that geodesic segments in a CAT(0)
space vary continuously with their endpoints; see [48, Proposition II.1.4] for
a different proof. In the precise statement of the result, we denote by pt(x, y)
the point pt as above on the unique geodesic [x, y].

Proposition 11.7. Let X be a CAT(0) space. Then the map (x, y, t) �→
pt(x, y) is continuous as a function of x, y, t. In particular, X is contractible.

Proof. Fix x, y, t and apply the inequality (11.3) to z = pt′(x′, y′) for (x′, y′, t′)
close to (x, y, t). Since d(z, x) is close to d(z, x′) = t′d(x′, y′), it is clear that
d(z, x) → td(x, y) as (x′, y′, t′) → (x, y, t); hence the first term on the right side
of (11.3) approaches (1 − t)t2d2(x, y). Similarly, the second term approaches
t(1− t)2d2(x, y). The right side of (11.3) therefore approaches

(1− t)t2d2(x, y) + t(1− t)2d2(x, y)− t(1− t)d2(x, y) = 0 ,

whence d
(
z, pt(x, y)

)
→ 0. 	


Next, we return to Euclidean geometry and note a simple qualitative con-
sequence of the generalized parallelogram law (11.2): If we move z so that it
gets closer to x and y, then it also gets closer to p. More precisely:

Proposition 11.8. Consider two triangles in the Euclidean plane, with ver-
tices x, y, z and x, y, z′. Let p be an arbitrary point on the common side [x, y].
If d(z′, x) ≤ d(z, x) and d(z′, y) ≤ d(z, y), then d(z′, p) ≤ d(z, p). 	


See Figure 11.2 for an illustration, and see Exercise 11.11 for an alternative
proof that is slightly longer but provides better intuition as to why the result
is true.

Finally, we record the special case t = 1/2 of the inequality (11.3), which
suffices for many purposes. Letting m be the midpoint p1/2 of [x, y], we can
write this special case as

d2(z,m) ≤ 1
2
(
d2(z, x) + d2(z, y)

)
− 1

4
d2(x, y) . (NC)

[“(NC)” is intended to suggest nonpositive curvature.] Thus every CAT(0)
space has the following property, first introduced by Bruhat–Tits [59]:
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z′

p

z

x

y

Fig. 11.2. Two triangles in the Euclidean plane.

(NC) For any two points x, y ∈ X there is a point m ∈ X such that inequal-
ity (NC) holds for all z ∈ X.

Conversely, property (NC) “almost” implies CAT(0), and it does imply
CAT(0) if the metric space is complete (see Exercise 11.14 below).

Exercises

11.9. Let [x, y] and [y, z] be geodesics in an arbitrary metric space X. If
d(x, z) = d(x, y) + d(y, z), show that there is a geodesic [x, z] obtained
by concatenating [x, y] and [y, z]. More precisely, let α : [a, b] → [x, y] and
β : [b, c] → [y, z] be isometries with α(a) = x, α(b) = β(b) = y, and β(c) = z,
where a ≤ b ≤ c in R. Let γ : [a, c] → X be given by γ|[a,b] = α and γ|[b,c] = β.
Then γ is an isometry from [a, c] onto [x, y] ∪ [y, z].

11.10. Give an alternative proof of the generalized parallelogram law by de-
ducing it from the law of cosines.

11.11. Consider a triangle with side lengths a, b, c in the Euclidean plane. Let
θ be the angle opposite the side of length c. If a and b are fixed while θ varies
from 0 to π, then c strictly increases from |a − b| to a + b. (One can give a
rigorous proof of this intuitively obvious fact via the law of cosines.) Use this
fact to give an alternative proof of Proposition 11.8.

Assume throughout the remaining exercises that X is a metric space with
property (NC).

11.12. Show that the point m necessarily satisfies

d(x,m) = d(y,m) =
1
2
d(x, y) .

Moreover, m is the only point satisfying these equations, so we may call m
the midpoint of the pair {x, y}.
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11.13. Given three points a, b, c ∈ X, let m1 be the midpoint of {a, b} and
let m2 be the midpoint of {a, c}. Show that d(b, c) ≥ 2d(m1,m2). Intuitively,
this says that two geodesics emanating from a given point separate at least
as quickly as they would in Euclidean space.

11.14. Fix x, y ∈ X and let t ∈ [0, 1] be a dyadic rational number, i.e., a
rational number whose denominator is a power of 2. Show that there is a point
pt ∈ X such that the inequality (11.3) holds for all z ∈ X. Show further that
any such pt can be characterized as the unique point satisfying the equations

d(x, pt) = td(x, y) ,

d(y, pt) = (1− t)d(x, y) .

Extend all this to arbitrary t ∈ [0, 1] if X is complete.

11.15. A subset Y of X will be called midpoint convex if it contains the
midpoint of any pair of its points. Suppose that Y is midpoint convex, let
x ∈ X be arbitrary, and let d = d(x, Y ) := infy∈Y d(x, y). If there is a point
y ∈ Y such that d(x, y) = d, show that d(y, y′) ≤ d(x, y′) for all y′ ∈ Y .

11.2 Euclidean Buildings as Metric Spaces

Assume throughout this section that ∆ is a Euclidean building, equipped with
an arbitrary system of apartments A. Nothing we do will depend on the choice
of A.

Let X be the geometric realization |∆| of the simplicial complex ∆ (Sec-
tion A.1.1). For the moment, we view X as a set, with no topology. [We will
soon endow X with a metric, and hence a topology.] The set X is the union of
open simplices |A|, one for each nonempty simplex A ∈ ∆. To avoid cumber-
some notation, we will omit the vertical bars and simply denote by A this open
simplex and by A the corresponding closed simplex. Thus A now denotes the
geometric realization of the subcomplex ∆≤A that we have sometimes called A
in earlier chapters.

It will be convenient to apply to X terminology that we have previously
used for the abstract complex ∆. In particular, we will refer to X itself as
a building and to the subsets E = |Σ| as apartments (Σ ∈ A). For any
such apartment E and any chamber C of E, the geometric realization of
ρΣ,C : ∆ → Σ is a retraction X → E, denoted by ρE,C .

In view of Section 10.2.1, each apartment E of X is a Euclidean space,
with a metric dE . Moreover, the isomorphisms between apartments given by
the building axiom (B2) can be taken to be isometries. We now wish to piece
the metrics dE together to make the entire building X a metric space.

Given two points x, y ∈ X, axiom (B1) implies that there is an apart-
ment E containing both x and y. Choose such an E and set
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d(x, y) := dE(x, y) .

If E′ is another apartment containing x and y, then (B2) gives us an isometry
E → E′ fixing x and y, so d(x, y) is independent of the choice of apartment.
We therefore have a well-defined distance function

d : X ×X → R .

This should not be confused with the combinatorial distance function that
we have used before (defined via galleries), although, as we will see, the two
kinds of distance functions have some similar properties. To avoid confusion,
we will write d(−,−) from now on for the combinatorial distance function.

Theorem 11.16.

(1) The distance function d : X ×X → R is a metric.
(2) The metric space X is complete and is a CAT(0) space.
(3) The retraction ρ = ρE,C : X → E is distance-decreasing for any apart-

ment E and chamber C of E, i.e.,

d(ρ(x), ρ(y)) ≤ d(x, y)

for all x, y ∈ X. Equality holds if x ∈ C.
(4) For any x, y ∈ X, choose an apartment E containing x and y and let

[x, y] be the line segment joining them in the Euclidean space E. Then
[x, y] is independent of the choice of E and can be characterized by

[x, y] = {z ∈ X | d(x, y) = d(x, z) + d(z, y)} .

Proof. We begin by proving (3), which makes sense even before we know that
d is a metric. The second assertion of (3) follows immediately from the fact
that ρ maps every apartment containing C isometrically onto E. This fact also
implies that for any chamber C ′ of X, ρ maps C ′ isometrically onto its image.
Suppose now that x and y are arbitrary points of X. Choose an apartment E′

containing them, and let [x, y] be the line segment joining them in E′. It is easy
to see that we can subdivide this segment in such a way that each subinterval
is contained in a closed chamber. [Use the fact that the decomposition of E′

into simplices is induced by a locally finite collection H of hyperplanes.] Let
the subdivision points be x = x0, x1, . . . , xm = y. We then have

d(ρ(x), ρ(y)) ≤
m∑

i=1

d(ρ(xi−1), ρ(xi)) =
m∑

i=1

d(xi−1, xi) = d(x, y) ,

where the inequality follows from the triangle inequality in the Euclidean
space E, and the first equality follows from the fact that ρ is an isometry on
each closed chamber. This proves the first assertion of (3).

It is now easy to prove (1), the content of which is that d satisfies the
triangle inequality: Given x, y, z ∈ X, choose an apartment E containing x
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and y, and let ρ = ρE,C for some chamber C of E. Using (3) and the triangle
inequality in E, we find that

d(x, y) ≤ d(x, ρ(z)) + d(ρ(z), y) ≤ d(x, z) + d(z, y) ,

as required.
The same circle of ideas leads easily to the CAT(0) property: Given

x, y ∈ X, choose an apartment E containing them and let [x, y] be the line seg-
ment joining them in E; it is a geodesic in X. Given z ∈ X and p = pt ∈ [x, y]
(0 ≤ t ≤ 1), choose a chamber C of E with p ∈ C, and let ρ be the re-
traction ρE,C . By (3) we have d(ρ(z), x) ≤ d(z, x), d(ρ(z), y) ≤ d(z, y), and
d(ρ(z), p) = d(z, p). There are now two ways to finish. Method 1: According
to the criterion of Proposition 11.4, we must verify

d2(z, p) ≤ (1− t)d2(z, x) + td2(z, y)− t(1− t)d2(x, y) .

This follows from the generalized parallelogram law in E, which gives

d2(ρ(z), p) = (1− t)d2(ρ(z), x) + td2(ρ(z), y)− t(1− t)d2(x, y) .

Method 2: We use our original definition of CAT(0), taking the comparison
triangle x̄, ȳ, z̄ to be in E, with x̄ = x and ȳ = y. Then p̄ = p, and we must
prove d(z, p) ≤ d(z̄, p). This follows from Proposition 11.8, applied to the
Euclidean triangles x, y, z̄ and x, y, ρ(z). This completes the proof that X is
a CAT(0) space, and assertion (4) follows immediately via Proposition 11.5.

Finally, we must show that X is complete. Fix a chamber C and let
τ : X → C be the geometric realization of the unique retraction ∆ → ∆≤C

(Proposition A.13). For any chamber C ′, we claim that τ maps C ′ isomet-
rically onto C. To see this, choose an apartment E = |Σ| containing C
and C ′ and let w be the unique type-preserving automorphism of Σ such
that wC ′ = C. Then τ |C′ is induced by the restriction of w to C ′ and its
faces, and the assertion now follows from the fact that w is an isometry of E.

It now follows easily that τ is distance-decreasing; the proof is the same
as the proof of the analogous fact about retractions onto apartments. So if we
are given a Cauchy sequence (xm)m≥1 in X, then the image sequence (τ(xm))
is a Cauchy sequence in C. The latter being a closed subset of a Euclidean
space, it follows that there is a point y ∈ C such that τ(xm) → y as m→∞.
Choose for each m a chamber Cm with xm ∈ Cm, and let ym be the unique
point in Cm such that τ(ym) = y. (We will then say that ym is of type y.)
Since τ |Cm

is an isometry, we have

d(xm, ym) = d(τ(xm), y) → 0 as m→∞ ;

hence (ym) is also a Cauchy sequence. On the other hand, we claim that the
set of points of a given type y is discrete. [Draw a picture of the tree case
to see why this is intuitively plausible.] Hence the Cauchy sequence (ym) is



11.2 Euclidean Buildings as Metric Spaces 557

eventually constant, and the fact that d(xm, ym) tends to 0 now says that
xm → y′, where y′ := ym for large m.

It remains to prove the discreteness claim. Recall that the star of a point
x ∈ X, denoted by stx or stX x, is the union of the closed simplices A con-
taining x. If our metric on X is at all reasonable, we expect the star of x to
be a neighborhood of x. In fact, a more precise statement is true:

Lemma 11.17. Given y ∈ C there is a δ > 0 with the following property: For
any x ∈ X of type y, st x contains the closed ball of radius δ centered at x.

Now st x contains no point distinct from x and having the same type
as x. So the lemma implies that d(x, x′) > δ for any two distinct points x, x′

of type y. This proves the claim and completes the proof of the theorem,
modulo the lemma. 	


Proof of the lemma. Choose an apartment E containing C, and let H be the
locally finite collection of walls that defines the simplicial decomposition of E.
Let δ be the minimum distance from y to a wall H ∈ H not containing y.
Then for any y′ ∈ E with d(y, y′) ≤ δ, the open segment (y, y′) does not cross
any wall. We therefore have (y, y′) ⊆ A for some open cell A; hence y, y′ ∈ A
and y′ ∈ stE y.

Now suppose x and x′ are points of X with x of type y and d(x, x′) ≤ δ. We
can find an apartment E′ containing x and x′ and an isomorphism φ : E′ → E
such that φ(x) = y. Then d(y, φ(x′)) ≤ δ, so φ(x′) ∈ stE y by the previous
paragraph and hence x′ ∈ stE′ x ⊆ stX x. 	


Exercises

11.18. The open star of x is the union of the open simplices A such that
x ∈ A. State and prove an analogue of the lemma for open stars.

11.19. Let X ′ be a subcomplex of X, i.e., X ′ = |∆′| for some subcomplex ∆′

of ∆. [Equivalently, X ′ is a subset of X that is a union of closed simplices.]
Deduce from Exercise 11.18 that X ′ is a closed subset of X.

11.20. Deduce from Exercise 11.18 or 11.19 that any chamber C is an open
subset of X.

11.21. Let ∆′ be a subcomplex of ∆, and let X ′ = |∆′|. Show that ∆′ is a
convex subcomplex as defined in Section 4.11 if and only if X ′ is convex in
the following sense: For any points x, y ∈ X ′, the geodesic [x, y] is contained
in X ′.

The next exercise assumes some knowledge of differential geometry.

11.22. Use the ideas in the proof of Theorem 11.16 to show that a complete
simply connected Riemannian manifold M with sectional curvature ≤ 0 is a
CAT(0) space.
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11.3 The Bruhat–Tits Fixed-Point Theorem

If G is a compact group of isometries of a complete simply connected Rie-
mannian manifold M of nonpositive curvature, then a famous theorem of
É. Cartan says that G fixes a point of M . Cartan’s fixed-point theorem is a
fundamental tool in the theory of Lie groups. In this section we will prove a
generalization of Cartan’s theorem to complete CAT(0) spaces. This general-
ization, due to Bruhat and Tits [59], then applies to Euclidean buildings as
well as to complete simply connected manifolds of nonpositive curvature. Like
Cartan’s theorem, the Bruhat–Tits theorem has applications to group theory;
we will explore these in the next section.

Theorem 11.23. Let G be a group of isometries of a complete CAT(0)
space X. If G stabilizes a nonempty bounded subset of X, then G fixes a
point of X.

Remarks 11.24. (a) In the situation of Cartan’s theorem, where G is com-
pact, any orbit Gx is a bounded set stabilized by G. So Cartan’s theorem is
indeed a special case of the Bruhat–Tits theorem.

(b) The geometric realization of a tree is a complete CAT(0) space. The the-
orem in this case can be found in Serre [217, Section I.4.3, Proposition 19],
which also contains applications to group theory.

(c) Theorem 11.23 is of interest even when X is a Euclidean space or, more
generally, a Hilbert space (real or complex, possibly infinite-dimensional). The
result in this case has a cohomological interpretation, which is often used in
representation theory; see Exercise 11.30 below.

The Bruhat–Tits proof of Theorem 11.23 consists in associating to every
nonempty bounded subset A ⊆ X a point c = c(A) ∈ X which, intuitively, is
some sort of “center” of A. The construction of c depends only on the metric
on X, so it is compatible with isometries. In particular, if A is invariant under
a group G of isometries of X, then c is fixed by G.

We will give a variant of this proof due to Serre [private communication].
The basic idea remains the same, but Serre’s definition of c(A) is different
from that of Bruhat and Tits. Namely, c(A) is defined to be the center of the
sphere circumscribed about A. Here are the details.

Let X be an arbitrary metric space and A a nonempty bounded subset. For
any x ∈ X, let r(x,A) be the smallest real number r such that A is contained
in the closed ball of radius r centered at x; equivalently,

r(x,A) = sup
a∈A

d(x, a) .

Definition 11.25. The circumradius of A, denoted by r(A), is defined by

r(A) := inf
x∈X

r(x,A).
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If r(A) = r(x,A) for some x ∈ X, then any such x will be called a circumcenter
of A.

See Figure 11.3 for an example. For a simpler example, note that the
midpoint m that occurs in property (NC) is a circumcenter (and even the
unique circumcenter) of the two-point set {x, y}.

r(A)

x

A

Fig. 11.3. x is a circumcenter of A.

If X is a sphere, which is a manifold of positive curvature, then circum-
centers always exist but are not necessarily unique (see Exercise 11.29 below).
In Euclidean space, however, it is known that circumcenters exist and are
unique. More generally, we have the following observation of Serre:

Theorem 11.26. If X is a complete CAT(0) space, then every nonempty
bounded subset A admits one and only one circumcenter.

As we explained above, Theorem 11.23 follows immediately from Theo-
rem 11.26; for the circumcenter of A will clearly be fixed by any group of
isometries of X that stabilizes A. It remains to prove Theorem 11.26.

Proof of Theorem 11.26. For any two points x, y ∈ X, we can apply the in-
equality (NC) with z ∈ A to get

r2(m,A) ≤ 1
2
(
r2(x,A) + r2(y,A)

)
− 1

4
d2(x, y) ,

where m is the midpoint of {x, y}. Hence

d2(x, y) ≤ 2
(
r2(x,A) + r2(y,A)− 2r2(m,A)

)
.

Since r(m,A) ≥ r(A), this implies

d2(x, y) ≤ 2
(
r2(x,A) + r2(y,A)− 2r2(A)

)
. (11.5)

Uniqueness of the circumcenter is now immediate; for if x and y are both
circumcenters, then the right side of (11.5) is 0, and hence x = y. To prove
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existence, take a sequence of points xn ∈ X such that r(xn, A) → r(A), and
apply (11.5) with x = xn and y = xm. Then the right side can be made
arbitrarily small by taking n and m sufficiently large, so (xn) is a Cauchy
sequence. Hence (xn) has a limit x ∈ X, and it is easy to check that r(x,A) =
r(A). 	


We close this section by proving one more result about circumcenters. This
will not be needed in what follows, but it provides a nice illustration of the
inequality (NC). In Euclidean geometry, it is known that the circumcenter of
a bounded set A is contained in the closure of the convex hull of A. We will
show that this too generalizes to complete CAT(0) spaces.

Theorem 11.27. Let X be a complete CAT(0) space, let A be a nonempty
bounded subset, and let Y be the smallest closed convex subset of X that con-
tains A. Then the circumcenter of A is contained in Y .

Here a subset of X is convex if it contains the (unique) geodesic joining
any two of its points. At first glance it might seem that the theorem is a
formal consequence of Theorem 11.26. For Y , in its own right, is a complete
CAT(0) space, so Theorem 11.26 implies that A has a circumcenter in Y .
What is not obvious, however, is that the circumcenter of A in Y is the
same as its circumcenter in X. In other words, it is conceivable that the
circumradius rY (A) of A in Y is bigger than the circumradius rX(A) of A
in X. Theorem 11.27 will follow as soon as we prove that this cannot happen.
This result does not require geodesics or completeness, so we will formulate
it in terms of property (NC) and the notion of “midpoint convexity” defined
in Exercise 11.15.

Lemma 11.28. Let X be a metric space with property (NC), and let Y be
a midpoint-convex subset. Then rY (A) = rX(A) for any nonempty bounded
subset A ⊆ Y .

Proof. Given any x ∈ X and any r > r(x,A), we must find y ∈ Y such
that r(y,A) ≤ r. This is easy if there is a y ∈ Y with d(x, y) = d(x, Y );
in this case we have r(y,A) ≤ r(x,A) < r by Exercise 11.15. In the general
case, let d = d(x, Y ), and choose a sequence of points yn ∈ Y such that
dn := d(x, yn) → d. We will show that r(yn, A) ≤ r for some n. Suppose this
is false. Then for each n we can find a point an ∈ A such that d(yn, an) > r.
As in the solution to Exercise 11.15, consider the points pt between yn and an,
where t ranges over the dyadic rationals in [0, 1]. These points are in Y , and
we have

d2 ≤ d2(x, pt) ≤ (1− t)d2
n + tr2(x,A)− t(1− t)r2 .

Fixing t and letting n →∞, we conclude that

d2 ≤ (1− t)d2 + tr2(x,A)− t(1− t)r2 = d2 + αt + r2t2 ,

where α := −d2 + r2(x,A) − r2. But this is absurd; for α is negative, so
αt + r2t2 < 0 for small t > 0. This contradiction shows that r(yn, A) ≤ r for
some n, as required. 	
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Exercises

11.29. (a) If X is a compact metric space, show that every nonempty subset
admits a circumcenter.

(b) If X is a sphere (of any dimension ≥ 0), show that X has subsets with
more than one circumcenter. In fact, there is even a subset such that every
point of X is a circumcenter. (More generally, this happens whenever X
is a metric space of finite diameter that admits a transitive group of
isometries.)

11.30. Let V be a real or complex Hilbert space on which a group G acts by
linear isometries. A 1-cocycle on G with values in V is a function c : G → V
such that c(gh) = c(g) + gc(h) for all g, h ∈ G. It is called a coboundary if
there is a vector v ∈ V such that c(g) = gv − v for all g ∈ G. Deduce from
Theorem 11.23 that a cocycle is a coboundary if and only if it is bounded.

11.4 Application: Bounded Subgroups

There is a classical application of Cartan’s fixed-point theorem to the study
of compact subgroups of a Lie group G: Under suitable hypotheses on G,
one constructs a complete simply connected Riemannian manifold X of non-
positive curvature on which G acts as a group of isometries; the fixed-point
theorem then implies that any compact subgroup of G must be contained in
the stabilizer Gx of some point x ∈ X. If G = SLn(R), for instance, then G acts
transitively on the associated X and has the special orthogonal group SOn(R)
as one of the stabilizers. The conclusion, then, is that every compact subgroup
of SLn(R) is conjugate to a subgroup of SOn(R). [Note: The group SOn here is
defined with respect to the standard Euclidean inner product on R

n, not the
“standard quadratic form” used in Section 6.7.1.] In this section we will use
the Bruhat–Tits fixed-point theorem to prove similar results for groups acting
on Euclidean buildings. These results then apply to certain “p-adic groups”
such as SLn(Qp).

Definition 11.31. Let G be a group with a BN-pair, and let ∆ = ∆(G,B)
be the associated building. We say that the BN-pair is Euclidean if ∆ is a
Euclidean building.

Assume throughout this section that G is a group with a Euclidean BN-
pair. It is then immediate from the definition of the metric on X := |∆| that
G acts as a group of isometries of X. In many cases G has a natural topology,
so that the notion of compact subgroup makes sense. In general, however, it
is more convenient to deal with “bounded” subgroups. We begin by figuring
out what that should mean.

Lemma 11.32. Let G be a group with a Euclidean BN-pair. The following
conditions on a subset F ⊆ G are equivalent:
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(i) F is contained in a finite union of double cosets BwB.
(ii) For some x ∈ X, the set Fx := {gx | g ∈ F} is a bounded subset of the

metric space X.
(iii) For every bounded set Y ⊆ X, the set FY :=

⋃
y∈Y Fy is a bounded

subset of X.

Proof. (i) =⇒ (ii): It suffices to consider the case that F is a double coset
BwB. Let C be the fundamental chamber of X; it is fixed pointwise by B.
Let w̃ be a representative of w in N . Then for any g = bw̃b′ ∈ F and any
x ∈ C, we have

d(x, gx) = d(bx, gx) = d(x, w̃b′x) = d(x,wx) .

Hence Fx is contained in the sphere of radius r := d(x,wx) centered at x.
(ii) =⇒ (iii): This is left as an exercise; it is valid for any set of isometries

of any metric space.
(iii) =⇒ (i): By (iii) applied with Y equal to the fundamental chamber C,

the set FC is bounded. So there is a bound on the metric distance between
C and gC (g ∈ F ), and it follows easily that there are only finitely many
possibilities for the Weyl distance δ(C, gC). [All Weyl distances can be com-
puted by means of galleries in a fixed bounded set in the model Coxeter com-
plex Σ(W,V ). Such a set meets only finitely many chambers because of the
local finiteness of the set of hyperplanes defining the simplicial decomposition.]
Hence F is contained in a finite union of double cosets by the interpretation
of the Bruhat decomposition given in Section 6.1.4.

Alternatively, we could argue as follows: Let E be an apartment contain-
ing C, and let ρ = ρE,C : X → E. Since ρ is distance-decreasing, ρ(FC) is a
bounded subset of E. As above, this set meets only finitely many chambers.
The interpretation of the Bruhat decomposition given in Exercise 6.18 now
implies that F is contained in a finite union of double cosets. 	


Definition 11.33. We will call a set F ⊆ G bounded if it satisfies the equiv-
alent conditions of the lemma.

Exercises 11.40 and 11.41 below should convince you that this definition is
reasonable.

We are now ready to apply the fixed-point theorem. Note that the stabiliz-
ers of the points of X are the same as the stabilizers of the nonempty simplices;
hence they are the proper parabolic subgroups. In particular, the maximal ele-
ments among these stabilizers are the maximal (proper) parabolic subgroups,
which are the stabilizers of the vertices. We will omit the word “proper” in
what follows, since the notion of “maximal parabolic subgroup” would be of
no interest otherwise.

Theorem 11.34. Let G be a group with a Euclidean BN-pair. The following
conditions on a subgroup H ≤ G are equivalent:
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(i) H is bounded.
(ii) H fixes a point of X.
(iii) H fixes a vertex of X.
(iv) H is contained in a maximal parabolic subgroup.

Proof. It is immediate that (iv) ⇐⇒ (iii) ⇐⇒ (ii) =⇒ (i). The content of
the theorem, then, is that (i) =⇒ (ii), and this follows from the fixed-point
theorem. 	


Corollary 11.35. Every bounded subgroup is contained in a maximal bounded
subgroup, and the maximal bounded subgroups are the maximal parabolic sub-
groups. G contains precisely n + 1 conjugacy classes of maximal bounded sub-
groups, where n := dimX; they are represented by the standard parabolic
subgroups BWJB with J = S � {s} for some s ∈ S. 	


Remark 11.36. Suppose we are in the situation that G is a topological group
and “bounded” is the same as “relatively compact” (e.g., G = SLn(Qp)).
Then a maximal bounded subgroup is necessarily compact, since otherwise
its closure would be a bigger bounded subgroup. Consequently, the corollary
remains valid with “bounded” replaced by “compact.”

We close this section by proving that the building ∆ can be entirely re-
constructed from the group G, viewed simply as a bornological group in the
sense of Exercise 11.41 below. In particular, in the situation of Remark 11.36,
∆ can be reconstructed from G as a topological group. The precise statement
will be given in Theorem 11.38 below.

Recall that ∆ can be identified with the poset of parabolic subgroups of G,
ordered by reverse inclusion. Recall also that all buildings are flag complexes
(Exercise 4.50). Hence ∆ is the flag complex of the incidence geometry con-
sisting of the maximal parabolic subgroups, with two maximal parabolics P,Q
incident if and only if P ∩ Q contains a parabolic subgroup. [This says pre-
cisely that the corresponding vertices of ∆ are joinable.] Since any subgroup
of G containing a parabolic subgroup is itself parabolic, we can state this more
simply: P and Q are incident if and only if P ∩Q is parabolic.

Lemma 11.37. If P and Q are distinct maximal parabolics, then P ∩ Q is
parabolic if and only if P ∩Q is a maximal (proper) subgroup of P .

Proof. Let x (resp. y) be the vertex fixed by P (resp. Q). If P ∩Q is parabolic,
then x and y are joinable and P ∩Q is the stabilizer of the edge A that they
determine. Any subgroup P ′ with P > P ′ > P ∩ Q would be parabolic and
would therefore correspond to a simplex A′ with {x} < A′ < A. So no such P ′

can exist, i.e., P ∩Q is maximal in P .
Conversely, suppose that P ∩Q is a maximal subgroup of P , and consider

the geodesic [x, y]. It is fixed pointwise by P ∩ Q, since the latter is a group
of isometries fixing x and y. For any x′ ∈ (x, y] sufficiently close to x, the
segment (x, x′] is contained in some simplex A of positive dimension having x
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as a vertex; hence the stabilizer P ′ of x′ (which is the same as the stabilizer
of A) is properly contained in P . We therefore have P > P ′ ≥ P ∩Q, which
implies that P ∩Q is equal to the parabolic subgroup P ′. 	


We have now obtained the following description of ∆ in terms of G:

Theorem 11.38. The building ∆ associated to a group G with a Euclidean
BN-pair is isomorphic to the flag complex of the incidence geometry consisting
of the maximal bounded subgroups of G, where two distinct such subgroups P,Q
are incident if and only if P ∩Q is a maximal subgroup of P . 	


There is an analogous theorem about Lie groups. Under suitable hypothe-
ses on a Lie group G, the associated manifold X of nonpositive curvature
can be identified with the set of maximal compact subgroups of G, and the
Riemannian-manifold structure on X depends only on G as a topological
group.

Remark 11.39. Notice that we have made no essential use of the N in the
BN-pair. In fact, we could simply have assumed that we were given a Tits
subgroup B of G such that ∆(G,B) is Euclidean.

Exercises

11.40. Suppose G = SLn(K) as in Section 6.9. Show that a set F is bounded
if and only if there is an upper bound on the absolute values of the matrix
entries of the elements of F . If K is complete and the residue field k is finite
(e.g., K = Qp), show further that F is bounded if and only if it is relatively
compact. Here G is topologized as a subset of the vector space of n × n
matrices, and a set is called relatively compact if its closure is compact.

11.41. Show that our notion of “bounded set” satisfies the following condi-
tions, which are the axioms for a bornology on a set:

(1) Every singleton is bounded.
(2) If F ′ ⊆ F and F is bounded, then F ′ is bounded.
(3) A finite union of bounded sets is bounded.

Show further that the following two axioms for a bornological group are satis-
fied:

(4) If F1 and F2 are bounded, then so is their product F1F2.
(5) If F is bounded, then so is F−1.

11.42. Describe the n conjugacy classes of maximal bounded subgroups
of SLn(K).
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11.5 Bounded Subsets of Apartments

We return to the study of a general Euclidean building X = |∆|, equipped
with an arbitrary system of apartments. The theorem of this section is the
analogue for Euclidean buildings of the fact that a spherical building admits a
unique system of apartments, consisting of the convex hulls of pairs of opposite
chambers (Theorem 4.70).

Recall that a subset X ′ ⊆ X is called convex if it contains the geodesic
[x, y] connecting any two of its points x, y. If X ′ is a chamber subcomplex
of X (by which we mean that it is the geometric realization of a chamber
subcomplex of ∆), then it is convex if and only if it contains every minimal
gallery joining any two of its chambers; see Exercise 11.21.

Given chambers C,C ′ of X, let B(C,C ′) be the smallest convex subcom-
plex containing C and C ′. In other words, B(C,C ′) is the geometric realization
of the combinatorial convex hull Γ (C,C ′) discussed in Section 4.11.1 and il-
lustrated in Figure 3.11. In particular, B(C,C ′) is the union of the closed
chambers that can occur in a minimal gallery from C to C ′.

Theorem 11.43. Let B be the collection of bounded subsets Y ⊆ X such
that Y is contained in an apartment. Then B is independent of the system
of apartments A. In fact, B consists of all subsets Y ⊆ X such that Y is
contained in B(C,C ′) for some pair C,C ′ of chambers.

The proof of the theorem requires a result about Euclidean Coxeter com-
plexes analogous to Lemma 4.69. We need some terminology before we can
state it.

Definition 11.44. Let E = |Σ| be the geometric realization of a Euclidean
Coxeter complex, and let H be the associated set of hyperplanes in E. Fix
x ∈ E and let H be the set of hyperplanes through x and parallel to some
element of H. Then H is finite (Theorem 10.8) and defines a decomposition
of E into conical cells A with x as the cone point. These cells will simply be
referred to as conical cells based at x.

For example, the open sector bounded by the heavy lines in Figure 11.4 is
a conical cell. The open rays bounding the sector are also conical cells, as is
the singleton {x}.

Here is another description of the conical cells that we will often use:
Choose an identification of Σ with the complex Σ(W,V ) associated to a
Euclidean reflection group. This yields an identification of E with V . Let
W be the finite reflection group consisting of the linear parts of the elements
of W . The conical cells based at x, then, are simply the translates A = x+D,
where D is a cell associated to W . We will call D the direction of A.

Definition 11.45. If the W -cell D is a chamber (hence a simplicial cone),
then the conical cell x + D will be called a sector (“quartier” in [59]).
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x

Fig. 11.4. Conical cells based at x.

If the n walls of D are defined by linear equations fi = 0, where fi > 0
on D, then a sector C with direction D is given by linear inequalities of the
form fi > ci (i = 1, . . . , n). It is clear from this that the intersection of two
sectors with direction D is again a sector with direction D. See Figure 11.5.

Fig. 11.5. The intersection of two sectors with the same direction.

If C and C′ are sectors with C′ ⊆ C, then we will say that C′ is a subsector
of C. Note that C and C′ then necessarily have the same direction. For suppose
C = x + D and C′ = x′ + D′. Letting D be defined by inequalities fi > 0 as
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above, we conclude that the fi are bounded below on D′; hence no fi can
be negative on the cone D′. Thus fi > 0 on D′ for all i, which implies that
D′ ⊆ D and hence D′ = D.

Consider now two sectors C1 := x + D and C2 := y −D having opposite
directions ±D. Let C1 and C2 be the closures x + D and y − D. Assume
that x ∈ C2 and y ∈ C1, so that the two closed sectors C1,C2 overlap, as in
Figure 11.6.

C1 = x + D C2 = y −Dy x

Fig. 11.6. Two sectors with opposite directions.

We will show that if C1 and C2 are chambers that are “sufficiently far
out” in C1 and C2, respectively, then B(C1, C2) contains the overlap C1 ∩ C2.
Let C′

1 be the subsector of C1 based at y and let C′
2 be the subsector of C2

based at x, as indicated by the dotted lines in Figure 11.7; in other words,
C′

1 = y + D and C′
2 = x−D.

C′
1 = y + D C′

2 = x−D

Fig. 11.7. Subsectors.

Lemma 11.46. With the notation above, suppose C1 and C2 are chambers
in E such that C1 meets C′

1 and C2 meets C′
2. If C is any chamber of E such

that C meets C1 ∩ C2, then C ⊆ B(C1, C2).
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(Note: Since sectors are open sets, the hypothesis that Ci meets C′
i implies

that Ci meets C′
i.)

Proof. We must show that no wall (i.e., element of H) separates C from both
C1 and C2. Let H be a wall, defined by a linear equation f = c. We may
choose f such that f > 0 on D, in which case we will say that the closed
half-space f ≥ c (resp. f ≤ c) is the positive (resp. negative) side of H. (In
Figures 11.6 and 11.7, think of C1 and C′

1 as opening in the positive direction.)
The closed chamber C is on one side of H. Suppose first that it is on

the positive side. Then y must be on the positive side of H. For if y were
strictly on the negative side, then C2 would be strictly on the negative side,
contradicting the fact that C2 meets C. It follows that C′

1 is strictly on the
positive side of H, and hence C1 is on the positive side. Thus H does not
separate C from C1. A similar argument shows that H does not separate C
from C2 if C is on the negative side of H. 	


The following consequence of the lemma is the key step in the proof of
Theorem 11.43:

Corollary 11.47. Let C1 and C2 be arbitrary sectors in E with opposite di-
rections. Given any bounded subset Y of E, there are subsectors C′

1 ⊆ C1 and
C′

2 ⊆ C2 with the following property: If C1 and C2 are chambers in E such
that C1 meets C′

1 and C2 meets C′
2, then B(C1, C2) contains Y .

Proof. Let D be the direction of C1, so that −D is the direction of C2. Observe
first that we can find sectors x + D and y − D as in Lemma 11.46, with
Y ⊆ C1 ∩ C2. In fact, with the notation above, we need only choose constants
ci, c

′
i (i = 1, . . . , n) such that ci < fi < c′i on Y for all i. The lemma therefore

implies that the subsectors y + D and x−D have the property stated in the
corollary, but they might not be subsectors of the given sectors C1,C2. To
achieve this, we set C′

1 := (y + D) ∩ C1 and C′
2 := (x−D) ∩ C2. 	


Proof of Theorem 11.43. Suppose Y is a bounded subset of an apartment E.
Take an arbitrary pair of sectors in E with opposite directions. Then Corol-
lary 11.47 implies that there is a pair of chambers C1, C2 in E such that
Y ⊆ B(C1, C2). Conversely, given chambers C,C ′ of X, choose an apartment
E containing C and C ′. Then the combinatorial convexity of apartments im-
plies that E contains B(C,C ′). The latter is therefore a bounded subset of E
[since there are only finitely many minimal galleries from C to C ′ in E]; hence
so is any subset of it. 	


We close this section with a variant of Corollary 11.47 that will be useful
later.

Lemma 11.48. Let E be the geometric realization of a Euclidean Coxeter
complex, and let C and D be chambers of E. Then there are sectors C1,C2

in E with the following property: For any subsectors C′
1 ⊆ C1 and C′

2 ⊆ C2,
there is a gallery that starts at a chamber meeting C′

1, ends at a chamber
meeting C′

2, and passes through both C and D (in that order).
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Proof. Choose a point x ∈ D and a direction D such that x + d belongs to C
for some d ∈ D. Let C1 be a sector with direction D, and let C2 be a sector
with direction −D. Then any subsector C′

1 ⊆ C1 contains x+td for sufficiently
large t > 0, and any subsector C′

2 ⊆ C2 contains x− td for all sufficiently large
t > 0. We can therefore find points yi ∈ C′

i (i = 1, 2) such that the line
segment [y1, y2] passes through both C and D. Moving y1 and y2 slightly if
necessary, we may assume that they are contained in open chambers of E
and that the line segment never crosses two walls of E simultaneously. The
successive chambers that it passes through therefore form the desired gallery.

	


Exercises

In these exercises E continues to denote the geometric realization of a Euclid-
ean Coxeter complex.

11.49. Take x = y in Lemma 11.46, so that C1 and C2 meet only at the
basepoint x. Deduce that B(C1, C2) contains a neighborhood of x in E if C1

meets C1 and C2 meets C2.

11.50. Let H be a wall and C a sector in E. Show that one of the roots of E
determined by H contains a subsector of C.

11.51. Fill in the missing details in the proof of Lemma 11.48.

11.6 A Metric Characterization of the Apartments

Assume now that A is the complete system of apartments in our Euclidean
building X = |∆|. In view of Section 11.5, of course, anything we say concern-
ing bounded subsets of apartments will then apply to an arbitrary apartment
system. Recall that we stated two characterizations of the apartments as sim-
plicial complexes in Remark 4.56, and we characterized them as W-metric
spaces in Section 5.5.2. We now characterize them as ordinary metric spaces.
The ideas in this section are very similar to those in Section 5.5.

Theorem 11.52. Let n = dim X. Then a subset E ⊆ X is an apartment if
and only if E is isometric to R

n.

Another way to say this is that (a) a subset isometric to R
n is necessarily

a subcomplex, and (b) the collection of all such subcomplexes is a system of
apartments. These assertions can be viewed as generalizations to arbitrary X
of elementary facts about trees. We will deduce Theorem 11.52 from the more
precise Theorem 11.53 below.

Theorem 11.53. Let Y be a subset of X. Assume either that Y is convex or
that Y has nonempty interior. If Y is isometric to a subset of R

n, then Y is
contained in an apartment.
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To deduce Theorem 11.52 from Theorem 11.53, suppose E is isometric
to R

n. Then E is easily seen to be convex in X; this follows from the char-
acterization of geodesics [x, y] given in Theorem 11.16. So Theorem 11.53
implies that E is contained in an apartment E′. But E′ cannot be isometric
to a proper subset of itself, so E must be the entire apartment E′.

The rest of this section will be devoted to the proof of Theorem 11.53.
Choose a type function on ∆ with values in a set S, let W be the Weyl group,
and let E := |Σ(W,S)| be the “model apartment.” We will make heavy use of
certain canonical maps ρD : X → E. These were discussed in Exercises 4.51
and 4.94, but we repeat the relevant facts.

For any chamber D of X there is a canonical type-preserving chamber
map ρ = ρD : X → E such that ρ(D) is the fundamental chamber of E and ρ
maps any apartment containing D isomorphically onto E. It can be described
in terms of retractions onto apartments: If E1 is an apartment containing D
and ι : E → E1 is the unique type-preserving isomorphism that takes the
fundamental chamber of E to D, then the composite ιρ is the retraction
ρE,D : X → E1. This observation, together with Theorem 11.16(3), implies
that ρD is distance-decreasing and preserves distances from points of D, i.e.,
d(ρD(x), ρD(y)) ≤ d(x, y) for x, y ∈ X, with equality if x ∈ D.

On the level of chambers, we can describe ρ by ρ(D′) = δ(D,D′) ∈ W =
C(E) for any chamber D′ of X. Since the fundamental chamber of E is the
identity element of W , we can also write this as

ρ(D′) = wC , (11.6)

where C is the fundamental chamber of E and w = δ(D,D′).
For any chambers D of X and C of E (not necessarily the fundamental

chamber) let τD,C : D → C be the unique type-preserving simplicial isomor-
phism. One can easily check that it is an isometry. [We may assume that C
is the fundamental chamber of E, in which case τD,C is the restriction to D
of ρD; the latter maps any apartment containing D isometrically onto E.] In
case C is the fundamental chamber of E, we will write τD instead of τD,C .

Lemma 11.54. Let Y be a subset of X that contains a nonempty open sub-
set U of a chamber D. If Y is isometric to a subset of R

n, then there is a
unique isometry α from Y into E such that α|U = τD|U . Moreover, α = ρ|Y ,
where ρ = ρD : X → E.

Proof. Suppose first that there exists an isometry α from Y into E such
that α|U = τ |U , where τ := τD. Then ρα−1 : α(Y ) → E fixes the open set
τ(U) = α(U) pointwise and preserves distances from points of τ(U). Hence
ρα−1 = idα(Y ) by Exercise 10.1. This proves the last assertion of the lemma,
as well as the uniqueness of α. To prove existence, start with an arbitrary
isometry β from Y into E. Then β(U) and τ(U) are isometric subsets of E,
and the isometry τβ−1 : β(U) → τ(U) extends to an isometry γ : E → E by
Exercise 10.5 (or [48, Chapter I.2, Proposition 2.20]). So we may take α = γβ.
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The next lemma is the crucial step in the proof.

Lemma 11.55. Let Y be a subset of X that contains a closed chamber D,
and suppose there is an isometry α from Y into E such that α maps D onto
a closed chamber C of E by the map τD,C . Let C ′ be a chamber of E adjacent
to C. Then there is a chamber D′ adjacent to D such that α extends to an
isometry from Y ∪D′ into E taking D′ to C ′ by the map τD′,C′ .

Proof. We may assume that C is the fundamental chamber of E, in which
case α = ρ|Y by Lemma 11.54, where ρ = ρD : X → E. Then C ′ = sC
for some fundamental reflection s ∈ S. We will take D′ to be a suitably
chosen chamber D′ of X such that δ(D′,D) = s. Consider, for the moment,
an arbitrary such D′, and let ρ′ : X → E be the composite sρD′ . [In the
terminology of Exercise 4.51, ρ′ is the canonical map taking D′ to C ′.] We
will show that D′ can be chosen such that ρ′|Y = ρ|Y (= α). This will yield
the lemma. For then ρ′|(Y ∪D′) will extend α, will be τC′,D′ on D′, and will be
an isometry because ρ′ preserves distances from points of D′.

We claim that ρ and ρ′ are related as follows: Let H be the wall of E
separating C from C ′, i.e., the wall fixed by the reflection s. Let U be the
open half-space bounded by H and containing C ′. Then for any x ∈ X we
have ρ(x) = ρ′(x) or sρ′(x). We always have ρ′(x) = ρ(x) except possibly
if ρ(x) ∈ U . In this case there is a choice of D′ (depending on x) such that
ρ′(x) = ρ(x).

Given the claim, we can choose D′ such that ρ′(y) = ρ(y) for some
y ∈ Y ∩ ρ−1(U) (unless the latter is empty, in which case we are already done).
We will show that we then have ρ′(y) = ρ(y) (= α(y)) for all y ∈ Y ∩ ρ−1(U).
Let Z = ρ(Y ) ∩U and let f = ρ′α−1 : Z → E. Then f is distance-decreasing,
f(z) = z or sz for all z ∈ Z, and f(z) = z for at least one z ∈ Z. We want
to conclude that f(z) = z for all z ∈ Z. To this end we use the fact that
d(z, sz′) > d(z, z′) for any z, z′ ∈ U . [This has a proof similar to that of the
analogous combinatorial fact, given in Exercise 3.57. Namely, consider the line
segment [z, sz′], and fold it back onto U to obtain a path from z to z′ that has
the same length but is not straight.] Since f(z) = z for some z ∈ Z, this fact
implies that f(z′) = z′ for all z′ ∈ Z, as required; for otherwise we would have
f(z′) = sz′ for some z′, contradicting the fact that f is distance-decreasing.

It remains to prove the claim. Let D′′ be an arbitrary chamber of X, let
w = δ(D,D′′), and let w′ = δ(D′,D′′):

D′

s
w′

D w D′′

Using equation (11.6) twice, we see that ρ(D′′) = wC and ρ′(D′′) = sw′C.
Recall now that w′ = sw or w; hence ρ′(D′′) = ρ(D′′) or sρ(D′′). More
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precisely, if l(sw) = l(w) + 1, then w′ = sw (hence ρ′(D′′) = ρ(D′′)); if
l(sw) = l(w) − 1, on the other hand, then there is a unique choice of D′

(depending on D′′) for which w′ = sw. The claim follows at once, as soon as
one recalls that l(sw) = l(w)− 1 if and only if wC (= ρ(D′′)) is in U . 	


Lemma 11.56. If Y is a subset of X that contains a closed chamber and is
isometric to a subset of R

n, then Y is contained in an apartment.

(This is a special case of the theorem we are trying to prove; for a closed
chamber has nonempty interior by Exercise 11.20.)

Proof. Let D be a closed chamber contained in Y . By Lemma 11.54 we can
find an isometry α from Y into E that maps D onto the closed fundamental
chamber of E by the map τD. By repeated applications of Lemma 11.55 we can
successively adjoin closed chambers to α(Y ) and extend α−1 to an isometry β
from E into X that is simplicial on each closed chamber of E. But then
β is a chamber map, and its image β(E) is an apartment containing Y by
Proposition 4.59. 	


Proof of Theorem 11.53. In view of Lemma 11.56, it suffices to show that
we can enlarge the given Y to a set that contains a closed chamber and is
still isometric to a subset of R

n. Suppose first that Y has nonempty interior.
Then Y contains a nonempty open subset of a chamber D, and Lemma 11.54
implies that ρ = ρD maps Y isometrically into E. But then ρ also maps Y ∪D
isometrically into E, since ρ preserves distances from points of D. So we are
done in this case.

Suppose now that Y is convex. Choose a simplex A that is maximal among
the simplices meeting Y , and let D be a chamber having A as a face. We claim
that ρ = ρD maps Y ∪D isometrically into E. As above, it suffices to show
that ρ|Y is an isometry. For this purpose it will be convenient to replace the
abstract Coxeter complex E by an apartment containing D and to replace ρ
by the retraction onto that apartment centered at D.

We must show that d(ρ(y), ρ(z)) = d(y, z) for all y, z ∈ Y . We may assume
y, z /∈ D. Choose x ∈ Y ∩ A, and let T ⊆ Y be the convex hull of {x, y, z}.
Note that any isometry α from Y into R

n must take T to the convex hull
of {α(x), α(y), α(z)}; this follows from the characterization of geodesics in
Theorem 11.16. So T is, in an obvious sense, a Euclidean triangle. Since y �= x
and z �= x, it follows that there is a well-defined angle θ at the vertex x, with
0 ≤ θ ≤ π.

If we take any y′ ∈ (x, y] and z′ ∈ (x, z], then the triangle T ′ determined
by {x, y′, z′} has the same angle at x. In particular, we will take y′ and z′ close
enough to x that they are in A and hence in D. [This is possible because of
the maximality of A; for if [x, y], say, does not stay in A for a little while, then
it enters a simplex having A as a proper face.] Now ρ maps [x, y] (resp. [x, z])
isometrically onto [x, ρ(y)] (resp. [x, ρ(z)]) and fixes T ′. The angle θ is therefore
equal to the angle between [x, ρ(y)] and [x, ρ(z)]. By elementary geometry
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(“two sides and the included angle”) we conclude that T is congruent to
the triangle in E with vertices x, ρ(y), ρ(z). Hence d(ρ(y), ρ(z)) = d(y, z), as
required. 	


Exercises

11.57. Extract the following fact from the proof above: Given x, y, z ∈ X
with x �= y and x �= z, there is a well-defined angle θ between [x, y] and [x, z].
[One can actually define angles in much greater generality; see Bridson–
Haefliger [48].]

11.58. With x, y, z, θ as in Exercise 11.57, prove the following cosine inequal-
ity :

d2(y, z) ≥ d2(x, y) + d2(x, z)− 2d(x, y)d(x, z) cos θ ,

with equality if and only if {x, y, z} is contained in an apartment. This re-
inforces the nonpositive curvature intuition again: Two geodesics emanating
from x tend to separate at least as fast as they would in Euclidean space.

11.59. Let x, y, z ∈ X be three distinct points. Suppose that the union [y, x]∪
[x, z] is locally a geodesic at x, in the sense that [y′, x] ∪ [x, z′] = [y′, z′] for
some y′ ∈ [y, x) and z′ ∈ (x, z]. Show that [y, x] ∪ [x, z] = [y, z].

11.60. If ∆ is thick, show that the simplicial decomposition of X = |∆| is
completely determined by the metric.

11.7 Construction of Apartments

We continue to denote by X a Euclidean building, equipped with its complete
system of apartments. As an illustration of our techniques for constructing
apartments (Theorems 11.53 and 5.73), we will prove two results asserting
the existence of apartments containing given subsets of X. The results are
stated as the two parts of Theorem 11.63 below.

Definition 11.61. By a conical cell in X we will mean a subset A that is
contained in some apartment E and is a conical cell in E in the sense of
Definition 11.44. Similarly, a sector in X is a subset C that is contained in
some apartment E and is a sector in E in the sense of Definition 11.45.
Equivalently, a sector is a conical cell of maximal dimension.

If A is a conical cell (or sector) as just defined, then A is a conical cell (or
sector) in any apartment E′ that contains it:

Proposition 11.62. If A is a conical cell in some apartment E, then A is a
conical cell in every apartment E′ that contains it.
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Proof. This follows easily from the fact that there is an isomorphism E → E′

fixing E ∩ E′ pointwise (Proposition 4.101). In the present Euclidean con-
text, we can give an alternative proof of that proposition as follows. Take
an isomorphism φ : E → E′ that fixes pointwise a maximal simplex A of the
subcomplex E ∩ E′. We will show that φ fixes E ∩ E′ pointwise. Choose any
x ∈ A. Given y �= x in E ∩ E′, consider the geodesic [x, y]. It is contained in
E ∩E′, and a nontrivial initial segment of it is contained in A by maximality;
hence [x, y] and its image [x, φ(y)] have a common initial segment. But these
are geodesics of the same length in the Euclidean space E, so they must co-
incide. In particular, φ(y) = y. 	


Let’s return now to sectors, which are the only conical cells that will con-
cern us in this section.

Theorem 11.63.

(1) Given a sector C and a chamber C in X, there is an apartment containing
C and a subsector of C.

(2) Given two sectors C1 and C2, there is an apartment containing subsectors
of C1 and C2.

(Think about trees to see why the theorem is plausible; a sector, in this case,
is simply a ray tending toward an “end” of the tree.)

The crux of the proof of (1) is the following result. Recall that we are now
using d(−,−) to denote combinatorial distances between chambers.

Lemma 11.64. Let C be a sector in an apartment E, and let C be a chamber
in X. Then we can find a subsector C′ ⊆ C and a chamber C0 in E such
that the retraction ρ = ρE,C0 : X → E has the following property: For any
chamber C ′ of E that meets C′,

d(C ′, ρ(C)) = d(C ′, C) . (11.7)

Proof. Note first that there is a bounded subset Z of E such that for any
choice of C0, we will have ρ(C) ⊆ Z. In fact, let z be any point of E and
let Y be any ball in X centered at z and containing C; then we can take
Z = Y ∩E. [This works because our retractions are distance-decreasing.] Let
C′′ be a sector in E containing Z and having direction opposite to that of C.
We can choose C′′ such that its basepoint x is in C. Now let C′ be the subsector
of C based at x and let C0 be any chamber of E whose closure contains x.

Consider any chamber C ′ of E that meets C′. Applying Lemma 11.46 to
the two opposite sectors C′,C′′, and recalling that ρ(C) ⊆ Z ⊆ C′′, we get

d(C ′, ρ(C)) = d(C ′, C0) + d(C0, ρ(C))
= d(C ′, C0) + d(C0, C) .

(11.8)

If we now take a minimal gallery from C ′ to C0 and compose it with a minimal
gallery from C0 to C, we get a gallery Γ from C ′ to C whose image under ρ
is minimal; hence Γ is minimal and (11.7) holds. 	
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In the proof that follows we will have occasion to speak of isometries in
the sense of ordinary metric spaces as well as isometries in the W-metric
sense (Definition 5.59). To avoid confusion, we will refer to the latter as Weyl
isometries.

Proof of Theorem 11.63(1). Let C′ and ρ be as in the lemma. There are two
ways, both of which are instructive, to deduce that there is an apartment
containing C′ and C.

Method 1: Let C′ be the set of chambers of E that meet C′. The lemma,
together with the fact that ρ is type-preserving, implies that C′ ∪ {C} is
Weyl isometric to a subset of C(E). So there is an apartment containing it by
Theorem 5.73. Since the closures of the chambers in C′ cover C′, this proves (1).

Method 2: In view of Theorem 11.53, it suffices to show that ρ : X → E is
an isometry on C′ ∪ C. And this will follow if we show that ρ is an isometry
on C ′ ∪C for any chamber C ′ that meets C′. Now (11.7) implies that ρ(C) =
ρE,C′(C), so the result follows from the fact that ρE,C′ is an isometry on
C ′ ∪ C. 	


Exercise 11.65. Give an alternative proof of Theorem 11.63(1) based on Ex-
ercises 5.83 and 11.50.

As a consequence of (1) we can define a new kind of retraction onto an
apartment, which will be useful in the proof of Theorem 11.63(2). Given an
apartment E and a sector C in E, (1) implies that X is the union of the
apartments E′ that contain a subsector of C. We now define ρ = ρE,C : X → E
to be the map whose restriction to any such E′ is the isomorphism φE′ : E′ →
E that fixes E ∩ E′ pointwise. It is easy to check, as in the construction of
the “ordinary” retractions ρE,C in Chapter 4, that ρ is well defined.

Note, for future reference, the following property of ρ = ρE,C: For any
chamber C of X there is a subsector C′ of C such that

ρ(C) = ρE,C′(C) (11.9)

for any chamber C ′ of E that meets C′. Indeed, if we take C′ to be a subsector
such that C′ and C are contained in an apartment E′, then both sides of the
equality to be proved are equal to φE′(C). We can also formulate (11.9) in
terms of Weyl distances:

δ(C ′, ρ(C)) = δ(C ′, C) (11.10)

for any chamber C ′ of E that meets C′, i.e., ρ is a Weyl isometry on C′ ∪{C},
where C′ is the set of chambers in E that meet C′. Before proceeding further,
the reader might find it useful to look at Exercises 11.66–11.68 below to get
some intuition about this new kind of retraction.

We will use retractions of the form ρ = ρE,C in the proof of part (2) of the
theorem. More precisely, we will choose an apartment E1 containing C1, and
we will find subsectors C′

i of Ci (i = 1, 2) such that ρ = ρE1,C1 is an isometry
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on C′
1 ∪ C′

2 (or a Weyl isometry on the set of chambers meeting this union).
The key step in the proof is to figure out how to choose C′

2. Consider, for
example, the case that X is a tree. Figure 11.8 shows a typical configuration.
Note that as we move out along the ray C2, the image under ρ heads toward

C1

ρ

E1

C2

Fig. 11.8. The retraction onto E1 based at C1.

the same end of E1 as C1 at first, but then it reverses direction and heads
toward the opposite end. So if we want to find a subsector C′

2 on which ρ is
an isometry, we need only start C′

2 at any chamber C in C2 such that ρ(C) is
already heading in the opposite direction from C1.

It turns out that a similar idea works in higher dimensions also. Here are
the details:

Proof of Theorem 11.63 (2). Choose apartments E1 and E2 containing C1

and C2, respectively, and let ρ = ρE1,C1 as above. Identify E1 with a vec-
tor space V as in Section 11.5, so that C1 has a direction D; the latter is a
chamber in the Coxeter complex associated to a finite reflection group W .
We will use combinatorial distances d(−,−) in this Coxeter complex in order
to compare directions. The intuitive idea to keep in mind is that the bigger
d(D,D′) is, the more nearly opposite D and D′ are.

We associate to any chamber C of E2 a W -chamber D′ in E1, which we
think of as the direction of ρ(C2) at ρ(C), as follows: D′ is the direction of
the sector φ(C2) in E1, where φ : E2 → E1 is the type-preserving isomorphism
taking C to ρ(C). Alternatively, we can characterize D′ as follows: Choose a
directed line segment −→xy in C that is parallel to C2, in the sense that it is a
translate of a segment going from the cone point of C2 to some point of C2.
Then D′ is the unique W -chamber such that ρ(−→xy) is parallel to D′.

Let’s focus now on those chambers of E2 that meet C2. Choose among these
a chamber C0 such that the resulting direction D′ makes d(D,D′) as big as
possible. Such a C0 exists because d(D,D′) is bounded by the diameter of the
spherical Coxeter complex associated to W . Let x0 be any point in C0 ∩ C2,
and let C′

2 be the subsector of C2 based at x0. As we noted above while
defining ρ, we can find a subsector C′

1 ⊆ C1 such that ρ(C0) = ρE1,C(C0) for
any chamber C that meets C′

1. Passing to a further subsector if necessary, we
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can also arrange that C′
1 ⊆ ρ(x0) + D. We will show that ρ is an isometry

on C′
1 ∪ C′

2. In view of Theorem 11.53, this will complete the proof. [Note:
The interested reader can easily make minor changes in what follows so that
Theorem 5.73 can be applied instead of Theorem 11.53.]

Let C ′ be any chamber of E2 that meets C′
2. Choose x ∈ C ′ ∩ C′

2, and
consider the directed line −−→x0x. It crosses exactly those walls H1, . . . , Hl of E2

that separate C0 from C ′. By moving x slightly, if necessary, we can make sure
that −−→x0x does not simultaneously cross two walls. For if −−→x0x meets Hi∩Hj for
some i �= j, then x is in the affine span of x0 and Hi∩Hj ; this affine span is a
hyperplane, so we need only choose x so as to miss finitely many hyperplanes.
With such a choice of x, then, −−→x0x passes through chambers C0, . . . , Cl = C ′

that form a minimal gallery from C0 to C ′.
We claim that ρ maps C0, . . . , Cl to a gallery (not just a pregallery) in E1

and that in addition, ρ(Ci) = ρE1,C(Ci) for each i = 1, . . . , l and any cham-
ber C that meets C′

1. Once the claim is proved, we will be done. For the first
assertion of the claim implies [by the standard uniqueness argument] that ρ
coincides on C′

2 with the type-preserving isomorphism E2 → E1 taking C0

to ρ(C0). Hence ρ is an isometry on C′
2. And the second assertion of the claim

implies that ρ preserves distances between points of C′
1 and points of C′

2. It
remains to prove the claim.

Arguing by induction on l, we may assume that l > 0 and that the claim
is known for the subgallery C0, . . . , Cl−1. Hence ρ is an isometry on C′

1 ∪C0 ∪
· · · ∪ Cl−1, and this union is therefore contained in an apartment E′. Note,
then, that ρ maps E′ isomorphically onto E1. Moreover, ρ|E′ = ρE1,C |E′ for
any chamber C of E1 ∩ E′ and hence, in particular, for any chamber C that
meets C′

1. Let A be the common panel of Cl−1 and Cl, and let C ′
l be the

chamber of E′ adjacent to Cl−1 along A. Let H be the support of A in E′,
i.e., the wall of E′ separating Cl−1 from C ′

l . As in the proof of Lemma 11.46,
it will be convenient to refer to the two closed half-spaces of E′ determined
by H as the positive and negative sides, the positive side being defined by a
linear inequality f ≥ c with f bounded below on C′

1. We can similarly define
the positive and negative sides of the wall ρ(H) in E1.

We now consider three cases:
(a) C ′

l = Cl. In other words, E′ contains Cl. Since ρ|E′ is an isomorphism
and coincides with ρE1,C |E′ for any C meeting C′

1, the claim is trivial in this
case.

(b) C ′
l �= Cl, and C0 is on the positive side of H. Figure 11.9 illustrates

this case when X is a tree. Since x0 is on the positive side of H, ρ(x0) is on
the positive side of ρ(H); hence all of ρ(x0)+D is on the positive side of ρ(H).
In view of our choice of C′

1, it follows that C′
1 is on the positive side of ρ(H)

in E1, whence C′
1 is on the positive side of H in E′.

Suppose now that C is any chamber that meets C′
1. Then C is on the pos-

itive side of H, so there is a minimal gallery in E′ of the form C, . . . , Cl−1, C
′
l .

Replacing C ′
l by Cl, we obtain a gallery of the same type, so it is still minimal

(Proposition 4.41). Hence ρE1,C maps this gallery to a minimal gallery in E1;
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E1

E′
C0 · · · Cl−1

Cl

C ′
l

C′
1

Fig. 11.9. Case (b): C0 is on the positive side of H.

in particular, ρE1,C maps our original gallery C0, . . . , Cl to a gallery. Since
ρE1,C(Ci) = ρ(Ci) for i < l, it follows that ρE1,C(Cl) is independent of C.
This common value of ρE1,C(Cl) for C meeting C′

1 must equal ρ(Cl), and the
claim is now proved in case (b).

(c) C ′
l �= Cl, and C0 is on the negative side of H. Figure 11.10 illustrates

this case when X is a tree; it suggests that ρ changes direction as one goes
from Cl−1 to Cl. We will show that our choice of C0 prohibits this case from

Cl−1 · · ·

E1

E′
C ′

l

Cl

C0

C′
1

Fig. 11.10. Case (c): C0 is on the negative side of H.

occurring. Let C′′
1 ⊆ C′

1 be the subsector based at some point of C′
1 on the

positive side of H. Then C′′
1 lies entirely on the positive side of H. Considering

galleries as in case (b), we conclude that ρE,C(Cl) = ρE,C(Cl−1) for any
chamber C that meets C′′

1 . Consequently, ρ(Cl) = ρ(Cl−1).
Recall now that we have a directed line segment −−→x0x that is parallel to C2

and that passes through C0, . . . , Cl. The initial portion of this segment is
mapped by ρ to a directed segment in E parallel to a W -chamber that we
called D′. Let x1 be the point where −−→x0x crosses A, and let y0, y1, and y
be, respectively, ρ(x0), ρ(x1), and ρ(x). Let z = sy, where s is the reflection
of E1 with respect to ρ(H). See Figure 11.11 for a picture of E1 in the 2-
dimensional case. One can now check that ρ maps −−→x0x to the path obtained
from −→y0z by folding it onto the negative side of ρ(H). In particular, −→y1z has
the same direction as −−→y0y1 = ρ(−−→x0x1); hence it is parallel to D′. Thus y1 + D′

is on the positive side of ρ(H), i.e., on the same side as y1 + D. Moreover,
since ρ(−−→x1x) = s(−→y1z), the direction of ρ(C2) at Cl is s̄D′, where s̄ is the
linear part of s. But d(D, s̄D′) > d(D,D′) by Exercise 3.57, contradicting the
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ρ(H)

C′
1

y1
z

y1 + D′

y

ρ(Cl−1) = ρ(Cl)
y0

ρ(C0)

ρ(C ′
l)

Fig. 11.11. The apartment E1 in case (c).

maximality of d(D,D′). This contradiction completes the proof of the claim
and hence of the theorem. 	


Exercises

11.66. Describe ρE,C if X is a tree.

11.67. Prove that for any bounded subset Y of X there is a subsector C′ of C

such that ρE,C|Y = ρE,C |Y for any chamber C of E that meets C′.

11.68. Prove or disprove the following purported generalization of Theo-
rem 11.63(1): Given a sector C and a bounded subset Y of an apartment, there
is a subsector C′ ⊆ C such that C′ and Y are contained in some apartment.

11.8 The Spherical Building at Infinity

At the end of Section 6.9 we suggested the possibility of constructing a spher-
ical building by attaching a “sphere at infinity” to every apartment of a
Euclidean building. In this section we carry out the details of that construc-
tion. Some of what we do here generalizes to complete CAT(0) spaces; see
Bridson–Haefliger [48, Chapters II.8 and II.9].

We continue to denote by X an arbitrary Euclidean building, and “apart-
ment” continues to refer to the complete apartment system unless the contrary
is explicitly stated.
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11.8.1 Ideal Points and Ideal Simplices

Definition 11.69. A ray in X is a subset r that is isometric to the half-line
[0,∞). The point x ∈ r that corresponds to 0 under the unique such isometry
will be called the origin or basepoint of r. We will also say that r emanates
from x.

A ray is easily seen to be convex, so Theorem 11.53 implies that it is
contained in some apartment E. As a subset of E, it is necessarily a ray in
the usual sense, i.e., a subset of the form r := {(1− t)x + ty | t ≥ 0} for some
y �= x.

Definition 11.70. We will say that two rays r, s are parallel if the sets of real
numbers

{d(y, s) | y ∈ r} and {d(z, r) | z ∈ s}
are bounded. In other words, we require that there be a number M such that
for each y ∈ r there is a z ∈ s with d(y, z) < M , and similarly with the roles
of r and s reversed.

If r and s are subsets of some apartment E, one can easily check that they
are parallel if and only if there is a translation of E taking one to the other. It
is also easy to check that the relation of parallelism is an equivalence relation.

Definition 11.71. An equivalence class of rays will be called an ideal point
of X.

If r is a ray emanating from x and representing an ideal point e, one thinks
of e as sitting “at infinity,” or at the “end” of r. To reinforce this intuition, we
will write r =: [x, e); this notation is justified by the following lemma, which
shows that an ideal point admits a unique representative ray emanating from
a given point x.

Lemma 11.72. Given a point x and a ray s, there is a unique ray r that is
based at x and parallel to s.

Proof. To prove existence, let E be an apartment containing s. Let C be a
sector in E, based at the origin of s, such that the closure of C contains s.
By Theorem 11.63 we can find a subsector C′ of C such that C′ and x are
contained in some apartment E′. Since C′ is a translate of C in E, its closure
contains a ray s′ parallel to s; we can now translate s′ in E′ to obtain the
desired r.

We must now show that there cannot exist distinct parallel rays with the
same origin. Suppose, to the contrary, that r1 and r2 are distinct parallel rays
based at x. Then r1 ∩ r2, being a closed, convex subset of a line, must be an
interval [x, x′]. Replacing r1 and r2 by the subrays based at x′, we are reduced
to the case r1 ∩ r2 = {x}. By Exercises 11.57 and 11.58, there is then a well-
defined angle θ > 0 between r1 and r2 at x, and the cosine inequality holds:
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For any s, t ≥ 0 let ps (resp. qt) be the point of r1 (resp. r2) at distance s
(resp. t) from x; then

d2(ps, qt) ≥ s2 + t2 − 2st cos θ .

Fix s and consider the right side of this inequality as t varies. If θ ≥ π/2,
then the minimum value of the right side is s2, which is achieved when t = 0.
If θ < π/2, then the minimum value is s2 sin2 θ, which is achieved when
t = s cos θ. In either case, lims→∞ d(ps, r2) =∞, contradicting the assumption
that r1 and r2 are parallel. 	


Let X∞ be the set of ideal points. We wish to decompose X∞ into “ideal
simplices.”

Definition 11.73. Let A be a conical cell in X in the sense of Definition 11.61.
The face of A at infinity, denoted by A∞, is defined to be the set of ideal
points e such that A contains the open ray (x, e) := [x, e) � {x}, where x is
the cone point of A.

Note that we can recover A from its cone point x and its face at infinity
F := A∞; namely, A is the “open join” x ∗ F , where the latter is defined as
follows:

x ∗ F :=

⎧
⎪⎨

⎪⎩

{x} if F = ∅,
⋃

e∈F

(x, e) otherwise.

Definition 11.74. An ideal simplex of X is a subset F of X∞ such that
F = A∞ for some conical cell A.

Lemma 11.75. If F is an ideal simplex and x is an arbitrary point of X,
then there is a conical cell A based at x such that F = A∞. Consequently,
there is a 1–1 correspondence between the set of ideal simplices of X and the
set of conical cells based at any given point x ∈ X.

Proof. The proof is similar to that of Lemma 11.72: Write F = B∞ for some
conical cell B, let E be an apartment containing B, and choose a sector C

in E (based at the cone point of B) such that B is a face of C. Replacing C by
a subsector and B by a translate, we may assume that B and x are contained
in an apartment E′. The desired A is then a translate of B in E′. This proves
the first assertion, and the second follows at once. 	


Lemma 11.76. The ideal simplices partition X∞.

Proof. Any open ray (x, e) is contained in an apartment E. It is therefore
contained in some conical cell A in E based at x, whence e ∈ A∞. This shows
that X∞ is the union of the ideal simplices. Suppose now that we have two
distinct ideal simplices F = A∞ and F ′ = A′

∞. Then A (resp. A′) is a face
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of a sector C (resp. C′) in some apartment E (resp. E′). By Theorem 11.63,
there is an apartment E′′ containing subsectors of C and C′. We may therefore
replace A and A′ by translates (in E and E′), in order to reduce to the case
that F and F ′ are represented by conical cells in E′′. But now it is evident
that F and F ′ are disjoint; in fact, we can represent F and F ′ by conical cells
x ∗ F and x ∗ F ′ with x ∈ E′′, so our assertion follows from the fact that the
conical cells in E′′ based at a given point x partition E′′. 	


In the theory of trees, one usually defines an end of a tree X to be an
equivalence class of rays, where two rays are equivalent if they have a common
subray. Readers familiar with this theory have probably already wondered
how it relates to the theory being developed here. The answer is that if our
Euclidean building X is a tree, then the ideal points of X are the same as its
ends. In other words, two rays represent the same ideal point if and only if
they have a common subray. Here is a generalization of this fact to Euclidean
buildings of arbitrary dimension:

Lemma 11.77. Two sectors of X have the same face at infinity if and only
if they have a common subsector.

Proof. It is obvious that a sector has the same face at infinity as any subsector,
whence the “if” part. Conversely, suppose C1 and C2 are sectors with the
same face at infinity. Let E be an apartment containing subsectors C′

1 and C′
2.

Then these subsectors have the same face at infinity, so they have the same
direction D (defined with respect to some vector space structure on E). The
intersection C′

1 ∩ C′
2 is then a sector with direction D, so it is a common

subsector of C1 and C2. 	


11.8.2 Construction of the Building at Infinity

Let ∆∞ be the set of ideal simplices of X. The first step is to define a face
relation on this set. Recall that there is a face relation on the set of conical
cells in an apartment E based at a given point x. We extend this to conical
cells in X based at x by saying that A′ is a face of A if A′ is contained in the
closure of A and is a face of A in some apartment containing A. In this case
A′ is a face of A in every apartment containing A.

We can now use the 1–1 correspondence in Lemma 11.75 to define a face
relation on ∆∞, so that it becomes a poset.

Definition 11.78. Given ideal simplices F ′, F , we say that F ′ is a face of F
if x ∗ F ′ is a face of x ∗ F for some x ∈ X.

A glance at the proof of Lemma 11.75 shows that x ∗ F ′ is then a face
of x ∗ F for every x ∈ X. For any apartment E = |Σ| of X, let Σ∞ be the
set of ideal simplices F such that F = A∞ for some conical cell A in E. Note
that Σ∞ is a subset of ∆∞ closed under passage to faces. (So we can call it a
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subcomplex, as soon as we have proven that ∆∞ is a simplicial complex.) Note
further that Σ∞, with the face relation that it inherits from ∆∞, is a finite
Coxeter complex. In fact, if we identify Σ with Σ(W,V ) as we have done
before, then Σ∞ is isomorphic to Σ(W,V ). We will call Σ∞ an apartment
of ∆∞.

Theorem 11.79. The poset ∆∞ is a spherical building. Its apartments are in
1–1 correspondence with those of X.

Proof. The proof of Lemma 11.76 showed that any two elements F, F ′ of ∆∞
are contained in an apartment Σ∞. Since the latter is a simplicial complex
and is closed under passage to faces, it follows that (a) any two elements of
∆∞ have a greatest lower bound and (b) for any F ∈ ∆∞, the poset (∆∞)≤F

is a Boolean lattice. Thus ∆∞ is a simplicial complex (Definition A.1), and
each Σ∞ is a subcomplex. Moreover, in the course of proving this we have
already verified the building axioms (B0) and (B1). To complete the proof
that ∆∞ is a building, we will prove the variant (B2′′) of (B2).

Suppose E = |Σ| and E′ = |Σ′| are two apartments of X such that
Σ∞ and Σ′

∞ have a common chamber. This means that there are sectors
C ⊂ E and C′ ⊂ E′ such that C∞ = C′

∞. By Lemma 11.77, C and C′ have a
common subsector; in particular, E ∩ E′ �= ∅. Let φ : E′ → E be the isomor-
phism that fixes this intersection pointwise. Then φ induces an isomorphism
φ∞ : Σ′

∞ → Σ∞, and we will show that φ∞ fixes every simplex F ∈ Σ∞∩Σ′
∞.

Choose any x ∈ E ∩E′. Then x ∗F is the unique conical cell in E based at x
with F as its face at infinity, and similarly for E′. So x ∗ F ⊆ E ∩ E′. Hence
φ fixes x ∗ F pointwise, and φ∞ therefore fixes F . This completes the proof
that ∆∞ is a spherical building.

Continuing with the same notation, suppose that Σ∞ = Σ′
∞. Then the

previous paragraph shows that x ∗ F ⊆ E ∩ E′ for any F ∈ Σ∞ = Σ′
∞, and

hence E = E′. The function E �→ Σ∞ is therefore a bijection from the set of
apartments of X to the set of apartments of ∆∞. 	


Definition 11.80. We will call ∆∞ the building at infinity associated to ∆.

Note that the geometric realization of the building at infinity is a union of
spheres, one for each apartment E of X.

Remark 11.81. Under mild hypotheses, there is a reasonable way to topol-
ogize X∞. If X is a tree, for example, one gets the space of ends, which is
typically a Cantor set. We will say a little more about this in Section 13.2.1,
and we will mention an analogous construction in differential geometry in
Section 14.3.1.

More generally, there is often a reasonable topology on X�X∞, so that the
latter is a compactification of X. The tree case, as in Figure 6.3, is again easy
to understand. In fact, the tree in that figure was drawn with its edges getting
smaller and smaller, so as to suggest the possibility of compactifying it. See [48,
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Chapter II.8] for a general discussion of this compactification in the setting
of CAT(0) spaces. And see [126, 151, 284] for much more information about
compactifications of Euclidean buildings. Rémy [196] has given applications
of these compactifications to the theory of Kac–Moody groups.

Exercises

11.82. Show that there is a bijection |∆∞| ∼= X∞. [In view of Remark 11.81,
one should not expect this to be a homeomorphism when both sides are given
their natural topologies.]

11.83. Let E = |Σ| be an apartment, and let x ∈ E be a special vertex. Show
that there is a simplicial isomorphism lkE(x) ∼−→ Σ∞. [One can visualize this
as “radial projection” from x.]

11.84. Assume that ∆ is thick.

(a) Any automorphism of ∆ induces an automorphism of ∆∞, so we have a
canonical homomorphism Aut∆ → Aut∆∞. Show that this homomor-
phism is injective.

(b) Deduce that every nontrivial automorphism φ of ∆ has unbounded dis-
placement, i.e., d(x, φ(x)) is unbounded for x ∈ X.

(c) Give examples to show that thickness is necessary in (a) and (b).

11.85. Assume that ∆ is thick, and let G be a subgroup of Aut∆ such that
there is a bounded set containing representatives for the G-orbits in X = |∆|.
Deduce from Exercise 11.84 that G has trivial center. [In typical applications,
∆ is locally finite and G\X is compact.]

Remark 11.86. Exercises 11.84(b) and 11.85 have combinatorial analogues,
valid for any thick irreducible building whose Weyl group is infinite. The
results are phrased in terms of the metric space C of chambers. See [11].

11.8.3 Type-Preserving Maps

Since buildings are colorable, it makes sense to ask whether a map between
subcomplexes of X (or of ∆∞) is type-preserving. The following result will be
used when we look at type-preserving automorphism groups below.

Proposition 11.87. Let φ : E → E′ be a type-preserving isomorphism be-
tween apartments E = |Σ| and E′ = |Σ′| of X. Then the induced isomor-
phism φ∞ : Σ∞ → Σ′

∞ is type-preserving. In particular, a type-preserving
automorphism of ∆ induces a type-preserving automorphism of ∆∞.

Proof. Assume first that E and E′ have a common sector C and that φ is
the isomorphism that fixes E ∩ E′ pointwise. Then φ∞ fixes C∞ and all its
faces, so it is type-preserving. For arbitrary E,E′, choose an apartment E′′
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such that E ∩ E′′ and E′ ∩ E′′ each contain a sector. Let ψ : E → E′ be the
composite of the isomorphisms E → E′′ → E′ of the type just considered.
Then ψ∞ is type-preserving. Now the automorphism w := ψ−1φ of E is in
the Coxeter group W := Aut0 Σ of type-preserving automorphisms of Σ, and
w∞ is simply the image of w in the finite reflection group W := Aut0 Σ∞. So
w∞ is type-preserving and hence so is φ∞ = ψ∞w∞. 	


Exercise 11.88. Let g be an automorphism of ∆. Is it true that g is type-
preserving if and only if the induced automorphism of ∆∞ is type-preserving?

11.8.4 Incomplete Apartment Systems

If A is now an incomplete apartment system, it is reasonable to try to define a
building at infinity using only the apartments in A. This is of interest because
incomplete apartment systems arise quite often (e.g., from BN-pairs). Let A∞
be the set of apartments Σ∞ in ∆∞ with Σ ∈ A. Let ∆∞(A) be the union
of these apartments Σ∞. It is a subcomplex of ∆∞, and we would like to
know whether it is a building, with A∞ as system of apartments. Since ∆∞ is
already known to be a building, the only issue is whether axiom (B1) holds. It
is easy to characterize the apartment systems A for which this is true. Call a
sector in X an A-sector if it is contained in an apartment in A. The following
result is immediate:

Proposition 11.89. ∆∞(A) is a building with A∞ as system of apartments
if and only if A has the following property: For any two A-sectors, there is an
apartment in A containing a subsector of each of them. 	


By thinking about trees, one can easily see that there are many apartment
systems besides the complete one that satisfy the condition in the proposition,
but that not all apartment systems do.

Definition 11.90. We will say that A is good if it satisfies the condition of
the proposition.

What we have done so far, then, is to make the (trivial) observation that
certain subbuildings of ∆∞ arise from good apartment systems. Our goal
for the remainder of this subsection is to show, more generally, that every
subbuilding of ∆∞ arises from a good apartment system in some subbuilding
of X. To this end, we start with an arbitrary nonempty subset A of the
complete apartment system and set

X ′ :=
⋃

E∈A
E .

Consider the following conditions that A might or might not satisfy:

(0) Given any two chambers of X ′, there is an apartment in A containing
both of them.
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(1) Given a chamber C in X ′ and an A-sector C, there is an apartment in A
containing C and a subsector of C.

(2) Given any two A-sectors, there is an apartment in A containing a sub-
sector of each of them.

Note that (1) and (2) are the properties that were shown to hold for the
complete apartment system in Theorem 11.63, while (0) holds trivially in
that setting. Indeed, (0) says precisely that X ′ is a subbuilding of X with A
as a system of apartments.

Proposition 11.91. If (2) holds, then so do (0) and (1). In particular, X ′

is then a subbuilding of X with A as a good system of apartments.

Proof. To prove (0), consider any two chambers C1, C2 in X ′, and choose an
apartment E in the complete apartment system that contains them. According
to Lemma 11.48, there are sectors C1,C2 in E with the following property: For
any subsectors C′

1 ⊆ C1 and C′
2 ⊆ C2, there is a gallery that starts at a chamber

meeting C′
1, ends at a chamber meeting C′

2, and passes through both C1 and C2

(in that order). Choose, for i = 1, 2, an apartment Ei ∈ A containing Ci, and
let φi : E → Ei be the isomorphism fixing E ∩ Ei pointwise. Then φ1(C1)
and φ2(C2) are A-sectors, so there is an apartment E′ ∈ A containing a
subsector of each of them. We may assume that E′ in fact contains φi(Ci) for
each i. We will show that E′ contains C1 and C2.

Choose a minimal gallery Γ in E that starts at a chamber D1 meeting C1,
ends at a chamber D2 meeting C2, and passes through both C1 and C2, in
that order. Then we can form a new gallery Γ ′ by replacing the first part of Γ
(from D1 to C1) by its image under φ1 and the last part of Γ (from C2 to D2)
by its image under φ2. This has the same type as Γ , so it is still minimal.
Since Γ ′ starts and ends in E′, it is contained in E′; hence C1 and C2 are
contained in E′, and (0) is proved.

To prove (1), let C be a chamber in X ′ and let C be an A-sector. Since
the complete apartment system satisfies (1), there is an apartment E that
contains C and a subsector C1 of C. Let C2 be a sector in E with direction
opposite to that of C1. In view of Corollary 11.47, we may arrange (after
replacing C1 and C2 by subsectors if necessary) that the following condition
holds: If C1 and C2 are chambers in E such that Ci meets Ci for i = 1, 2, then
the convex hull of C1 and C2 contains C.

Now choose an apartment E′ in A containing C, and let φ : E → E′ be
the isomorphism fixing E ∩ E′ pointwise. Then φ(C2) is an A-sector, so our
hypothesis implies that there is an apartment E′′ in A containing subsectors
of C1 and φ(C2) (which may be assumed to be C1 and φ(C2) themselves). We
claim that E′′ contains C, so that we are done.

To prove the claim, choose chambers Ci meeting Ci for i = 1, 2, and
choose a minimal gallery Γ from C1 to C2 in E passing through C. Replace
the second part of Γ (from C to C2) by its image under φ to get a gallery Γ ′

from C1 to φ(C2) passing through C. Then Γ ′ has the same type as Γ , so
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it is still minimal. (Alternatively, Γ ′ is minimal because its image under the
retraction ρE,C is minimal.) Hence Γ ′ is contained in E′′, and therefore C is
contained in E′′. 	


The implication (2) =⇒ (0) is essentially due to Kleiner–Leeb [147,
Lemma 3.3], though our proof is superficially different. (See Exercise 11.94
for their proof.) This implication can be restated as follows:

Corollary 11.92. There is a 1–1 correspondence between subbuildings of ∆∞
and pairs (X ′,A), with X ′ a subbuilding of X and A a good apartment system
for X ′. It is given by ∆′ �→ (X ′,A), where ∆′ is a subbuilding of ∆∞, A
is the set of apartments E of X such that E∞ is an apartment of ∆′, and
X ′ =

⋃
E∈A E. 	


Finally, we can use the implication (2) =⇒ (1) to prove a useful thickness
result. Our proof will also use Remark 10.20(b), which the reader may need
to review before proceeding.

Proposition 11.93. Let A be a good system of apartments for a Euclidean
building X. If X is thick, then the building at infinity ∆∞(A) is thick.

Proof. Any two adjacent chambers of ∆∞(A) can be represented by adjacent
sectors C1,C2 (with a common cone point) in an apartment E in A. We
may take their cone point x to be a special vertex of E, in which case each
Ci is the conical extension in E of a chamber Ci having x as a vertex (see
Remark 10.20(b)). It is easy to check (by a scaling argument) that C1 and C2

are adjacent. We wish to find a third sector C3 based at x that is adjacent to
C1 and C2 along their common (conical) face and does not have a subsector in
common with either of them. By thickness of X, there is a chamber C3 of X
adjacent to C1 and C2 along their common panel. Since A has property (1),
there is an apartment E′ in A containing C3 and a subsector of C1. Then E′

necessarily contains the entire sector C1, since the latter is contained in the
convex hull of x and any subsector. We can now take the desired C3 to be the
conical extension of C3 in E′. 	


Exercises

11.94. Given an alternative proof of Proposition 11.91 that uses geodesics
instead of minimal galleries.

11.95. Give an example to show that the converse of Proposition 11.93 is
false.

11.8.5 Group-Theoretic Consequences

In this subsection we assume that our Euclidean building X = |∆| comes
equipped with a type-preserving action of a group G. Assume further that
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G has a subgroup N that stabilizes an apartment E = |Σ| (in the complete
apartment system) and is chamber transitive on E. We can then introduce
the set of apartments

A := {gE | g ∈ G} ,

and the action of G on X is strongly transitive on A. [This makes sense even
if A is not a system of apartments; see the discussion preceding Lemma 6.4.]
Choose a chamber C and a sector C in E, let B be the stabilizer of C, and
let B be the stabilizer of C∞. We now ask whether A satisfies condition (2)
of the previous subsection.

Proposition 11.96. A satisfies (2) if and only if G = BNB.

Proof. The group G acts transitively on A∞, and N stabilizes Σ∞ and acts
on the latter via the quotient map N � W � W . So N is chamber transitive
on Σ∞. The result now follows from Lemma 6.4. 	


If A satisfies (2), then we know from Proposition 11.91 that it also satisfies
(0) and (1). These also have group-theoretic interpretations. The interpreta-
tion of (0) is immediate via another application of Lemma 6.4:

Corollary 11.97. If A satisfies (2), then G = BNB. In this case, X ′ :=⋃
g∈G gE is a Euclidean building with A as a good apartment system. The

action of G on X ′ is strongly transitive with respect to A, and the action
of G on ∆∞(A) is strongly transitive with respect to its unique apartment
system A∞. 	


Corollary 11.98. If A satisfies (2) and ∆ is thick, then (B,N) and (B, N)
are BN-pairs in G

Proof. ∆∞(A) is thick by Proposition 11.93. Now apply Theorem 6.56(2)
twice. 	


We turn now to the implication (2) =⇒ (1) of Proposition 11.91. The
group-theoretic interpretation of this is called the Iwasawa decomposition.
Choose a special vertex x ∈ E and let K be its stabilizer. In familiar examples,
K is a maximal compact subgroup of G (see Remark 11.36). For example, if
G = SLn(Qp) as in Section 6.9, then one choice of x yields K = SLn(Zp).

Proposition 11.99. If A satisfies (2), then G = BK.

Proof. Since G acts strongly transitively on ∆∞(A), every apartment in A
containing a subsector of C has the form bE for some b ∈ B; hence, since we
know that A satisfies (1),

X ′ =
⋃

b∈B

bE . (11.11)

On the other hand, the B-orbit of the special vertex x contains all vertices
of E of type t, where t is the type of x; see Remark 10.24(a). [In order to apply
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that remark, identify the Weyl group W = N/T with a Euclidean reflection
group acting on E, and observe that the elements of N that act as translations
on E are contained in B.] Combining this fact with (11.11), we conclude that
B acts transitively on the set of all vertices of X ′ of type t. Equivalently, B

acts transitively on G/K, which says precisely that G = BK. 	


We now specialize to the most important situation in which the consid-
erations above are applicable. Assume for the remainder of this subsection
that ∆ is given to us as the building ∆(G,B) associated to a group G with
a Euclidean BN-pair. Let A be the corresponding apartment system (so that
the G-action is strongly transitive with respect to A). The results above in
this case can be summarized as follows:

Proposition 11.100. The apartment system A is good if and only if G =
BNB. If this holds, then (B, N) is a BN-pair in G whose associated building
is ∆∞(A). Moreover, one then has the Iwasawa decomposition G = BK. 	


In order to apply this, one needs to be able to compute the group B and
decide whether G = BNB. We close this subsection with a computation of B.
We will illustrate it in the next subsection in the canonical example, where
G = SLn(K).

Suppose we are given g ∈ B. Then gC and C have a common subsector. In
particular, gE and E have a common chamber. Since G is strongly transitive
and type-preserving on X, it follows that there is an element g′ ∈ G that
maps gE to E by the unique isomorphism that fixes E ∩ gE pointwise. Then
g′ is in the subgroup B′ ≤ B consisting of those elements of G that fix some
subsector of C pointwise. Now g′g stabilizes E and C∞, so its action on E is
given by an element w ∈W ′ := ker

{
W � W

}
. Let T ∗ be the set of elements

of G that fix E pointwise, and let w̃ be a representative of w in N . Then we
have g′gw̃−1 ∈ T ∗ ≤ B′, whence g ∈ B′w̃. As in Chapter 6, we will write B′w
instead of B′w̃ (this being independent of the choice of w̃). So what we have
proven so far may be written as

B = B′W ′ . (11.12)

Now let’s look more carefully at B′. Let B0 ≤ B′ be the set of elements
of G that fix C pointwise. We will show that

B′ =
⋃

w∈W ′

wB0w
−1 . (11.13)

Note first that wB0w
−1 is the set of elements of G that fix wC pointwise.

So wB0w
−1 fixes the subsector C ∩ wC of C, and the right side of (11.13)

is therefore contained in the left side. For the opposite inclusion, it suffices
to show that any subsector C′ of C contains a translate wC for some w ∈
W ′. Now it is easy to check that C′ contains a set of representatives for the
orbits of the (translation) action of W ′ on E; this follows from the fact that
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there is a bounded set of representatives (a “fundamental parallelepiped”).
In particular, we can find a w ∈ W ′ that maps the cone point of C into C′,
whence wC ⊆ C′. This completes the proof of (11.13). We have the following
immediate consequence of (11.12) and (11.13):

Proposition 11.101. B is generated by B0 and any set of representatives
for W ′ in N . 	


Exercises

11.102. Show that there is a short exact sequence 1 → B′ → B→ W ′ → 1.

11.103. Let W ′′ be the submonoid of W ′ consisting of those w ∈ W ′ such
that wC ⊆ C. [Equivalently, if we identify E with a vector space V and W ′

with a lattice L in V , then W ′′ = L∩D, where D is the direction of C.] Show
that (11.13) remains valid if W ′ is replaced by W ′′.

Remark 11.104. Readers familiar with ascending HNN extensions (see [228,
Section 1.2]) should find the situation in these exercises familiar. This suggests
that B is, in some sense that we will not make precise, a “generalized ascending
HNN extension with base group B0.”

11.8.6 Example

Let K be a field with a discrete valuation, and consider the Euclidean BN-pair
in G := SLn(K) constructed in Section 6.9. Its Weyl group W is the Euclidean
reflection group studied in Section 10.1.7. And as we saw in Section 10.1.8,
W is the Coxeter group of type Ãn−1 and is the affine Weyl group of the root
system of type An−1. We already know that there is a second BN-pair in G,
obtained by forgetting that K has a valuation and applying Section 6.5; its
Weyl group is the symmetric group on n letters, which is the finite reflection
group W associated to W . Recall that W is the (ordinary) Weyl group of
the root system of type An−1. In view of the relationship between the Weyl
groups of our two BN-pairs, the following result is not surprising:

Proposition 11.105. Let X be the Euclidean building |∆(G,B)| associated
to G = SLn(K).

(1) There is a sector C in the fundamental apartment E = |Σ| such that the
stabilizer B of C∞ is the upper-triangular subgroup of G.

(2) The apartment system A associated to (G,B,N) is good. The subcomplex
∆∞(A) of ∆∞ is therefore isomorphic to the spherical building associated
to G in Section 6.5.

(3) A is the complete apartment system if and only if K is complete with
respect to the given valuation.
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Sketch of proof. Identify the fundamental apartment Σ with the complex
Σ(W,V ) studied in Section 10.1.6. [Recall that we gave an explicit way of mak-
ing this identification in Section 10.1.7.] Then E = |Σ| is identified with V . As
“fundamental sector” C we take the subset of V defined by x1 < · · · < xn. Its
closure is a subcomplex of E whose vertices, from the point of view of A-lat-
tices, are the classes [[πa1e1, . . . , π

anen]] with a1 ≤ · · · ≤ an. The group B0

that fixes C pointwise is therefore given by

B0 =
⋂

d∈D

d · SLn(A) · d−1,

where D is the set of matrices in GLn(K) of the form diag(πa1 , . . . , πan)
with a1 ≤ · · · ≤ an. An easy computation shows that this intersection is the
upper-triangular subgroup of SLn(A).

Now apply formula (11.13) to get B′ =
⋃

t∈T tB0t
−1, where T is the

diagonal subgroup of G. Another easy computation then shows that this union
consists of all upper-triangular matrices in G whose diagonal entries are units
in A. In view of (11.12), we conclude that B is indeed the full upper-triangular
subgroup of G.

Statement (1) is now proved, and (2) follows immediately from (1) and
Proposition 11.100. Turning now to (3), suppose first that K is not complete.
Let K̂ be the completion of K, and let Ĝ, B̂, and N̂ be the analogues of
G, B, and N over K̂. Then G is dense in Ĝ, and B̂ is an open subgroup
of Ĝ; it follows that ∆(G,B) = ∆(Ĝ, B̂) (Section 6.10.1). On the other hand,
it is easy to see that Ĝ/N̂ is strictly bigger than G/N , so we definitely get
more apartments using (Ĝ, B̂, N̂) than we get from (G,B,N). The apartment
system associated to (G,B,N) is therefore not complete.

Finally, suppose K is complete, and let E′ be an arbitrary apartment in
the complete system. We will show that E′ ∈ A by constructing a g ∈ G
such that E′ = gE, where E is the fundamental apartment. We may assume
that E′ contains the fundamental chamber C, in which case we will find the
desired g in B.

Let φ : E → E′ be the isomorphism that fixes E ∩ E′. In view of Theo-
rem 11.43, every bounded subset of E′ is contained in an apartment in A. So
if we exhaust E by an increasing sequence of bounded sets Fi containing C,
then we can find bi ∈ B such that bi maps Fi into E′ by the map φ|Fi

. We
claim that the Fi and bi can be chosen such that bi+1 ≡ bi mod πi. Accepting
this for the moment, we can easily complete the proof. For the completeness
of K implies that bi converges to some b ∈ B as i→∞, whence E′ = bE and
we are done. It remains to prove the claim.

By looking at the stabilizers of the vertices of E, one sees first that the Fi

can be chosen such that any element of G that fixes Fi pointwise is in SLn(A)
and is congruent to a diagonal matrix mod πi. In particular, for any choice of
the bi we will have b−1

i+1bi congruent to a diagonal matrix mod πi. Now assume
inductively that b1, . . . , bi have been chosen and that they satisfy the required
congruences. Let b be any element of B such that b|Fi+1 = φ|Fi+1 . Then there
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is a diagonal matrix t ∈ SLn(A) such that b−1bi ≡ t mod πi. Since t fixes E
pointwise, we can complete the inductive step by setting bi+1 := bt. 	


11.9 Classification

Recall from Chapter 9 that Tits classified thick, irreducible, spherical buildings
of rank ≥ 3, and that they are (roughly) in 1–1 correspondence with simple
algebraic groups or classical groups or mixed groups over an arbitrary field.
[More generally, the classification extends to Moufang buildings of rank 2.] Tits
later [258] classified thick Euclidean buildings of rank ≥ 4. [More generally,
the classification extends to thick Euclidean buildings of rank 3 such that
the spherical building at infinity is Moufang.] The result this time is that
they are (roughly) in 1–1 correspondence with absolutely simple algebraic
groups or classical groups or mixed groups defined over a field that is complete
with respect to a discrete valuation. See Tits [252, Section 4] or Weiss [283,
Chapter 28] for the list of such groups in case the residue field is finite (which
holds if and only if the corresponding building is locally finite).

The existence of a building associated to a group as above had already been
proved by Bruhat and Tits [59, 60]; see Section C.11 below. To achieve the
classification, then, Tits essentially had to find an inverse to this construction
and produce, from a Euclidean building, an algebraic group over a field with
discrete valuation.

For overviews of the classification theorem, see Ronan [200, Section 10.5]
or Weiss [282]. For a complete proof, see Weiss [283]. We will not try to say
much about the proof except to indicate very briefly why one might expect
a Euclidean building X to yield an algebraic group over a field with discrete
valuation.

The starting point for the proof is the consideration of the spherical build-
ing at infinity. This has rank ≥ 3 [or else it has rank 2 and is Moufang], so one
can assume that it is known and, typically, corresponds to an algebraic group
over a field K. This field is visible in the root groups Uα, many of which are
isomorphic to the additive group of K (see Section 7.9). The desired valuation
on K will come from a function v : U∗

α → Z, defined as follows.
Choose a fundamental apartment E = |Σ| in the given Euclidean building

X = |∆|. We may identify E with a vector space on which the Weyl group W
of X acts as a Euclidean reflection group, with the origin as a special point.
As we explained in Section 10.1.8, this leads to an isomorphism of W with
the affine Weyl group of a crystallographic root system Φ. We can identify Φ
with the set of roots of the corresponding apartment Σ∞ of ∆∞. Now any
root α of Σ∞ comes from a root of E by passage to faces at infinity, but this
root of E is uniquely determined only up to parallelism. Indeed, there is an
infinite family of parallel walls Hα,m in E (m ∈ Z), and any one of these can
bound a root that gives α at infinity. This family of walls is the source of the
valuation v on the root group Uα ≤ Aut∆∞.
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In slightly more detail, one first shows that each Uα extends to a group
of automorphisms of X. The fixed-point set in E of an element g ∈ U∗

α then
turns out to be one of the infinitely many possible roots of E corresponding to
α as above. The bounding wall of this root is therefore Hα,m for some m ∈ Z,
and one sets v(g) = m. See the cited references for further details.

Remark 11.106. Tits [258] and Bruhat–Tits [59, 60] actually generalize the
concept of Euclidean building in order to allow fields with nondiscrete valua-
tions. The resulting geometric objects might be called “nondiscrete Euclidean
buildings” or “R-buildings.” Many readers are probably familiar with R-trees,
which are the 1-dimensional R-buildings.

*11.10 Moufang Euclidean Buildings

In this section the reader is assumed to be familiar with the general theory of
(not necessarily spherical) Moufang buildings as treated in Chapter 8. Here we
are talking a priori about ordinary buildings as opposed to twin buildings, and
we use the term “Moufang” in the sense of Remark 8.57(b). But as we noted
in Remark 8.57(c), a Moufang building in this sense gives rise to an RGD
system, so it is indeed part of a Moufang twin building (see Theorem 8.81).

The classification of Euclidean buildings that we sketched in the previous
section depends heavily on the Moufang property of their buildings at infinity.
So it is natural to ask whether this Moufang property is related to the Mou-
fang property for the Euclidean buildings themselves. One could in principle
answer this question by comparing the classification of Euclidean buildings
with that of 2-spherical twin buildings (Section 9.12), but this is not easy
to carry out in practice. Instead, we will be content to derive an important
necessary condition for a Euclidean building to be Moufang or to be part of a
twin building. This will in particular explain why, as claimed in Remark 6.134,
the construction of a twin BN-pair in SLn

(
k[t, t−1]

)
does not generalize to

SLn(Qp) (if n ≥ 3); see Example 11.109 below.
We start by deriving (independently of the Moufang property) a necessary

condition for a Euclidean building X to be part of a twin building. The result,
Proposition 11.107 below, is a special case of a more general result of Mühlherr
and Van Maldeghem [178, Theorem 17]. Our proof is different and requires
only methods that we have already developed in this book.

Modifying slightly the notation we have used earlier, we write X∞ for the
spherical building at infinity (with respect to the complete apartment system
of X). Our proof will use σ-isometries, as introduced in Section 5.5, so we
have to relate types of vertices of X∞ to the types of vertices of X. We do
this as follows: Let I0 = {0, 1, . . . , n} be the set of types of X (where n + 1
is the rank of X), and fix a special vertex v of X. We may assume that v
has type 0. A vertex z of Z := X∞ is represented by the ray [v, z), which is
a closed conical cell based at v. The initial segment of this ray is an edge of
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X having v as a vertex. If x is the other vertex, we define the type of z to
be the type of x. (In particular, I := {1, . . . , n} is the set of types of Z.) To
understand our assignment of types intuitively, note that if E is an apartment
of X containing v, then the “radial projection” isomorphism lkE(v) ∼−→ E∞
(Exercise 11.83) is type-preserving.

The necessary condition for X to be part of a twin building that we want
to prove is the following:

Proposition 11.107. Let X be a Euclidean building and Z := X∞ its spheri-
cal building at infinity. If there exists a twin building (X+,X−) with X+ = X,
then for any special vertex v of X, lkX(v) is isomorphic to a subbuilding of Z.

We will combine the simplicial approach with the W-metric approach in the
proof that follows. If A is a simplex of X, we denote by CA the corresponding
residue.

Proof. We assume that (X+,X−) is a twin building with X+ = X. Let a
special vertex v = v+ of X be given. We choose any vertex v− ∈ X− that is
opposite v+, which means that the residues R+ := Cv+ and R− := Cv− are
opposite. By Proposition 5.152, the projection maps between R+ and R− are
σI -isometries, where I is the type of R+ (and the cotype of v+). We want to
construct a (canonical) σI -isometry of R− into Z, which then immediately
yields an isometry of R+ into Z. [Note: To simplify notation, we are not
distinguishing between Z and its set of chambers when the context makes it
clear what we mean.]

For any C− ∈ R−, we set C+ := projR+
C− and consider the convex

hull Γ (C+, C−), which has two components Γ+(C+, C−) and Γ−(C+, C−). If
(Σ+, Σ−) is any twin apartment containing C+ and C−, then, by Proposition
5.193, Γ (C+, C−) is the intersection of all twin roots (α+, α−) of (Σ+, Σ−)
that contain C+ and C−. Now the first halves of these twin roots are precisely
the roots α+ of Σ+ such that α+ contains C+ and has v+ in its boundary. (If
v+ were not in the boundary of α+, then v− would be in the interior of the
root of Σ− opposite α+; and if v+ is in the boundary of α+, then v− is in the
boundary of α− and C− = projR− C+ is in α−, since twin roots are convex.) So
Γ+(C+, C−) is the intersection of all roots α+ of Σ+ such that α+ contains C+

and ∂α+ passes through v+. Since v+ is a special vertex, this is a sector of Σ+.
(Here we identify roots with half-spaces.) We set C(C−) := Γ+(C+, C−), and
we denote by C̃− the corresponding chamber C(C−)∞ of Z. Define a map
f : R− → Z by f(C−) := C̃− for C− ∈ R−. We claim that f is a σI -isometry.

By Lemma 5.61 it suffices to show that f takes i-adjacent chambers to
i′-adjacent chambers for i ∈ I, where i′ := σI(i). Let C− and D− be i-adjacent
chambers of R−. Recall first that C+ and D+ are i′-adjacent, where C+ :=
projR+

C− and D+ := projR+
D−. Denote by P+ the panel (codimension-1

simplex) they share, and note that P+ has cotype i′. For studying the passage
to chambers of Z, it is crucial that there exists a twin apartment (Σ+, Σ−)
that contains all four chambers C+,D+, C−,D−. Just choose (Σ+, Σ−) such
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that it contains (say) C+ and D−. Then Σ− meets R− and hence contains (in
view of the convexity of twin apartments) C− = projR− C+; and Σ+ meets
R+ and hence contains D+ = projR+

D−. So the sectors C(C−) and C(D−)
constructed above are both contained in Σ+. (It turns out to be very useful
that the convex hull of two chambers can be constructed in any twin apartment
that contains the two chambers and is independent of the choice of the twin
apartment.) And C(C−) and C(D−) both contain P+ in their boundary. Their
closures therefore intersect in a codimension-1 face. Since the panel P+ is of
cotype i′, it follows from our definition of types in Z that the chambers C̃−
and D̃− represented by C(C−) and C(D−) have a common panel of cotype i′.
They are easily seen to be distinct, so they are i′-adjacent in Z. This proves
the claim.

We may now apply Lemma 5.62 to conclude that f(R−) is a subbuilding
of Z. Hence (in simplicial language) lkX−(v−) and thus also lkX(v) can be
identified with a subbuilding of Z. 	


Corollary 11.108. Let X be a thick Euclidean building of rank at least 3.
Assume that X∞ is Moufang and that there exists a twin building (X+,X−)
with X = X+. Then lkX(v) is Moufang for any special vertex v of X, and the
root groups of lkX(v) are subgroups of the root groups of X∞.

Recall that X∞ is always thick if X is thick (Proposition 11.93) and that it
is automatically Moufang by Theorem 7.59 if the rank of X is at least 4.

Proof. By Proposition 11.107, Lv := lkX(v) can be embedded in X∞ as a
subbuilding for any special vertex v of X. So the corollary follows immediately
from Proposition 7.37. 	


Corollary 11.108 easily implies that thick p-adic buildings of rank at least 3
cannot be twinned. We discuss this here only for a special case:

Example 11.109. Consider our standard example, where X is the Bruhat–
Tits building associated to SLn(K), K being a field with a discrete valuation.
If k is the residue field, then the link of a vertex is the spherical building
associated to SLn(k), whereas the building at infinity is the spherical building
associated to SLn(K̂) (where K̂ is the completion of K). The root groups of
the former are isomorphic to the additive group of k, and the root groups of the
latter are isomorphic to the additive group of K̂. We can therefore conclude
from Corollary 11.108 (if n ≥ 3) that X cannot be part of a twin building
unless K and k have the same characteristic. In particular, the Bruhat–Tits
building associated to SLn(Qp) cannot be part of a twin building for n ≥ 3.

We now return to the situation described at the beginning of this sec-
tion and assume that X is Moufang in the sense of Remark 8.57(b). Fix an
apartment E of X.
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Proposition 11.110. Suppose that the Euclidean building X is Moufang of
rank at least 3 with root group system (Uα), where α ranges over the roots
of E. Suppose further that the spherical building X∞ is Moufang. Then for
any root α of E, Uα embeds in Ua, where a := α∞ is the corresponding root
of E∞.

Remark 11.111. As we already noted in connection with Corollary 11.108,
we do not need to require that X∞ be Moufang if the rank of X is at least 4.
In the present situation, we also do not need to require this for rank 3, since
Van Maldeghem and Van Steen [265] proved that the Moufang property of X
implies the Moufang property of X∞ if X has rank 3. In this case, they also
prove that Uα is a subgroup of Ua. Their argument is different and does not
refer to twin buildings.

Proof of Proposition 11.110. As we mentioned earlier, the assumption that X
is Moufang implies that X is part of a Moufang twin building (X,X−). Given
α, we first choose a panel P ∈ ∂α that contains a special vertex v. It is easy
to see that this is always possible. [In most cases X has at least two types
of special vertices. Where this is not true (i.e., for Ẽ8, F̃4, and G̃2), one can
instead use the fact that there is a type t in the Coxeter diagram, adjacent
to the unique special type t′, such that m(t, t′) = 3; the details are left as an
exercise.] Now Lv := lkX(v) is a Moufang spherical building, and Uα can be
identified with a root group of Lv (see Section 7.3.2 and Proposition 8.21).
By Proposition 11.107, Lv is a subbuilding of Z := X∞. This identification
can be chosen such that E ∩ Lv is mapped onto E∞ and αv := α ∩ Lv is
mapped onto a: By construction of the Moufang twin building (X,X−), E
is part of a twin apartment (E,E−) of that twin building. Now choose the
vertex v− in the proof of Proposition 11.107 to be in E−. Then the map f
defined there identifies lkE−(v−) with E∞. Composing it with the projection
isomorphism between Lv and lkX−(v−) yields the desired additional properties
of the embedding Lv ↪→ Z. So Proposition 7.37 implies that Uα, which can
be identified with the root group Uαv

of Lv, is a subgroup of Ua. 	


Thus if X is Moufang, its root groups need to be subgroups of the root
groups of X∞. In particular, X cannot be Moufang if it is locally finite and
all root groups of X∞ are torsion-free. This again shows that p-adic buildings
cannot be Moufang.
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Buildings as Metric Spaces

In the introduction to this book we mentioned three approaches to buildings:
the simplicial approach (Chapter 4), the combinatorial approach (Chapter 5),
and the metric approach. The present chapter is devoted to the last of these.
We do not give a new definition of “building” here, just a different way of
thinking about buildings and working with them. The intuitive idea is that one
can specify, more or less arbitrarily, a metric model for a closed chamber, and
one can then glue copies of this model chamber together to get a realization
of the building as a metric space.

The ideas that we present here have not yet reached maturity. But our
hope is that by giving a unified treatment of several constructions that have
appeared in the literature, we will stimulate further research.

We have already seen two examples to motivate the present chapter. First,
we hinted in Section 4.7 at the possibility of putting a spherical metric on
each apartment of a spherical building; as we noted there, one can prove the
Solomon–Tits theorem in this way. Second, we saw in Chapter 11 the useful-
ness of thinking of Euclidean buildings (or rather their geometric realizations)
as metric spaces. In these two cases, one can in fact characterize the build-
ings by the metric properties of their geometric realizations; see Charney and
Lytchak [80].

In this chapter we will set up a general framework for constructing metric
realizations of buildings. The most important example at the time of this
writing is a construction due to Davis [88] that provides a CAT(0) realization
for every building. (See [89, Chapters 7, 12, and 18] for a recent treatment of
the subject by Davis.) This has become a standard tool in current research,
and it should be viewed as the main result of the chapter.

We begin by giving in Section 12.1 the general method for constructing
metric realizations alluded to above. Then in Section 12.2 we illustrate the
method by giving several special cases. We are able to include at this point
Davis’s realization, provided we accept one technical ingredient as a black
box.
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In Section 12.3 we fill in the missing details of the construction. We state
without proof a fundamental theorem of Moussong [170], which says that the
Davis realization of an apartment is a CAT(0) space. It is then a simple matter
to go from apartments to buildings, which we do in Section 12.4.

We will need to use some results from the theory of regular cell complexes
in this chapter. Everything we need is summarized in Appendix A. But we
have tried to write this chapter in such a way that readers can omit the
appendix (except for some terminology) and still follow the main ideas.

Conventions: We will have several occasions to deal with flag complexes of
posets, for which we have generally used the notation ∆(−) (see Defini-
tion A.4). But since the letter ∆ will usually denote a building in what follows,
we will write K(P ) instead of ∆(P ) in this chapter for the flag complex of a
poset P . Recall, finally, our convention from Section 2.5 that the generating
set S of a Coxeter group is always understood to be finite.

12.1 Metric Realizations of Buildings

Throughout this section ∆ will denote a building of type (W,S), and C = C(∆)
will be its set of chambers with Weyl distance function δ : C × C → W . The
construction we are about to give is most naturally described in terms of (C, δ),
though we will see that simplices of ∆ other than chambers play a role also.
Readers who prefer to stay entirely in the framework of W-metric spaces can
identify these simplices with residues.

12.1.1 The Z-Realization as a Set

Let Z be a set with a family of nonempty subsets Zs (s ∈ S). Intuitively, Z
is a model for a closed chamber, and Zs is its s-panel. Starting in the next
subsection we will assume that Z has a metric and that each Zs is a closed
subset. We will then construct a metric space X = Z(∆), which we call the
Z-realization of ∆, by gluing together copies Z(C) of Z, one for each chamber
C ∈ C. For the moment, however, there is no metric.

If C and D are s-adjacent chambers of ∆, then we want our gluing to
identify the copy of Zs in Z(C) with the copy of Zs in Z(D). This leads to
the following construction. Start with the product C × Z, which is simply
a disjoint union of copies of Z, one for each C ∈ C, and let “∼” be the
smallest equivalence relation on C×Z such that (C, z) ∼ (D, z) if δ(C,D) = s
and z ∈ Zs. Thus (C, z) ∼ (C ′, z′) if and only if z′ = z and there is a
gallery C = C0, . . . , Cl = C ′ such that δ(Ci−1, Ci) = si ∈ S and z ∈ Zsi

for
i = 1, . . . , l. If we set

Sz := {s ∈ S | z ∈ Zs}
and Wz := 〈Sz〉, then we can describe the relation more concisely as follows:
(C, z) ∼ (C ′, z′) if and only if z′ = z and δ(C,C ′) ∈ Wz.
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Definition 12.1. The Z-realization of ∆, denoted by Z(∆) or Z(C) or Z(C, δ),
is the quotient of C ×Z by the equivalence relation defined above. We denote
by [C, z] the equivalence class of (C, z), and we set Z(C) := {[C, z] | z ∈ Z}.
There is a well-defined function τ : X → Z, given by [C, z] �→ z, and we call
τ(x) for x ∈ X the type of x.

Note that the type function τ maps each Z(C) bijectively onto Z.

Examples 12.2. (a) Suppose Z is a geometric closed simplex with vertex
set S. For each s ∈ S, let Zs be the face of Z not containing the vertex s.
Then Z(∆) is simply the usual geometric realization |∆| (except that we are
temporarily viewing the latter as a set with no topology). For any C ∈ C, the
set Z(C) is the closed simplex that has often been denoted by C in previous
chapters.

(b) Suppose ∆ consists of a single apartment Σ. Choose a fundamental cham-
ber and identify Σ with the standard Coxeter complex Σ(W,S). Thus C = W
and δ(w,w′) = w−1w′ for w,w′ ∈W . The resulting Z-realization X = Z(Σ),
also denoted by Z(W ) or Z(W,S), is then the quotient of W×Z by the equiv-
alence relation generated by declaring (w, z) ∼ (ws, z) if z ∈ Zs. Explicitly,

(w, z) ∼ (w′, z′) ⇐⇒ z′ = z and w′ ∈ w〈Sz〉 .

When we describe Z(W,S) in this way, we see that it is cooked up so that W
acts on it with a copy of Z as strict fundamental domain and with stabiliz-
ers Wz = 〈Sz〉 for z in the fundamental domain (which is the set Z(1)). This
is Vinberg’s construction that we described in Section 10.4 in the hyperbolic
setting.

(c) Let W be the Coxeter group of type Ã1 × Ã1, i.e., W is a product of
two infinite dihedral groups. It is generated by four fundamental reflections
s, t, u, v, where s and t commute with u and v. Let Z be a solid square, let
Zs and Zt be one pair of opposite sides, and let Zu and Zv be the other
pair. See Figure 12.1. Then the Z-realization Z(W,S) is the plane, tiled by

Zs

Zu

Zt

Zv

Fig. 12.1. W = D∞ × D∞, and Z is a square.

squares. [Note that Z(W,S) in this case is a much more natural geometric
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model for (W,S) than the (simplicial) Coxeter complex Σ(W,S), which is
3-dimensional.] This example generalizes in an obvious way to semi-Euclidean
reflection groups (Section 10.2), with Z being a product of simplices.

(d) Let W be an essential finite reflection group with fundamental chamber C,
and let S be the set of fundamental reflections. If we take Z to be the closed
simplicial cone C and Zs to be the closed panel Z ∩ sZ of C fixed by s, then
the Z-realization Z(W,S) is the vector space on which W acts. More gen-
erally, let (W,S) be arbitrary, and consider the dual of the canonical linear
representation of W as in Section 2.6. Let Z be the closure of the funda-
mental chamber. Then, with the obvious definition of the subspaces Zs, the
Z-realization Z(W,S) is the Tits cone.

(e) Let (W,S) be an arbitrary Coxeter system, and let S be the poset of spher-
ical subsets of S, ordered by inclusion. Here a subset of S is called spherical
if the Coxeter group it generates is finite. Whenever it is convenient, we will
identify S with the poset of finite standard subgroups of W . Let Z be the geo-
metric realization of the flag complex of S, i.e., Z = |K(S)|. For s ∈ S, let Ss

be the set of spherical subsets containing s, and let Zs ⊆ Z be the geometric
realization of its flag complex, i.e., Zs = |K(Ss)|. Note that a typical point
z ∈ Z lies in an open simplex corresponding to a chain W0 < · · · < Wp of
finite standard subgroups, and z ∈ Zs if and only if s ∈W0. So the subset Sz

defined above is W0∩S; hence Wz = W0. In particular, the various groups Wz

(z ∈ Z) are precisely the finite standard subgroups of W .
The Z-realization Z(∆) in this case will be discussed in Section 12.4. It is

the underlying set of the Davis realization mentioned in the introduction to
this chapter.

Remark 12.3. In view of constructions that have occurred elsewhere in this
book, the reader may be surprised that we ordered S by inclusion rather than
reverse inclusion. In fact, the choice is completely irrelevant in the present
context, since reversing the order on a poset does not change the flag com-
plex. But we will see in Section 12.3 that the inclusion order has a geometric
interpretation. (Briefly, there is a naturally occurring regular cell complex
whose poset of cells is isomorphic to S.)

Exercises

12.4. Under what conditions are the sets Z(C) (C ∈ C) distinct from one
another?

12.5. In Example 12.2(b), under what conditions is the stabilizer of the fun-
damental domain (as a set) trivial?

12.6. Continuing with Example 12.2(b), under what conditions does W have
a fixed point in X?
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12.1.2 A Metric on X

Assume from now on that Z has a metric, denoted by d(−,−) or dZ(−,−),
and that each Zs is a closed subspace. We will put a metric on X in such a
way that τ maps each Z(C) isometrically onto Z. We do this via chains, which
one can think of intuitively as corresponding to piecewise geodesic paths.

Definition 12.7. A chain in X is a finite sequence γ of points x0, x1, . . . , xm

(m ≥ 0) such that for each i = 1, . . . ,m there is a chamber Ci ∈ C such that
xi−1 and xi are both in Z(Ci). We say that γ is an m-chain, and we call the
subchain xi−1, xi the ith segment of γ for i = 1, . . . ,m. The length of γ is

l(γ) :=
m∑

i=1

dZ

(
τ(xi−1), τ(xi)

)
.

If we think of a chain γ as representing (intuitively) a piecewise geodesic
path, then the length of γ is the sum of the lengths of the pieces. (Warning:
Be careful not to confuse the length l(γ) with m, which is the number of
segments.)

Definition 12.8. We define a distance function on X by

d(x, y) := inf
γ

l(γ) , (12.1)

where γ ranges over all chains from x to y.

Note that there is at least one such chain from x to y (hence d(x, y) < ∞)
because of our assumption that each Zs is nonempty.

Before proving that d is a metric, we make some remarks about chains.
Given a chain γ : x0, . . . , xm, choose chambers C1, . . . , Cm ∈ C, as in the
definition of “chain,” such that Z(Ci) contains the ith segment of γ. Letting
zi := τ(xi), we then have

x0 = [C1, z0] ,

x1 = [C1, z1] = [C2, z1] ,

x2 = [C2, z2] = [C3, z2] ,

...
xm−1 = [Cm−1, zm−1] = [Cm, zm−1] ,

xm = [Cm, zm] .

(12.2)

See Figure 12.2 for an example with m = 3. Note that the chambers C1, C2, C3

happen to form a gallery in this example, but we do not insist that the cham-
bers C1, . . . , Cm in (12.2) necessarily form a gallery in general. [On the other
hand, we will see in Section 12.1.6 below that this can always be arranged.]
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x0 x3

x1

x2

C1

C2

C3

Fig. 12.2. A chain with three segments.

Note further that for the purpose of computing distances in X, we may assume
that no three consecutive points xi−1, xi, xi+1 lie in a single Z(C); for if this
happened, then we could delete xi from γ to get a chain γ′ with l(γ′) ≤ l(γ).

We will prove shortly that the distance function d is a metric. The only
property of a metric that is not obvious is that d(x, y) > 0 if x �= y. The proof
of this will make use of an analogue of Lemma 11.17. For any x ∈ X, we define
the star of x, denoted by stx, to be the union of the sets Z(C) containing x.
And for any z ∈ Z, we define ε(z) > 0 by

ε(z) := min
z/∈Zs

dZ(z, Zs) , (12.3)

where this minimum is taken to be +∞ if z ∈ Zs for all s ∈ S. The minimum
exists because S is finite, and it is positive because each Zs is closed. Heuris-
tically, ε(z) is the minimum distance from z to a wall not containing it; this
is exactly the quantity δ that occurred in the proof of Lemma 11.17.

Lemma 12.9. Given x ∈ X of type τ(x) = z, the star of x contains the open
ball {y ∈ X | d(x, y) < ε(z)} of radius ε(z) centered at x.

Proof. We must show that y /∈ st x =⇒ d(x, y) ≥ ε(z). Suppose y /∈ st x,
and consider a chain from x to y represented as in (12.2). Assume, as we
may, that x0, x1, x2 do not lie in a single Z(C). [Note that there is indeed
an x2, i.e., that m ≥ 2, by our assumption that y /∈ st x.] We claim that
dZ(z0, z1) ≥ ε(z), which implies d(x, y) ≥ ε(z). To prove the claim, ob-
serve first that δ(C1, C2) ∈Wz1 , since [C1, z1] = [C2, z1]. Now we cannot
have Wz1 ≤Wz, since that would imply x0 = [C1, z] = [C2, z] and hence
x0, x1, x2 ∈ Z(C2). So there is at least one s ∈ S such that z1 ∈ Zs but
z /∈ Zs, and then

dZ(z0, z1) = dZ(z, z1) ≥ d(z, Zs) ≥ ε(z) ,

as claimed. 	


We can now prove, among other things, that d is a metric.
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Proposition 12.10.

(1) The distance function d : X ×X → R in Definition 12.8 is a metric.
(2) The type function τ : X → Z maps Z(C) isometrically onto Z for every

chamber C ∈ C.
(3) If Z is complete, then so is X.

Proof. We begin by observing that the triangle inequality in Z implies that

d(x, y) ≥ dZ

(
τ(x), τ(y)

)
(12.4)

for any x, y ∈ X. If x and y both lie in Z(C), then the opposite inequality
also holds, since we then have a 1-chain from x to y of length dZ

(
τ(x), τ(y)

)
.

This proves (2). Turning now to (1), we must show that d(x, y) > 0 if x �= y.
If τ(x) �= τ(y), this follows from (12.4). And if τ(x) = τ(y), it follows from
Lemma 12.9. [Note that y /∈ st X, since τ is bijective on each Z(C).]

Finally, we prove (3) by imitating the proof of the corresponding fact
for Euclidean buildings (Theorem 11.16). Assume that Z is complete, and
consider a Cauchy sequence (xn)n≥1 in X. Then the image sequence (τ(xn))
is a Cauchy sequence in Z by (12.4), so it converges to a point z ∈ Z. Choose
for each n a chamber Cn with xn ∈ Z(Cn), and let yn be the unique point
in Z(Cn) such that τ(yn) = z. In view of (2),

d(xn, yn) = d(τ(xn), τ(yn)) = d(τ(xn), z) → 0 as n →∞ ;

hence (yn) is also a Cauchy sequence. On the other hand, we know that distinct
points of type z are at positive distance ≥ ε(z) from one another. Hence the
Cauchy sequence (yn) is eventually constant, and the fact that d(xn, yn) tends
to 0 now says that xn → y, where y := yn for large n. 	


Corollary 12.11. Suppose ∆ consists of a single apartment Σ = Σ(W,S)
as in Example 12.2(b). Then W acts on X = Z(W,S) by isometries, and
the identification of the fundamental domain with Z is compatible with the
original metric on Z.

(The meaning of the second statement is that the map z �→ [1, z] is an isometry
from Z onto the fundamental domain Z(1), where the latter is metrized as a
subspace of X.)

Proof. The first assertion is immediate from the definitions, and the second
follows from part (2) of the proposition. 	


Exercise 12.12. There is a different way to define the metric on a Z-realiza-
tion that is more in the spirit of Section 11.2. Namely, one first treats the case
of an apartment and then defines d(x, y) to be the distance between x and y
in any apartment containing them. Carry out the details of this approach, and
show that it leads to the same metric as the one defined above using chains.
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12.1.3 From Apartments to Chambers and Back Again

In this subsection we focus on the situation of Corollary 12.11, but from a
slightly different point of view. In many examples one starts with an action
of W on an “apartment” X, which is already given as a metric space. One
then finds suitable (Z, (Zs)s∈S) inside X and forms the Z-realization Z(W,S).
We wish to give sufficient conditions under which Z(W,S) can be identified
with the original X.

Suppose we are given a Coxeter system (W,S) and an action of W on a
metric space X by isometries. Assume:

(1) The action has a strict fundamental domain Z (Definition 1.103).
(2) For any z ∈ Z the stabilizer Wz is the standard subgroup 〈Sz〉, where

Sz := {s ∈ S | sz = z}.
We then metrize Z as a subspace of X, and we set Zs := Z ∩ sZ = Z ∩Xs.
For the sake of intuition, we will call the sets wZ (w ∈ W ) closed cham-
bers. Consider the Z-realization Z(W,S). We have a W -equivariant bijection
φ : Z(W,S) → X given by [w, z] �→ wz for w ∈ W and z ∈ Z (Exam-
ple 12.2(b)). It maps Z(w) isometrically onto the closed chamber wZ for
each w ∈ W , and we seek conditions under which φ is a global isometry. Here
is another way to formulate the problem:

Consider “chains” in X, i.e., finite sequences x0, x1, . . . , xm such that any
two consecutive points xi−1, xi lie in a closed chamber. The length of such
a chain is defined to be

∑n
i=1 d(xi−1, xi), where d is the given metric on X.

For any x, y ∈ X, we set d′(x, y) equal to the infimum of the lengths of the
chains from x to y. Then φ is an isometry if and only if d′ = d. In view of
Lemma 12.9, there is an obvious necessary condition:

(3) For each x ∈ X, the star of x, defined to be the union of the closed
chambers containing x, is a neighborhood of x.

It is also reasonable to assume that the following condition holds:

(4) X is a geodesic metric space, and Z is a convex subset of X in the sense
that it contains all geodesics joining any two of its points.

We now show that these conditions are sufficient.

Proposition 12.13. Under the hypotheses (1)–(4), the map φ : Z(W,S) → X
is an isometry.

Proof. We claim that every geodesic segment [x, y] in X can be subdivided
so that each piece is contained in a closed chamber. Accepting this for the
moment, we obtain a chain from x to y of length d(x, y), whence d′(x, y) ≤
d(x, y). The triangle inequality in X implies the opposite inequality, so d′ = d
and φ is an isometry. It remains to prove the claim.

For each point u ∈ [x, y], assumption (3) implies that there is a neigh-
borhood Nu of u relative to [x, y] contained in stu. We can take Nu to be
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an interval with endpoints in stu, and then the convexity of closed chambers
implies that Nu is contained in a union of two chambers. Since finitely many
of the Nu cover [x, y], the claim follows. 	


Examples 12.14. (a) Let W be an essential finite reflection group acting on
a Euclidean vector space V as in Chapter 1, and let S be the set of sim-
ple reflections with respect to a chosen fundamental chamber C. Let X be
the unit sphere in V , let Z be the spherical simplex C ∩ X, and let Zs be
the panel of Z fixed by s. Then the proposition applies and shows that the
Z-realization Z(W,S) is canonically isometric to the sphere X.

(b) Let W be a Euclidean reflection group (Definition 10.12) acting on a
Euclidean space V , and let S be the set of simple reflections with respect to
a chosen fundamental chamber C. Let Z be the Euclidean simplex C, and let
Zs be the panel of Z fixed by s. Then the proposition applies with X = V
and shows that Z(W,S) is canonically isometric to the Euclidean space V .
This generalizes to semi-Euclidean reflection groups (see Example 12.2(c)).

(c) Let W be a hyperbolic reflection group (Definition 10.50) acting on a
hyperbolic space H = H

n, and let S be the set of simple reflections with
respect to a chosen fundamental chamber P . Let Z = P and, for s ∈ S, let
Zs be the panel of Z fixed by s. Then the proposition applies with X = H

and shows that Z(W,S) is canonically isometric to the hyperbolic space H.

Remark 12.15. An interesting feature of the last example is that Z(W,S),
which is the most natural metric realization of Σ = Σ(W,S), might have
much lower dimension than the simplicial complex Σ. For example, if the
fundamental polytope P is a pentagon in the hyperbolic plane, then Z(W,S) is
2-dimensional but Σ is 4-dimensional. This phenomenon does not occur in the
spherical and Euclidean cases (although it does occur in the semi-Euclidean
case, as we already mentioned in connection with Example 12.2(c)).

12.1.4 The Effect of a Chamber Map

We return now to the general theory, where Z is a metric space with closed
nonempty subspaces Zs (s ∈ S). Let ∆ and ∆′ be buildings of type (W,S)
and let X = Z(∆) and X ′ = Z(∆′) be their Z-realizations. Let φ : ∆ → ∆′

be a type-preserving chamber map. Then φ induces a map Z(φ) : X → X ′

given by [C, z] �→ [φ(C), z] for all C ∈ C and z ∈ Z. We will sometimes simply
write φ instead of Z(φ) when the meaning is clear from the context. Important
examples for us are inclusions of apartments and retractions onto apartments.

Note that Z(φ) takes a chain in X to a chain in X ′ of the same length.
This immediately implies the following:

Proposition 12.16. Given a type-preserving chamber map φ : ∆ → ∆′, the
induced map φ : X → X ′ is distance-decreasing, i.e.,
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d(φ(x), φ(y)) ≤ d(x, y)

for all x, y ∈ X. 	


Corollary 12.17. Let ∆ be a building and Σ an apartment in ∆, viewed as
a building in its own right. Then the inclusion Σ ↪→ ∆ induces an isometric
embedding of Z(Σ) into Z(∆).

Proof. If ι : Σ ↪→ ∆ is the inclusion and ρ : ∆ → Σ is a retraction, then the
induced maps on Z-realizations are distance-decreasing. Since ρι = idΣ , it
follows that no distances can be strictly decreased by ι. 	


A less formal way of stating the corollary is that the subspace metric on
an apartment in X coincides with its intrinsic metric. (Here, for the sake of
intuition, we are referring to Z(Σ) as an apartment in X.) The significance
of this for us is that if we want to compute the distance in X between two
points x, y, then we can choose an apartment containing them and confine
our attention to chains from x to y in the apartment.

Finally, we return to the case that φ is a retraction and prove the following
sharper version of Proposition 12.16, as in the Euclidean case (Theorem 11.16).

Proposition 12.18. Let ρ = ρΣ,C , where Σ is an apartment and C is a
chamber of Σ. Then

d(ρ(x), ρ(y)) ≤ d(x, y)

for all x, y ∈ X, with equality if x ∈ Z(C).

Proof. We need only prove the assertion about equality. Choose a chamber D
with y ∈ Z(D), and let Σ′ be an apartment containing C and D. Recall
that the restriction of ρ to Σ′ is given by a type-preserving isomorphism
φ : Σ′ → Σ. Then φ induces an isometry Z(Σ′) → Z(Σ), and the result
follows at once. 	


Our next goal is to find sufficient conditions under which X is a geodesic
metric space. This requires some preliminary results, which we give in the
following two subsections.

12.1.5 The Carrier of a Point of X

In the ordinary geometric realization of ∆, each point is in a unique open
simplex |A|. For a general Z-realization X = Z(∆), we will similarly associate
a simplex A ∈ ∆ to each point x ∈ X. The identification of simplices with
residues makes this particularly easy to do. Let z = τ(x) and note that by
the definition of X, the set of chambers C such that x ∈ Z(C) is a residue of
type Sz. This set therefore equals C≥A for a unique simplex A ∈ ∆ (Corol-
lary 4.11).
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Definition 12.19. Given x ∈ X = Z(∆), let R = {C ∈ C | x ∈ Z(C)}. The
carrier of x is the unique simplex A ∈ ∆ such that R = C≥A. Equivalently,
if C is any chamber with x ∈ Z(C), the carrier A of x is the face of C of
cotype Sz, where z = τ(x).

Note, by way of illustration, that if C and D are adjacent chambers and
x ∈ Z(C) ∩ Z(D), then the carrier A of x is a face of the common panel
P := C∩D. This is almost a tautology; for we have C,D ∈ C≥A by definition,
so A ≤ C ∩D.

The rest of this subsection is devoted to some simple observations, all of
which are motivated by the ordinary geometric realization.

Proposition 12.20. Two points of X with the same carrier and the same
type are equal.

Proof. Let z be the common type of the two points, and write them as [C, z]
and [D, z]. By hypothesis, the chambers C and D have the same face of
cotype Sz and hence are in the same Sz-residue. But then [C, z] = [D, z] by
the definition of X. 	


Consider now a type-preserving chamber map φ : ∆ → ∆′ between build-
ings of type (W,S). As in Section 12.1.4, there is an induced map φ : X → X ′

on Z-realizations.

Proposition 12.21. If x ∈ X has carrier A ∈ ∆, then φ(x) has carrier φ(A).

Proof. Write x = [C, z], so that A is the face of C of cotype Sz. Then φ(x) =
[φ(C), z], so the carrier of φ(x) is the face of φ(C) of cotype Sz; but this face
is φ(A). 	


Corollary 12.22. Let φ1, φ2 : ∆ → ∆′ be type-preserving chamber maps be-
tween buildings of type (W,S). Let x ∈ X have carrier A ∈ ∆. Then
φ1(x) = φ2(x) if and only if φ1(A) = φ2(A). In particular, a type-preserving
endomorphism of ∆ fixes x if and only if it fixes A.

Proof. The second assertion follows from the first, applied with one map equal
to the identity. The first assertion is an immediate consequence of Propositions
12.20 and 12.21. 	


Exercise 12.23. Under what circumstances is the carrier of a point the empty
simplex of ∆? Give a naturally occurring example in which this happens.

12.1.6 Chains and Galleries

Let’s return to the representation (12.2) of a chain in X. Such representations
are easier to work with if the chambers Ci form a gallery, as in Figure 12.2. We
will show that we can always achieve this by repeating some points xi, without
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x0 x2

x1

u0 u3

u1 = u2

�

Fig. 12.3. Repeating a point to create a gallery.

changing the length l(γ) of the chain. This simply introduces some segments
of length 0. See Figure 12.3, which illustrates a 2-chain being replaced by a
3-chain in which the second point is repeated, so that the middle segment of
the resulting 3-chain has length 0.

To see that this is always possible, consider two consecutive chambers
C = Ci and D = Ci+1 in the representation (12.2) (1 ≤ i < m), and let
x = xi. The equation corresponding to this point in (12.2) has the form

x = [C, z] = [D, z] , (12.5)

where z = zi. Then δ(C,D) ∈ Wz, so we can join C and D by a gallery
C = E0, . . . , Er = D (r ≥ 1) in which each adjacency type is given by an
element of Sz. We then add r − 1 copies of the point x to our chain, so
that the equation (12.5) in the representation of the chain is replaced by r
equations:

x = [E0, z] = [E1, z] ,

x = [E1, z] = [E2, z] ,

...
x = [Er−1, z] = [Er, z] .

This proves our assertion.

Definition 12.24. We will say that the representation (12.2) of an m-chain
is in standard form if C1, . . . , Cm is a gallery.

Writing δ(Ci, Ci+1) = si, we then have si ∈ Wzi
for i = 1, . . . ,m− 1, and

hence zi ∈ Zsi
, as in Figure 12.2. For emphasis, we add this information to

our representation, setting Zi = Zsi
:

x0 = [C1, z0] ,

x1 = [C1, z1] = [C2, z1], z1 ∈ Z1 ,

x2 = [C2, z2] = [C3, z2], z2 ∈ Z2 ,

...
xm−1 = [Cm−1, zm−1] = [Cm, zm−1], zm−1 ∈ Zm−1 ,

xm = [Cm, zm] .

(12.6)
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Next, we show that the gallery Γ : C1, . . . , Cm can be taken to be minimal.
More precisely:

Proposition 12.25. Let γ be a chain from x to y, represented in standard
form as in (12.6). Let A be the carrier of x and let B be the carrier of y. Then
there is a chain γ′ from x to y with l(γ′) ≤ l(γ) such that γ′ can be represented
in standard form with the associated gallery being a minimal gallery from A
to B.

Proof. We may assume, as we remarked near the end of Section 12.1.4, that
there is an apartment Σ such that the chain γ lies in Y := Z(Σ) and the
associated gallery Γ is in Σ. We proceed in two steps. First we show that we
can find a γ′ whose gallery is minimal; then we show that we can make it
minimal from A to B.

Suppose Γ is not minimal. Then, as in the proof of Lemma 3.70, we can
find a root α in Σ and indices i, j, with 2 ≤ i < j ≤ m, such that Ci−1 and Cj

are in α but Ck ∈ −α for i ≤ k < j. Assume for simplicity that i < j − 1; if
i = j − 1, the argument that follows needs trivial modifications.

Let φ : Σ → Σ be the folding with image α, and recall from Section 12.1.4
that φ induces a distance-decreasing map, still denoted by φ, from Y to itself.
If we apply φ to the portion xi, . . . , xj−2 of γ, we obtain an m-chain

γ1 : x0, . . . , xi−1, φ(xi), . . . , φ(xj−2), xj−1, . . . , xm

from x to y. Note that φ(xi−1) = xi−1 and φ(xj−1) = xj−1, as illustrated in
Figure 12.4. (In that example i = 2, j = m = 5, and we have set yk = φ(xk)
for k = 2, 3.) So γ1 is indeed a chain. The consecutive pairs of points lie in

y2

x0x0 x1
x1

x3

x2

x5x5 x4 x4

y3

�

C2C1 C1 = φ(C2)

φ(C3)

C5 = φ(C4)C5

C3

C4

Fig. 12.4. Folding a chain.

the copies of Z corresponding to the chambers

C1, . . . , Ci−1, φ(Ci), . . . , φ(Cj−1), Cj , . . . , Cm ,
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which form a pregallery with exactly two repetitions. There are three con-
secutive points xi−2, xi−1, φ(xi) in Z(Ci−1) = Z(φ(Ci)) and three consec-
utive points φ(xj−2), xj−1, xj in Z(φ(Cj−1)) = Z(Cj). We may therefore
delete the points xi−1 and xj−1 from γ1 to obtain an (m − 2)-chain γ′ with
l(γ′) ≤ l(γ1) = l(γ), and γ′ admits a standard representation with gallery

C1, . . . , Ci−1, φ(Ci+1), . . . , φ(Cj−2), Cj , . . . , Cm .

If this new gallery is not minimal, we can repeat the process and reduce the
number of segments again. After finitely many steps, we arrive at a chain of
length ≤ l(γ) whose gallery is minimal.

We may now assume that our original m-chain γ has an associated
gallery Γ that is minimal. If it is not minimal from A to B, then Propo-
sition 3.78 implies that there is a wall H /∈ S(A,B) such that Γ crosses H
(exactly once). In other words, there is a root α with A,B ∈ α such that
C1, . . . , Ci ∈ α and Ci+1, . . . , Cm ∈ −α, where 1 ≤ i < m. Let φ be the
folding of Σ onto α. Applying φ to γ, we obtain an m-chain φ(γ) that admits
a representation as in (12.2) with the associated chambers forming the pre-
gallery φ(Γ ). Note that φ fixes A and B, so φ(γ) is again a chain from x to y
by Corollary 12.22. Since φ(Ci+1) = φ(Ci), we can delete a point from φ(γ)
to get an (m − 1)-chain γ′ from x to y with l(γ′) ≤ l(φ(γ)) = l(γ). Iterating
this process, we arrive after finitely many steps at a chain of length ≤ l(γ)
whose chain is minimal from A to B. 	


Corollary 12.26. Given x, y ∈ X, there is a finite collection G of galleries
such that

d(x, y) = inf
γ

l(γ) ,

where γ ranges over the chains from x to y that can be represented as in (12.6)
with the associated gallery in G.

Proof. We may assume that ∆ = Σ(W,S). Let A and B be the carriers of x
and y as in the proposition. Then we can compute d(x, y) using only chains
whose galleries are minimal from A to B. Recall now that there are only
finitely many such galleries modulo the action of WA ∩ WB (see Proposi-
tion 3.124). Since WA ∩WB acts on X by isometries, we can take G to be a
set of representatives for the orbits. 	


12.1.7 Existence of Geodesics

We begin by giving mild hypotheses under which X contains chains of minimal
length joining any two points. This is a discrete analogue of the existence of
geodesics. Recall that a metric space is proper if closed bounded sets are
compact. In most examples of the present theory that arise in practice, Z is
a proper metric space, and hence so is each Zs.



12.1 Metric Realizations of Buildings 611

Theorem 12.27. Suppose that Zs is a proper metric space for each s ∈ S.
Then for any x, y ∈ X, there is a chain from x to y of length d(x, y).

Proof. In view of Corollary 12.26, it suffices to show that among the chains γ
representable as in (12.6) with a given associated gallery Γ , there is one of
minimal length. Now the length of γ is given by

l(γ) =
m∑

i=1

dZ(zi−1, zi) , (12.7)

where z0 = τ(x), zm = τ(y), and zi ranges over Zi for i = 1, . . . ,m − 1. The
right side of (12.7) may be viewed as a continuous function

f : Z1 × · · · × Zm−1 → R ,

and the set {f ≤M} is compact for any real number M . This follows
from the properness of Zi together with the observation that the inequal-
ity f(z1, . . . , zm−1) ≤ M forces zi to lie in a bounded subset of Zi for each i.
[Check this by induction on i.] Hence f takes on a minimum value. 	

Corollary 12.28. If Z is a geodesic metric space and each Zs is a proper
metric space, then X = Z(∆) is a geodesic metric space.

Proof. Given x, y ∈ X, choose a chain x = x0, x1, . . . , xm = y of length
d(x, y). Then there are geodesics [xi−1, xi] for each i = 1, . . . ,m, and we can
concatenate these to obtain a geodesic [x, y] by Exercise 11.9. 	


12.1.8 Curvature

Results like those in the previous subsection will be familiar to readers who
know the theory of piecewise polyhedral complexes [47, 48], but the proofs
above are considerably easier than those in the piecewise polyhedral setting.
One might therefore hope that it will also be easy to prove curvature properties
of X (such as the CAT(0) property) under appropriate hypotheses on Z and
the subspaces Zs. Unfortunately, we do not know of any general results in
this direction. All we can say is that in view of the following proposition, it
suffices to understand apartments.

Proposition 12.29. Suppose that Z(W,S) is a CAT(κ) space for some real
number κ. Then the Z-realization of any building ∆ of type (W,S) is a CAT(κ)
space.

(See Remark 11.6(b) for the definition of “CAT(κ) space.”)

The proof is essentially the same as the proof that Euclidean buildings are
CAT(0) spaces (Theorem 11.16), once we establish some basic properties of
the CAT(κ) property for κ �= 0. Note that we can scale the metric to reduce
to the cases κ = ±1, so we will confine ourselves to those two cases. We begin
with the spherical and hyperbolic analogues of the generalized parallelogram
law (equation (11.2) in Section 11.1).
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Lemma 12.30. Let X be the 2-sphere S2 or the hyperbolic plane H
2, and let

x, y, z be three points in X. If X = S2, assume that x and y are not antipodal.
Set c := d(x, y), and for 0 ≤ t ≤ 1, let p = pt be the point on the geodesic
[x, y] such that d(x, p) = td(x, y).

(1) If X = S2, then

cos d(z, p) =
sin(1− t)c

sin c
cos d(z, x) +

sin tc

sin c
cos d(z, y) .

(2) If X = H
2, then

cosh d(z, p) =
sinh(1− t)c

sinh c
cosh d(z, x) +

sinh tc

sinh c
cosh d(z, y) .

(In both equations we allow the uninteresting possibility that c = 0, in which
case we interpret the fractions in terms of their limiting values 1− t and t.)

Proof. Assume first that X = S2, and recall (from [48, Chapter I.2], for
instance) that the distance function is given by cos d(u, v) = 〈u, v〉, where the
right side denotes the inner product of unit vectors in R

3. Our task, then, is
to compute 〈z, p〉, for which the key step is to observe that

p =
sin(1− t)c

sin c
x +

sin tc

sin c
y . (12.8)

Taking the inner product with z, we immediately obtain the desired formula.
To prove (12.8), note that there is a unit vector x′ orthgonal to x such that

y = (cos c)x + (sin c)x′ ,

and then
pt = (cos tc)x + (sin tc)x′

for 0 ≤ t ≤ 1. Eliminating x′ from these two equations, one obtains (12.8)
after a short computation.

If X = H
2, the same proof is valid with no essential change if one uses

the hyperboloid model of the hyperbolic plane; see equation (10.15) in Sec-
tion 10.3.1. 	


This leads at once to the following CAT(κ) criterion, analogous to Propo-
sition 11.4:

Proposition 12.31. Let X be a metric space.

(1) X is a CAT(1) space if and only if for any x, y ∈ X with d(x, y) < π, there
is a geodesic [x, y] with the following property: For any p = pt ∈ [x, y]
and any z ∈ X with d(x, y) + d(y, z) + d(z, x) < 2π, we have d(z, p) ≤ π
and

cos d(z, p) ≥ sin(1− t)c
sin c

cos d(z, x) +
sin tc

sin c
cos d(z, y) ,

where c = d(x, y).
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(2) X is a CAT(−1) space if and only if for any x, y ∈ X, there is a geodesic
[x, y] with the following property: For any p = pt ∈ [x, y] and any z ∈ X,

cosh d(z, p) ≤ sinh(1− t)c
sinh c

cosh d(z, x) +
sinh tc

sinh c
cosh d(z, y) ,

where c = d(x, y). 	


There are also analogues of Propositions 11.5, 11.7, and 11.8, which the
interested reader can formulate and prove. We now return to Z-realizations.

Proof of Proposition 12.29. The proof is essentially the same as in the case of
Euclidean buildings (Theorem 11.16), but we will repeat it for the convenience
of the reader. Assume, for example, that κ < 0, in which case we may assume
that κ = −1. The same method works for the other cases.

Given x, y ∈ X := Z(∆), choose an “apartment” E = Z(Σ) containing
them. It is a CAT(−1) space by hypothesis. Let [x, y] be the geodesic joining
them in E, and note that it is also a geodesic in X by Corollary 12.17. Given
z ∈ X and p = pt ∈ [x, y], choose a chamber C of Σ with p ∈ Z(C), and let
ρ be the retraction ρΣ,C . By Proposition 12.18 we have d(ρ(z), x) ≤ d(z, x),
d(ρ(z), y) ≤ d(z, y), and d(ρ(z), p) = d(z, p). There are now two ways to finish.
Method 1: According to the criterion of Proposition 12.31, we must verify

cosh d(z, p) ≤ sinh(1− t)c
sinh c

cosh d(z, x) +
sinh tc

sinh c
cosh d(z, y) ,

where c = d(x, y). This follows from the CAT(−1) property for E, which
implies

cosh d(ρ(z), p) ≤ sinh(1− t)c
sinh c

cosh d(ρ(z), x) +
sinh tc

sinh c
cosh d(ρ(z), y) .

Method 2: Use the original definition of CAT(−1). Choose a comparison trian-
gle x̄, ȳ, z̄ ∈ H

2 for x, y, z, and choose z̄′ ∈ H
2 such that x̄, ȳ, z̄′ is a comparison

triangle for x, y, ρ(z). We now have

d(z, p) = d(ρ(z), p) as noted above
≤ d(z̄′, p̄) by the CAT(−1) property for E

≤ d(z̄, p̄) ,

where the last inequality follows from the hyperbolic analogue of Proposi-
tion 11.8. 	


Curvature properties of apartments themselves are not yet well under-
stood. In other words, we do not know of any general conditions on Z and
the Zs under which we can conclude that Z(W,S) is a CAT(κ) space. In
particular, we would like an answer to the following question:
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Question 12.32. If Z is a CAT(0) space, under what conditions is Z(W,S)
a CAT(0) space?

In attempting to answer this question, one might try first to answer the
following two questions, which are motivated by results in Bridson–Haefliger
[48, Chapters II.4 and II.5]. For simplicity, assume that Z is a CAT(0) space
as in Question 12.32. Further hypotheses on Z and the Zs might be necessary
in order for the questions to be reasonable.

Question 12.33. Is Z(W,S) locally CAT(0) if it locally has unique geodesics?

Question 12.34. Under what conditions does Z(W,S) locally have unique
geodesics?

Remark 12.35. Easy examples show that some condition is required in Ques-
tion 12.34. Consider, for example, the Euclidean reflection group

W :=
〈
s, t, u ; s2 = t2 = u2 = (st)4 = (tu)4 = (su)2 = 1

〉
,

generated by the reflections of the plane in the sides of an isosceles right
triangle. [This is the Coxeter group of type C̃2; see Example 10.14(b).] The
“natural” Z for this group is an isosceles right triangle, and Z(W,S) is then
isometric to the plane (Example 12.14(b)). A portion of Z(W,S) is shown
in Figure 12.5. Suppose now that we use the same combinatorial data but

Zt

Zs

Zu

Fig. 12.5. The group of type C̃2 and its fundamental chamber.

change the metric on Z so that it is an equilateral triangle. Then we get the
same Z(W,S) as a set, but now we have positive curvature at the point in the
center of the figure. The new Z(W,S), near that point, looks metrically like
the boundary of a regular octahedron near one of its vertices, and geodesics
are not locally unique.
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Exercises

12.36. Give an alternative proof of Lemma 12.30 based on the law of cosines,
as in Exercise 11.10.

12.37. Write down the CAT(κ) analogue of (NC) for κ = ±1.

12.38. Generalize Exercise 11.11 to the spherical and hyperbolic cases.

12.2 Special Cases

In this section we list some examples of metric realizations that have occurred
in the literature and that fit into our framework. We also mention one example
that does not fit.

Example 12.39. For every spherical building ∆, the ordinary geometric re-
alization |∆| admits a canonical CAT(1) metric, obtained as follows. Let ∆
have type (W,S); then W is finite. Let Z be a simplex with vertex set S
as in Example 12.2(a), so that the Z-realization X of ∆ can be identified
with |∆| as a set. We metrize Z as a spherical simplex using the canonical
representation of W as a finite reflection group (Section 1.5.5) and intersect-
ing the fundamental chamber with the unit sphere. This gives us a metric
on X such that every apartment is isometric to the standard unit sphere of
dimension |S| − 1 (see Example 12.14(a)). In view of Proposition 12.29, X is
a (complete) CAT(1) space.

The metric on |∆| that we have just described is the one alluded to in
Remark 4.74, which can be used to give a geometric proof of the Solomon–
Tits theorem.

Example 12.40. For every Euclidean building ∆, the CAT(0) metric on the
geometric realization |∆| that we discussed in detail in Chapter 11 is a special
case of the construction in the present chapter. Since we get nothing new from
this, we will just give a brief indication of why this is true, leaving the details
to the interested reader:

As in the previous example, take Z to be a simplex with vertex set S. It
has a canonical Euclidean metric. To show that the resulting metric on the
Z-realization is the same as the metric constructed in Chapter 11, it suffices
to consider the case of an apartment, since any two points are contained in
an apartment. Now apply Example 12.14(b).

Before treating our next example, we introduce the notion of hyperbolic
building, with a warning that there is more than one possible definition.

Definition 12.41. A hyperbolic building is a building whose Weyl group
(W,S) is a hyperbolic Coxeter system in the sense of Definition 10.57.
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Example 12.42. Let ∆ be a hyperbolic building of type (W,S). Choose a
realization of (W,S) as a hyperbolic reflection group acting on H

n with fun-
damental domain P . Let Z = P with its hyperbolic metric, and let Zs for
s ∈ S be the face of P fixed by s. In view of Example 12.14(c), the Z-realiza-
tion of any apartment is the hyperbolic space H

n, with its canonical metric.
The Z-realization X of ∆ is then a (complete) CAT(−1) space by Proposi-
tion 12.29.

The study of hyperbolic buildings via their metric realizations is a very
active area of research at the time of this writing, largely because many ex-
amples arise from the theory of Kac–Moody groups (see Remark 8.97). In
fact, it is this realization itself that is often called a “hyperbolic building.”
See Gaboriau–Paulin [104] for an extensive study of hyperbolic buildings from
this point of view, along with many examples. See also [45,46,266,267].

Example 12.43. Let ∆ be an arbitrary building, with Weyl group (W,S).
Let Z be the geometric realization of the flag complex of the poset of spherical
subsets of S as in Example 12.2(e). There is a piecewise Euclidean metric on Z
obtained by identifying each simplex with a suitable Euclidean simplex. We
will explain this in detail in Section 12.3, where we will quote a theorem of
Moussong, according to which the Z-realization of an apartment is always
a CAT(0) space. The Z-realization of ∆ is then a (complete) CAT(0) space
by Proposition 12.29; see Theorem 12.66 below. This is the Davis realization
mentioned in the introduction to this chapter.

If ∆ is spherical, then the Davis realization, as a set, is the cone over the
ordinary geometric realization; each apartment is the cone over a sphere and
is metrically a ball. If ∆ is Euclidean, the Davis realization is the same as
the usual one that we studied extensively in Chapter 11. If ∆ is hyperbolic,
however, the Davis realization is not in general the same as the one in Example
12.42, even as a set. For example, suppose ∆ is a single apartment Σ(W,S),
where W = PGL2(Z). Then the realization in Example 12.42 is the hyperbolic
plane with its standard metric, whereas the Davis realization is the subset
of the plane obtained by “cutting off the cusps”; see Figure 12.11, where
the Davis realization is the shaded part. Moreover, the metric on the Davis
realization is not the hyperbolic one, but rather a piecewise Euclidean metric
(which is Lipschitz equivalent to the hyperbolic metric).

Example 12.44. Let ∆ be a building of type (W,S), where W is hyperbolic
in the sense of Gromov. Moussong has characterized such Coxeter groups W ;
see Section 12.3.9 below. Moussong has also shown that the Davis realiza-
tion of an apartment admits a different metric in this case, obtained by us-
ing the same set Z but giving it a piecewise hyperbolic metric instead of a
piecewise-Euclidean metric. The new metric makes the Z-realization X of ∆
a (complete) CAT(−1) space; see Section 12.3.9 below.

Example 12.45. Our final example is actually a nonexample, i.e., it is a
metric realization that can be defined for an arbitrary Coxeter group W but
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that does not fit into our framework. Namely, Niblo and Reeves [180] have
constructed a finite-dimensional CAT(0) cubical complex on which W acts,
where the cubes are metrically equivalent to the standard cube. (See Sec-
tion A.2.1 for the notion of “cubical complex.”) The Niblo–Reeves complex
has had useful applications to the study of Coxeter groups; see [68, 70], for
example. But the construction works only for Coxeter groups and does not
lead to realizations of arbitrary buildings.

The rest of this chapter is devoted to filling in some of the missing details
in the construction of the Davis realization.

12.3 The Dual Coxeter Complex

In Example 12.43 above we described the choice of
(
Z, {Zs}s∈S

)
that will give

the Davis realization of a building as soon as we explain the metric on Z. It
would be possible to do that fairly quickly as in [88], but we will instead give
a more long-winded treatment that reveals some interesting combinatorial
geometry, beginning with the case of a single apartment. Readers who just
want to get the main ideas may wish to concentrate on the introductory
remarks and examples (Sections 12.3.1 and 12.3.2) and ignore the rigorous
construction (Section 12.3.3).

12.3.1 Introduction

Given a Coxeter system (W,S), recall that the Coxeter complex Σ = Σ(W,S)
is the poset of standard cosets in W , ordered by reverse inclusion. It is a
simplicial complex on which W acts, and the stabilizers of the nonempty
simplices are the proper parabolic subgroups of W . Now when one is using
geometric methods to study a group, it is often convenient to have an action
with finite stabilizers. This leads one to try to construct a modified Coxeter
complex, in which the stabilizers are the finite parabolic subgroups.

A natural starting point is the subposet Σf = Σf (W,S) of Σ consisting of
the finite standard cosets. Note, however, that Σf is not a subcomplex of Σ
in general, i.e., it is not closed under passage to faces. In fact, it has the dual
property that if A < B in Σ and A ∈ Σf , then B ∈ Σf . So perhaps we should
reverse the ordering, i.e., we should consider the poset of finite standard cosets
ordered by inclusion instead of reverse inclusion. This poset does indeed turn
out to be the poset of cells of a cell complex (generally not simplicial), which
we will call the dual Coxeter complex of (W,S) and denote by Σd or Σd(W,S).

The upshot of all this will be the following. Given (W,S), there are two
complexes on which W acts. The first is the ordinary Coxeter complex Σ,
which is a simplicial complex whose nonempty simplices correspond to the
proper standard cosets in W , ordered by reverse inclusion. The stabilizers
of the nonempty simplices are the proper parabolic subgroups of W . The
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second is the dual Coxeter complex Σd, which is a regular cell complex whose
(nonempty) cells correspond to the finite standard cosets in W , ordered by
inclusion. The stabilizers are the finite parabolic subgroups of W .

Most of this section will be devoted to a combinatorial discussion of Σd,
independent of Section 12.1. At the end, however, we will make the connec-
tion with metric realizations. We proceed now to the details, starting with
some motivating examples. The reader may find it helpful to glance first at
Section A.2 for terminology regarding cell complexes.

12.3.2 Examples

Example 12.46. Let W be the rank-1 Coxeter group 〈s〉, thought of as a re-
flection group acting on R. Its ordinary Coxeter complex Σ is combinatorially
the 0-sphere, with two 0-simplices and the empty simplex. But it is more con-
venient for us to identify Σ with the poset of conical cells (two open half-lines,
and their common face {0}). If we draw the chamber graph on top of a picture
of R, we see a regular cell complex with one 1-cell and two 0-cells, which are
faces of the 1-cell (Figure 12.6). This will be the dual Coxeter complex Σd.
Note that the poset of (nonempty) cells is isomorphic to Σ, with the order

0

Fig. 12.6. The dual Coxeter complex of type A1.

reversed. Note also that the action of s flips the 1-cell, interchanging its two
vertices.

Example 12.47. Let W be the dihedral group of order 6, i.e., the Coxeter
group of type A2, viewed as a reflection group acting on R

2. Its ordinary
Coxeter complex Σ is a circle decomposed into six arcs by the three reflecting
hyperplanes. Equivalently, it is the hexagon pictured in Figure 12.7. It has 13
simplices, counting the empty simplex: six of rank 2, six of rank 1, and one of
rank 0. The dual Coxeter complex Σd will turn out to be the solid hexagon
shown in Figure 12.8, which appears naturally if one draws the chamber graph
of Σ on top of the picture of R

2 and then fills it in. It is a regular cell complex
with six 0-cells, six 1-cells, and one 2-cell. Note that the stabilizer of a 1-cell
is a rank-1 Coxeter group, acting on that edge as in Example 12.46. The
stabilizer of a 0-cell, however, is trivial. In fact, the 0-cells correspond to the
chambers of Σ, and W permutes these simply transitively.

This example generalizes in an obvious way to the dihedral group of or-
der 2m, in which case the dual Coxeter complex is a solid 2m-gon, with a
W -action that permutes the vertices simply transitively.
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Hs

Ht

C

Fig. 12.7. The Coxeter complex of type A2.

C

Fig. 12.8. The dual Coxeter complex of type A2.

Example 12.48. Let W be the Coxeter group of type Ã2. Its Coxeter com-
plex Σ is the plane tiled by equilateral triangles. If we draw the chamber
graph (or Cayley graph) on top of a picture of Σ as in Figure 12.9, we see the
honeycomb tiling of the plane by hexagons. This yields a decomposition of the
plane as a regular cell complex, with the 2-cells being solid hexagons. This will
turn out to be the dual Coxeter complex Σd. Note that the stabilizer of each
2-cell is a dihedral group of order 6, acting on that cell as in Example 12.47.

We can describe the cells of Σd in the following way, which will be familiar
to readers who have seen dual cell decompositions of triangulated manifolds
as in [129, p. 232; 179, Section 64]: For each vertex v ∈ Σ, its link in Σ is
a hexagon. Inside the barycentric subdivision of Σ we see a smaller copy of
that link, barycentrically subdivided, and we cone it off from v to get a solid
hexagon (said to be dual to v). For each edge e ∈ Σ, its link is a 0-sphere
(two vertices), and we cone off a smaller copy of that link in the barycentric
subdivision, using the barycenter of e as the cone point, to get an edge dual
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Fig. 12.9. The dual Coxeter complex of type Ã2.

to e. It cuts across e, meeting it at the barycenter of e. Finally, for each
2-simplex σ ∈ Σ, its link is the empty simplex, and we cone it off from the
barycenter of σ to get a 0-cell dual to σ, consisting only of the barycenter
of σ.

Our final example illustrates the same idea, with the triangulated manifold
being the sphere instead of the plane.

Example 12.49. Let W be the Coxeter group of type A3 (symmetric group
on four letters), whose Coxeter complex Σ is shown in Figures 0.1 and 1.3.
As in the previous example, the dual cells appear visually if one draws the
chamber graph on top of a picture of |Σ|. [Try it!] The result is combinatorially
equivalent to the polytope shown in Figure 12.10, called the permutahedron.∗

The interior of this polytope is included as a cell in the dual Coxeter complex;
it can be thought of as dual to the empty simplex of Σ. [This phenomenon did
not occur in Example 12.48, because the empty simplex there is not in Σf .]

Note that the 2-cells are solid squares or hexagons, which are the dual Cox-
eter complexes of the rank-2 parabolic subgroups of W (see Example 12.47).

12.3.3 Construction of the Dual Coxeter Complex

Let Σ be an arbitrary Coxeter complex. The link of every simplex is again
a Coxeter complex; hence if it is finite, it triangulates a sphere. Intuitively,
the construction that follows consists in coning off smaller copies of these
spheres in the barycentric subdivision of Σ to get cells, as in Examples 12.48
and 12.49.

Let Σf be the subposet of Σ consisting of the spherical simplices in Σ,
i.e., the simplices A ∈ Σ whose link lkΣ A is finite. If Σ is given to us
∗ The permutahedron in Figure 12.10 was drawn by Frank Sottile and is reproduced

here with his permission.
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Fig. 12.10. The permutahedron.

as Σ(W,S), then Σf is the set of simplices whose stabilizer WA is finite or,
equivalently, it is the set of finite standard cosets, ordered by reverse inclu-
sion. Let X = |K(Σf )|, the geometric realization of the flag complex of Σf .
Thus X is decomposed into simplices, one for each chain A0 < · · · < Ap of
spherical simplices in Σ. To make a connection with Section 12.3.2 above, we
remark that if Σ is infinite, everything here can be viewed as taking place
in the barycentric subdivision of Σ (see Example A.5). If Σ is finite, on the
other hand, then the poset Σf (= Σ) contains the empty simplex, and so we
are working in the cone over the barycentric subdivision; one can think of the
cone point as the barycenter of the empty simplex.

For each A ∈ Σf , let eA := |K(Σ≥A)| ⊆ X. Thus eA is homeomorphic to
the cone over the barycentric subdivision of lkΣ A. This link is a finite Coxeter
complex, hence a sphere, so eA is a topological ball. Its relative interior is the
union of the open simplices in X corresponding to the chains A0 < · · · < Ap

with A0 = A, while its boundary corresponds to the chains with A0 > A. It
is now a routine matter to verify that the set of cells eA (A ∈ Σf ) is a regular
cell complex with underlying space X.

Definition 12.50. We denote by Σd the regular cell complex consisting of the
cells eA (where A ranges over the spherical simplices of Σ), and we call Σd

the dual of Σ. If Σ = Σ(W,S) for some Coxeter system (W,S), then we set
Σd = Σd(W,S) and call it the dual Coxeter complex of (W,S).

Note that the correspondence A �→ eA is order-reversing, so there is an
order-preserving bijection between the (nonempty) cells of Σd(W,S) and the
finite standard cosets in W , ordered by inclusion.

Remark 12.51. If we had wanted to rely on Appendix A, we could have
simply applied Proposition A.25 to the poset of finite standard cosets (ordered
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by inclusion). The reader might find it instructive to carry out this approach
as an exercise.

We repeat, as we already remarked above, that if Σ is finite then X =
|Σd| is topologically the cone over |Σ|; hence it is a ball. In fact, the whole
space is equal to the unique top-dimensional cell e∅ corresponding to the
empty simplex. Its bounding sphere is the usual Coxeter complex, with the
cell decomposition dual to the standard triangulation.

12.3.4 Properties

Fix a Coxeter system (W,S). We summarize for ease of reference some proper-
ties of Σd = Σd(W,S). All are easy to verify right from the definition and/or
from the correspondence between Σd and the finite standard cosets. Some of
these properties were already stated in the course of the construction of Σd.

(1) W operates on Σd, and the cell stabilizers are the finite parabolic sub-
groups of W . [Warning: In contrast to the situation for the ordinary
Coxeter complex, the cell stabilizers do not fix the cells pointwise. For
example, the stabilizer of every edge is a group of order 2 whose generator
flips the edge.]

(2) The 1-skeleton of Σd is the Cayley graph of (W,S).
(3) There is a set of cells L ⊆ Σd such that the cell stabilizers We for e ∈ L

are the finite standard parabolic subgroups of W . More precisely, the
function e �→ We is an order-preserving bijection from L to the set of
finite standard parabolic subgroups of W , ordered by inclusion. Every
cell in Σd is W -equivalent to a unique cell in L.

(4) The bijection in (3) extends to an order-preserving, W -equivariant bijec-
tion from the cells of Σd to the set of finite standard cosets wWJ in W .

(5) If W is finite, then |Σd| is a ball of dimension equal to the rank of (W,S).
(6) For any standard subgroup WJ of W (J ⊆ S), the dual Coxeter complex

ΣJ
d := Σ(WJ , J) is a subcomplex of Σd. In case WJ is finite, the ball |ΣJ

d |
is the cell of Σd corresponding to WJ under the bijection in (3).

Note that L in (3) is simply the set of cells eA such that A is a face of the
fundamental chamber in Σ.

The reader may find it helpful to explicitly work through the definition
of Σd in the case of Example 12.48 (starting with the barycentric subdivision
of Σ) to see how it leads to the picture in Figure 12.8. Example 12.49 is also
instructive; here one starts with the cone over the barycentric subdivision
of Σ.

We close this subsection with one nontrivial property of the dual Coxeter
complex.

Proposition 12.52. The underlying space X = |Σd| is always contractible.
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Sketch of proof. As in Section 4.12, our proof will be complete except for (rou-
tine) homotopy-theoretic details. The proposition is trivial if Σ is finite, so we
may assume that it is infinite and hence contractible (Theorem 4.127). Let Σ′

be the set of nonempty simplices. Then the flag complex K(Σ′) is the barycen-
tric subdivision of Σ and hence is also contractible. So it suffices to show that
the inclusion of X = |K(Σf )| into |K(Σ′)| is a homotopy equivalence.

We can build the poset Σ′ from Σf by successively adjoining elements
A ∈ Σ′

� Σf in order of increasing codimension of A as a simplex of Σ. Since
Σf already contains all simplices of codimensions 0 and 1 (chambers and
panels), this means that we start with the simplices A of codimension 2, then
those of codimension 3, and so on. For fixed codimension, the adjunctions can
be done in any order. Each time we adjoin an element A of Σ′

�Σf , all B > A
are already present, but no B ≤ A is present. On the level of flag complexes,
then, the effect of the adjunction is to cone off the subcomplex K(Σ>A). But
K(Σ>A) is the barycentric subdivision of lkΣ A, which is an infinite Coxeter
complex and hence is contractible. It follows that none of the adjunctions
change the homotopy type. 	


Exercises

12.53. What is L in Example 12.48? Locate the cells of L in Figure 12.9 and
describe their stabilizers.

12.54. If (W,S) has irreducible components (W1, S1), . . . , (Wk, Sk), describe
Σd(W,S) in terms of the cell complexes Σd(Wi, Si). Contrast this with the
behavior of the ordinary (simplicial) Coxeter complex Σ(W,S).

12.3.5 Remarks on the Spherical Case

Let (W,S) be a Coxeter system with W finite. We outline here an alternative
construction of Σd = Σ(W,S) based on the duality theory for polytopes as
given, for instance, in Ziegler [286]. To apply this theory one needs to know
that Σ(W,S) can be realized as the boundary of a polytope Σ̂, whose facets
cut across the chambers. We have not mentioned this before, but it is a general
fact about the cell decomposition of the sphere induced by an essential hy-
perplane arrangement H. A proof is given in Appendix A (see Section A.2.3).
Other proofs can be found in [37, Example 4.1.7; 286, Corollary 7.18].

A simple illustration of this fact is given in Figure A.4. For a second exam-
ple, consider the group of type A3 discussed in Example 12.49, and imagine
“flattening out” each spherical triangle in Figure 0.1 or 1.3, i.e., replacing it
by the (Euclidean) convex hull of its vertices. The resulting polytope is Σ̂.

By the well-known duality theory of polytopes, which we briefly review
in Section A.2.2, Σ̂ has a dual polytope P , called the zonotope associated
with H. For the reflection arrangement of type A3, P is the permutahedron
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in Figure 12.10. See Ziegler [286, Example 0.10] for more information about
the permutahedron and for further pictures.

Returning now to the case of a general reflection arrangement, duality
theory gives an order-reversing correspondence between the faces of Σ̂ and
those of P , including the entire polytope and the empty face in both cases,
so P provides a model for Σd. [Recall that a polytope is naturally the un-
derlying space of a regular cell complex; see Section A.2.2.] In particular, the
W -action is simply transitive on the vertices of P . So we can describe P as
the convex hull of a generic W -orbit in the ambient space of the reflection
representation of W . For definiteness, we could take the W -orbit of the point
of the fundamental chamber at distance 1 from each wall. [Such a point exists
and is unique because C is a simplicial cone.] Thus we could have dispensed
with duality theory and simply taken this description of P as the definition
of the dual Coxeter complex in the finite case. This approach is taken in
Charney–Davis [79, Lemma 2.1.3].

12.3.6 The Euclidean and Hyperbolic Cases

If W is a Euclidean reflection group acting on a Euclidean space V , then
|Σd| can be identified with V , decomposed into cells dual to the (nonempty)
simplices of Σ. Here we can appeal to the theory of manifolds or simply to
Proposition 10.13. Example 12.48 described a special case of this.

The situation is similar if W is a hyperbolic reflection group (see Propo-
sition 10.52), except that |Σd| is not the entire hyperbolic space if the funda-
mental polyhedron has vertices at infinity. The Coxeter group W = PGL2(Z),
whose Coxeter complex was shown in Figure 2.4, provides an instructive ex-
ample. If one draws the chamber graph on top of that picture, one sees a
pattern of hyperbolic hexagons and squares. The cell complex Σd is obtained
by filling these in. One can view it as a truncated hyperbolic plane obtained
by cutting off neighborhoods of the cusps. The result is a “thickened tree,”
decomposed into solid hexagons and squares, as in Figure 12.11.∗ (The un-
derlying picture of Σ in that figure looks slightly different from the one in
Figure 2.4, but it is equivalent under a hyperbolic isometry.)

12.3.7 A Fundamental Domain

We return to an arbitrary Coxeter system (W,S) and its dual Coxeter com-
plex Σd. The action of W on X = |Σd|, unlike the action on the ordinary
Coxeter complex, has the property that a cell stabilizer generally does not
fix that cell pointwise. So we should not expect to find a strict fundamental
domain that is a union of cells. On the other hand, it is easy to describe a
strict fundamental domain if we go back to our original definition of X in

∗ Figure 12.11 was drawn by Kai-Uwe Bux; we are grateful to him for permission
to reproduce it here.
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Fig. 12.11. The Coxeter complex and its dual for W = PGL2(Z).

Section 12.3.3 as the geometric realization of the simplicial complex K(Σf ).
Indeed, it is immediate that the subcomplex K(S) is a simplicial fundamental
domain for the action of W on K(Σf ), where S is the poset of spherical sub-
sets of S as in Example 12.2(e). So the space Z of that example sits inside X
and is a strict fundamental domain for the action of W on X.

To understand this geometrically, recall that K(Σf ) is a subcomplex of the
barycentric subdivision of Σ (or, if W is finite, the cone over this barycentric
subdivision). Our fundamental domain Z, then, is obtained by taking the
union of the simplices that lie in the closed fundamental chamber C (or the
cone over it). In other words, Z is the union of the simplices with finite
stabilizer in the barycentric subdivision of C (or the cone over that barycentric
subdivision).

Consider, for example, the group

W = PGL2(Z) =
〈
s, t, u ; s2 = t2 = u2 = (st)3 = (su)2 = 1

〉

as in Figure 12.11. A schematic picture of the fundamental chamber is shown in
Figure 12.12, with the fundamental domain Z shaded. Each vertex is labeled
by the fundamental reflections that fix it, and for easier comparison with
Figure 12.11, we have drawn two of the edges of the barycentric subdivision
as dashed lines. Note that the unlabeled vertex in the figure is not part of
the fundamental domain (or even of X), because it is fixed by t and u, which
generate an infinite dihedral group.
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Fig. 12.12. A fundamental domain for PGL2(Z) acting on |Σd|.

Returning to the general case, note that the part of Z fixed by a funda-
mental reflection s is precisely the subset called Zs in Example 12.2(e). The
following result is now immediate.

Proposition 12.55. As a set, X is canonically in 1–1 correspondence with
the Z-realization of Σ. 	


Exercise 12.56. Draw a picture of the fundamental domain Z if W = D6

as in Figure 12.8. Label the vertices in a way that indicates the identification
of Z with |K(S)|.

12.3.8 A CAT(0) Metric on X

We continue to consider an arbitrary Coxeter system (W,S) and its dual Cox-
eter complex Σd. In view of Section 12.3.5, every cell of Σd can be identified
with a polytope in Euclidean space and hence has a canonical metric. The
complex Σd is therefore an example of a piecewise Euclidean polyhedral com-
plex. There is a well-developed theory of such complexes; see, for example,
[48, Chapter I.7], which is based on Bridson’s thesis [47]. The theory implies,
in particular, that one can put a metric on X = |Σd| by minimizing lengths
of piecewise linear paths. In this way X becomes a complete geodesic metric
space.

Remark 12.57. In some of the literature one sees a slight variant of this, in
which X is subdivided into metric simplices. Here the simplicial decomposition
is given by the original definition of X as |K(Σf )|, and each simplex inherits a
metric from a cell of Σd that contains it. This approach yields the same metric
on X. Another variant is to give the fundamental domain Z its canonical
metric as a finite piecewise Euclidean simplicial complex and then to extend
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this metric to X by the theory developed in Section 12.1 (which is applicable
by Proposition 12.55). This approach again yields the same metric, and it has
the technical advantage that we need to appeal to Bridson’s theory only in
the case of a finite complex. Note that the assumption of properness in some
of the results of Section 12.1 is automatically satisfied here, since Z is a finite
union of simplices and hence is compact.

If (W,S) is Euclidean, it follows from the remarks in Section 12.3.6 that
we recover the ambient Euclidean space with its Euclidean metric (up to
a constant factor). In the hyperbolic case, X is a subspace of the ambient
hyperbolic space, and the piecewise Euclidean metric is Lipschitz equivalent
to the hyperbolic metric (i.e., each is bounded by a constant multiple of the
other).

Returning now to the general case, a remarkable result of Moussong asserts
that X is always a CAT(0) space:

Theorem 12.58. For any Coxeter system (W,S), the space X = |Σd(W,S)|
with its piecewise Euclidean metric is a CAT(0) space.

The proof is long and we will not give it here. Moussong’s original proof
can be found in [170, Theorem 14.1]. See [89, Section 12.3; 90, Corollary 6.7.5;
149, Appendix B] for other proofs.

Moussong’s theorem has the following purely algebraic corollary, which
can also be proved using the Tits cone (see Proposition 2.87):

Corollary 12.59. If (W,S) is an arbitrary Coxeter system, then every finite
subgroup of W is conjugate to a subgroup of a finite standard subgroup.

Proof. The point stabilizers Wx for the W -action on X are the conjugates of
the finite standard subgroups. The corollary now follows from the Bruhat–
Tits fixed-point theorem (Theorem 11.23). 	


12.3.9 The Gromov Hyperbolic Case: A CAT(−1) Metric

We mentioned in Section 10.4 that Moussong characterized the Coxeter groups
that are hyperbolic in the sense of Gromov. Readers who do not know what
this means can still appreciate the theorem of Moussong to be stated in this
subsection. Before stating it, we need to go back to the construction of the
piecewise Euclidean metric on X = |Σd| above. We based this construction
on the fact that the cells of Σd can be realized as convex subsets of Euclid-
ean space. It turns out that they can also be realized as convex subsets of
hyperbolic space [170, Section 13], so we have a second metric on X, which is
piecewise hyperbolic.

We make one further observation in order to motivate Moussong’s the-
orem. A well-known property of Gromov-hyperbolic groups is that they do
not contain subgroups isomorphic to Z × Z. In other words, if a group has
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a free abelian subgroup of rank ≥ 2, then it cannot be Gromov hyperbolic.
Now there is an obvious way to construct free abelian subgroups of Coxeter
groups: Take a family J1, . . . , Jk of pairwise disjoint subsets of S such that
Wi := WJi

is infinite for i = 1, . . . , k. If Wi is a Euclidean reflection group, let
Ti be its group of translations; otherwise, let Ti be an arbitrary infinite cyclic
subgroup (see Exercise 12.62 below). Then T := T1 × · · · × Tk is free abelian.
We will call a subgroup T of this form a standard free abelian subgroup. Note
that it will have rank ≥ 2 if and only if either (a) k ≥ 2 or (b) k = 1 and W1

has rank ≥ 3.
Moussong’s theorem says, among other things, that the existence of a stan-

dard free abelian subgroup of rank ≥ 2 is the only obstruction to hyperbolicity
for a Coxeter group. More precisely:

Theorem 12.60. The following conditions on a Coxeter system (W,S) are
equivalent:

(i) W is hyperbolic in the sense of Gromov.
(ii) W does not contain a free abelian subgroup of rank 2.
(iii) For all J ⊆ S, the standard parabolic subgroup WJ has at most one

infinite irreducible factor, and this factor is not a Euclidean Coxeter group
unless it has rank 2 (in which case it is D∞).

(iv) The space X = |Σd(W,S)|, with its piecewise hyperbolic metric, is a
CAT(−1) space.

Moussong’s original proof can be found in [170, proof of Theorem 17.1].
See also [89, Section 12.6; 90, Theorem 11.1].

Remarks 12.61. (a) Note that condition (iii) is simply a concise way of rul-
ing out the existence of a standard free abelian subgroup of rank ≥ 2 (see (a)
and (b) above).

(b) Krammer [149, Theorem 6.8.3] proved a stronger version of the equivalence
(ii) ⇐⇒ (iii): For any Coxeter system (W,S), every free abelian subgroup
of W has a finite-index subgroup that is conjugate to a subgroup of a standard
free abelian subgroup.

Exercise 12.62. In the discussion of standard free abelian subgroups above,
we needed the following fact: If W is a (finitely generated) infinite Coxeter
group, then W has elements of infinite order. Prove this.

12.3.10 A Cubical Subdivision of Σd

In Figures 12.8, 12.9, and 12.11, the walls of Σ cut across the cells of Σd,
inducing a subdivision of the latter into combinatorial cubes. This is true in
general. For completeness, we give a precise statement of the result, although
we will not make any use of it in what follows. We will give only a brief
indication of the proof, which relies on the technical Section A.3; but it is quite
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easy, given the results of that section. We emphasize, before stating the result,
that our notion of cubical complex (Definition A.24) is purely combinatorial;
the cells are not required to be isometric to cubes. In fact, endowing each cell
with its cubical metric will almost never yield a CAT(0) metric on Σd.

Proposition 12.63. Let (W,S) be an arbitrary Coxeter system. There is a
cubical complex Σc(W,S) that subdivides Σd(W,S). Its poset of cells can be
identified with the set of closed intervals [wWJ , wWK ] (J ⊆ K ⊆ S) in the
poset of finite standard cosets, these intervals being ordered by inclusion. The
action of W on X = |Σd| = |Σc| permutes the cubes, and the stabilizer of
each cube fixes the cube pointwise. The union of the cubes corresponding to
the intervals [WJ ,WK ] is a strict fundamental domain for the action of W
on X.

Sketch of proof. It is is easy to verify that the poset of finite standard cosets
has a cubical realization, as defined in Section A.3. The existence of Σc now
follows easily from Proposition A.38. (See also Remark A.39.) The remaining
assertions are equally easy and are left to the interested reader. Note, for
instance, that the stabilizer of the cube corresponding to the interval [WJ ,WK ]
is WJ . 	


The fundamental domain described in the last sentence of the proposition
is the same as the one given in Section 12.3.7, with some of the simplices
lumped together to form cubes. In Figure 12.12, for example, one need only
ignore the dashed lines to see the cubes. See also the figure in the solution
to Exercise 12.56. The correspondence between cubes and intervals should be
clear from the vertex labels in those figures.

Remark 12.64. We phrased the proposition in terms of the Coxeter system
(W,S), but it is clear that every Coxeter complex Σ gives rise to a well-defined
cubical complex Σc. It can be defined as the cubical realization of the poset Σd

(or Σf ) in the sense of Section A.3.

12.4 The Davis Realization of a Building

We are now ready for the main result of this chapter. All of the work has been
done, and it is just a matter of putting the pieces together. We have already
stated the result in Example 12.43, but we repeat it here.

Let (W,S) be an arbitrary Coxeter system, and let
(
Z, {Zs}

)
be as in

Example 12.2(e). Thus Z = |K(S)| and Zs = |K(Ss)|, where S is the poset of
spherical subsets of S, and Ss is the poset of spherical subsets containing s.
As we explained in Section 12.3.8, Z is a compact geodesic metric space.

Definition 12.65. With Z as above, the Z-realization of a building ∆ of
type (W,S) is called the Davis realization of ∆.
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The main result of this section is the following theorem of Davis [88, The-
orem 11.1], which Davis says was also known to Moussong:

Theorem 12.66. For any building ∆, its Davis realization X = Z(∆) is a
complete CAT(0) space.

Proof. X is a geodesic metric space by Corollary 12.28, and it is complete
by Proposition 12.10. The hard part is that X is a CAT(0) space. In view
of Proposition 12.29, we need only check this when ∆ consists of a single
apartment, and for this we have Moussong’s Theorem 12.58. 	


As in the case of a single apartment (Section 12.3), there are a number of
variants on the definition of the Davis realization X. For example, we could
take X (as a set) to be the ordinary or cubical geometric realization of the
subposet ∆s of ∆ consisting of the spherical simplices, i.e., those whose link is
a spherical building. [If we are in the setting of Chapter 5, we would instead
describe ∆s as the set of spherical residues, where a residue is viewed as a
building in its own right (Corollary 5.30).]

And as in Section 12.3.8, we can immediately get nontrivial consequences
of the CAT(0) property by applying the Bruhat–Tits fixed-point theorem
(Theorem 11.23). For example:

Corollary 12.67. Let H be a group of type-preserving automorphisms of a
building ∆. If H stabilizes a bounded set of chambers, then H fixes a spherical
simplex. Equivalently, H stabilizes a spherical residue in C(∆).

Note: The word “bounded” here refers to the gallery metric on C(∆).

Proof. Since Z is compact, a bound on the combinatorial distance between two
chambers C,D yields a bound on the distance in X between points of Z(C)
and points of Z(D). So H stabilizes a bounded subset of X and therefore has
a fixed point x. In view of Corollary 12.22, it follows that H fixes the carrier A
of x. This carrier is a simplex of cotype Sz, where z = τ(x). Since Wz := 〈Sz〉
is finite, A is a spherical simplex. 	


If we apply this to ∆ = ∆(G,B), where G is a group with a BN-pair, the
result is the following: If H ≤ G is a subgroup that stabilizes a bounded set of
chambers of ∆, then H is contained in a parabolic subgroup of spherical type,
i.e., a conjugate of a subgroup PJ such that WJ is finite. Here is a concrete
special case of this.

Corollary 12.68. Let G be a group with a BN-pair. Then every finite sub-
group of G is a subgroup of a parabolic subgroup of spherical type. 	


Finally, we record the following consequence of the CAT(0) property:

Corollary 12.69. The Davis realization of a building is contractible. 	
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Remarks 12.70. (a) Modulo technicalities involving the difference between
the metric topology and the weak topology on X = |K(∆s)|, one can give a
more elementary proof of Corollary 12.69 in the spirit of the proof of Propo-
sition 12.52. Details are omitted.

(b) It is natural to ask whether there is a version of the Davis realization that
is a regular cell complex reducing to Σd in the case of a single apartment. The
answer is no. One has to at least pass to the cubical subdivision Σc before
the gluing of apartments respects the cell structure. (One can see this already
in the case of a tree.) The intuitive explanation for this is that apartments
branch along walls, and the walls cut across the cells of Σd to create the
subdivision Σc.

(c) If the underlying Coxeter system is hyperbolic in the sense of Gromov, then
Moussong’s Theorem 12.60 leads to a slight variant of Theorem 12.66, in which
the same space X has a CAT(−1) metric, as we mentioned in Example 12.44.

We close this chapter by posing a question about metric realizations that
is motivated by Theorem 11.52.

Question 12.71. Under what conditions on (W,S) and Z is the following
assertion true: If X is the Z-realization of a building of type (W,S), then
every subset of X isometric to an apartment is an apartment?

Examples due to Caprace [private communication] show that this does
not hold in complete generality, even if one is interested only in the Davis
realization.
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Applications to the Cohomology of Groups

This chapter is a survey, without proofs, of a few of the applications of build-
ings to the cohomology theory of groups, especially arithmetic groups. A
prerequisite for this chapter is familiarity with the basic facts about group
cohomology, as given for instance in [50]. We will also use some algebraic topol-
ogy (fundamental group, covering spaces, homology theory of manifolds, . . . ).

A less serious prerequisite involves the theory of algebraic groups. In order
to make accurate statements, we will need to use standard terminology about
linear algebraic groups. But we hope that the reader can get the flavor of
the results by thinking of familiar examples. For example, if you see “Let G
be a linear algebraic group,” you can think “Let G = SLn.” Symbols like
G(Q) or G(R) can then be interpreted as SLn(Q) or SLn(R). Any technical
assumptions about G (semisimplicity, simple connectivity, . . . ) can be ignored,
since they are all satisfied by the example G = SLn.

The reader who is not content to think about SLn can consult Appendix C,
where we define most of the terms that are used.

13.1 Arithmetic Groups over the Rationals

13.1.1 Definition

An arithmetic group, roughly speaking, is a group of integral matrices defined
by polynomial equations. For example, SLn(Z) is an arithmetic group, defined
by the single equation det(aij) = 1. For the precise definition of “arithmetic
group,” start with a linear algebraic group G defined over Q (e.g., G = SLn).
We can think of G as a subgroup of GLn for some n, defined by polynomial
equations with rational coefficients in the n2 matrix entries. The rational
matrices satisfying the given equations then form a group G(Q) (e.g., SLn(Q)).
And for any extension field K ≥ Q, the matrices in GLn(K) satisfying the
defining equations form a group G(K) (e.g., SLn(R), SLn(C), SLn(Qp)).
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We can also consider the invertible integral matrices satisfying the defining
equations. These form a group G(Z) := G(Q) ∩GLn(Z).

Definition 13.1. The group G(Z) is said to be an arithmetic group. More
generally, any subgroup Γ ≤ G(Q) that is commensurable with G(Z) is said
to be arithmetic, where two subgroups are commensurable if their intersection
is of finite index in both of them.

For example, if Γ ≤ SLn(Z) is the subgroup consisting of matrices that
are congruent to the identity matrix mod m for some integer m ≥ 2, then Γ
has finite index in SLn(Z) and hence is arithmetic. For future reference, we
remark that a group Γ of this form is torsion-free if m ≥ 3 [50, Section II.4,
Exercise 3].

Remark 13.2. Readers familiar with the theory of algebraic groups as pre-
sented in Appendix C, for instance, might legitimately object to the nota-
tion G(Z). For G is assumed to be defined over Q, and Z is not a Q-algebra.
Indeed, we were able to define the group G(Z) above only because we assumed
that we were given a specific embedding of G in a linear group GLn, and a
different embedding can lead to a different group G(Z). It turns out, how-
ever, that the new G(Z) is commensurable with the old one. So the notion of
arithmetic subgroup of G(Q) is well defined in spite of our abuse of notation.

13.1.2 The Symmetric Space

The way to get homological information about an arithmetic group Γ is to
view it as a subgroup of L := G(R). The latter is a closed subgroup of GLn(R)
and hence is a locally compact topological group. More precisely, L is a Lie
group with only finitely many connected components, and Γ is a discrete
subgroup. (It suffices to verify this last assertion for Γ = G(Z), in which
case it is an immediate consequence of the fact that Z is discrete in R.) The
significance of having Γ embedded as a discrete subgroup of a Lie group is
that it enables us to exhibit an Eilenberg–Mac Lane space of type K(Γ, 1) for
computing the cohomology of Γ , provided Γ is torsion-free.

The starting point for constructing a K(Γ, 1) is the existence of a con-
tractible manifold X associated to L, on which L acts by diffeomorphisms. If
G = SL2, for example, then X is the hyperbolic plane, which we may take to
be the upper half-plane with SL2(R) acting by linear fractional transforma-
tions (see Section 2.2.3). In general, X can be constructed as the homogeneous
space L/H, where H is a maximal compact subgroup of L. (Such an H exists
and is unique up to conjugacy.)

Remark 13.3. We will soon specialize to the case that the algebraic group G
is connected and semisimple. The space X is then a complete simply connected
Riemannian manifold of nonpositive curvature, and L acts by isometries. The
manifold X is called the symmetric space associated to L. The fact that all
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maximal compact subgroups are conjugate to H follows from Cartan’s fixed-
point theorem in this case (see Section 11.3). It is also known that H is equal
to its own normalizer in L. Hence X can be identified with the set of maximal
compact subgroups of L, with L acting by conjugation.

The compactness of the subgroup H implies that the action of L on X
is proper. This means that for every compact subset C ⊆ X, the set
{g ∈ L | gC ∩ C �= ∅} is a compact subset of L. The action remains proper if
we restrict it to any closed subgroup of L. In particular, the discrete subgroup
Γ ≤ L acts properly on X. But then the compact subsets of Γ that occur
in the definition of “proper” are finite. One easily deduces that the Γ -action
satisfies the following condition, which is sometimes taken as the definition of
properness for a discrete group action: For every x ∈ X, the stabilizer Γx of x
in Γ is finite, and x has a Γx-invariant neighborhood U such that gU ∩U = ∅
for all g ∈ Γ � Γx.

Suppose now that the arithmetic group Γ is torsion-free. [This assumption
is relatively harmless, since we can always achieve it by passing to a subgroup
of finite index; we have already seen this for SLn(Z).] The finite stabilizers Γx

are then trivial, and properness reduces to a familiar condition from cover-
ing space theory. Thus if we form the quotient space Y := Γ\X, then X
is a regular covering space of Y , with Γ as group of deck transformations.
Since X is contractible, it follows that Y is an Eilenberg–Mac Lane space of
type K(Γ, 1). Consequently, the homology and cohomology groups of Γ are
the same as those of the manifold Y . A Riemannian manifold Y of this form
is said to be a locally symmetric space.

Now it is no easy matter to actually calculate the cohomology of the man-
ifold Y . But it is at least possible to get some qualitative results. For example,
since Y is finite-dimensional, we immediately conclude that the cohomological
dimension cd Γ is finite:

cd Γ ≤ d := dimY = dimL− dim H . (13.1)

This means that Hi(Γ ) = 0 for i > d and any coefficient module.
If Y happens to be compact, we can say a lot more. We will spell this out

now, for motivation, before returning to the more typical noncompact case.

13.1.3 The Cocompact Case

Assume that Y is compact, in which case Γ is said to be cocompact. Then
Y is a closed manifold, so it has nonzero cohomology in the top dimension d
(with Z/2Z coefficients, for instance). Thus equality holds in (13.1).

Another consequence of compactness is that the groups Hi(Γ,M) are fi-
nitely generated whenever the coefficient module M is finitely generated as an
abelian group; for one knows that Hi(Y,M) is finitely generated. And if we
use the triangulability of Y , then we can deduce a stronger homological finite-
ness property of Γ . Namely, the ZΓ -module Z admits a free resolution (Fi)i≥0
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such that Fi is finitely generated for all i and zero for all sufficiently large i;
here ZΓ is the group ring of Γ over Z. One expresses this by saying that Γ is
of type FL.

Note next that there is a Poincaré duality isomorphism between the ho-
mology and cohomology of Γ . More precisely,

Hi(Γ,M) ∼= Hd−i(Γ,Ω ⊗M)

for any Γ -module M , where Ω is the orientation module of X, i.e., Ω is
a free abelian group of rank 1 whose two generators correspond to the two
orientations of X. The tensor product above is over Z and is given the diagonal
Γ -action. We can get rid of Ω by replacing Γ by its subgroup (of index 1 or 2)
consisting of the elements whose action on X is orientation-preserving.

Finally, the compactness of Y implies that Γ is a finitely presented group.
This is not really a homological result, but it is closed related to homological
finiteness properties such as the FL property.

All of these results are very nice, but it is relatively rare that they are
applicable (i.e., that Γ is cocompact). If G = SLn, for instance, then Γ is
not cocompact except in the trivial case n = 1. In the case of SL2, the non-
cocompactness follows from the discussion in Section 2.2.3. For if Γ were
cocompact, then W\X would be compact, where W = PGL2(Z); but we know
that W\X is homeomorphic to a closed 2-simplex with one vertex removed.

13.1.4 The General Case

It is remarkable that all of the properties mentioned above generalize to the
case that Γ is not cocompact. Most surprising, perhaps, is that there is a
generalization of the duality theorem. It is in proving this that buildings come
into the picture.

To avoid uninteresting technicalities, we will state the results under the as-
sumption that the algebraic group G is connected and semisimple. We denote
by l the Q-rank of G, i.e., the rank of a maximal Q-split torus (see Appen-
dix C). The number l is significant for us for two reasons: (a) Γ is cocompact
if and only if l = 0. Thus Section 13.1.3 was really a discussion of a very
special case (where G is said to be anisotropic; see Section C.10). (b) The
group G(Q) has a BN-pair and an associated (spherical) building, and l is the
rank of that building. In other words, l is the number of vertices of a chamber,
or, equivalently, the number of generating reflections of the Weyl group W . If
G = SLn, for example, then l = n− 1.

The first step in dealing with the general case is to prove that the man-
ifold Y can be compactified by the adjunction of a boundary, i.e., Y is dif-
feomorphic to the interior of a compact manifold Y with boundary. This was
first proved by Raghunathan [192]. The spaces Y and Y are homotopy equiv-
alent by a standard result from topology, so Y is still a K(Γ, 1) manifold. This
implies as above that Γ is finitely presented and of type FL. Raghunathan’s
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proof, however, yields no information about the boundary ∂Y that is adjoined
to Y , so we get no further homological properties of Γ . In particular, we do
not get a calculation of cdΓ or a duality theorem yet.

Borel and Serre [41] gave a more explicit construction of Y . They worked
directly with X (independent of any particular Γ ) and adjoined a boundary
to it. Their construction is canonical enough that the action of G(Q) on X
extends to the resulting manifold X with boundary, and the action of any
arithmetic subgroup Γ is still proper, but now the quotient is compact. This
quotient is then the desired Y when Γ is torsion-free.

If G = SL2, for example, X is obtained from X by adjoining a disjoint
union of lines, one for each cusp in the pictures in Section 2.2.3. This may
seem hard to visualize, but a picture can be found in [216, p. 216]. [If you have
trouble visualizing any example of a 2-dimensional manifold whose boundary
is a disjoint union of infinitely many lines, you can draw one yourself: First
draw a picture of an infinite tree in the plane that branches at every vertex.
Now trace over that tree using a marker with a very wide tip. The result is a
picture of a surface whose boundary consists of infinitely many lines.]

The crucial feature of the Borel–Serre construction is that one is able
to understand the algebraic topology of the boundary ∂X: It is homotopy
equivalent to the spherical building ∆ associated to the BN-pair in G(Q). The
idea behind the proof of this is that ∂X is constructed as a disjoint union of
contractible pieces eP , indexed by the proper parabolic subgroups P < G(Q).
These pieces fit together in a manner that reflects the inclusion relations
among the parabolic subgroups, and the desired homotopy equivalence then
follows from a consideration of nerves of covers.

In view of the Solomon–Tits theorem (Sections 4.7 and 4.12), we now know
that ∂X has the homotopy type of a bouquet of (l − 1)-spheres. This leads
to the calculation of cdΓ and to the duality theorem. A detailed explanation
of the method can be found in [50, Sections VIII.7–10], so we will be brief.
Let H∗

c denote cohomology with compact supports and let H̃∗ denote reduced
homology. We take Z coefficients in both cases. Combining Poincaré–Lefschetz
duality and the contractibility of X, one obtains

Hi
c(X) ∼= Hd−i(X, ∂X) ∼= H̃d−i−1(∂X) .

Hence Hi
c(X) = 0 unless i = d−l, and Hd−l

c (X) is free abelian. Since H∗
c (X) ∼=

H∗(Γ, ZΓ ), one concludes, first, that

cd Γ = d− l .

The point here is that the cohomological dimension of a group Γ of type FL
can be computed as the top dimension in which H∗(Γ, ZΓ ) is nontrivial.

In the present case, the top dimension is the only dimension in which
H∗(Γ, ZΓ ) is nontrivial. Using this, together with the fact that the nontriv-
ial cohomology group is Z-torsion-free, one deduces that Γ satisfies Bieri–
Eckmann duality :
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Hi(Γ,M) ∼= Hd−l−i(Γ,D ⊗M)

for any Γ -module M and any i. Here D, the dualizing module, is a fixed Γ -mod-
ule, independent of M . In the present situation, D is simply the Γ -module
Hd−l

c (X); it is isomorphic to H̃l−1(∆)⊗Ω, where Ω is the orientation module
of X as in Section 13.1.3.

If l = 0, then H̃l−1(∆) = H̃−1(∅) = Z, so D = Ω, and Bieri–Eckmann
duality reduces to Poincaré duality. If l > 0, on the other hand, then D is a
free abelian group of infinite rank.

To summarize, we have the following result of Borel and Serre:

Theorem 13.4. Let G be a connected semisimple linear algebraic group de-
fined over Q. Let d be the dimension of the symmetric space associated
to G(R), and let l be the Q-rank of G. Let Γ be a torsion-free arithmetic
subgroup of G(Q). Then Γ is finitely presented and of type FL and is a (d− l)-
dimensional duality group. It is a Poincaré duality group if and only if l = 0,
i.e., if and only if Γ is cocompact.

Remarks 13.5. (a) We have said practically nothing about the actual con-
struction of X, which is extremely difficult. Grayson [116, 117] has given an
alternative approach that avoids some of the technical problems faced by
Borel and Serre. Instead of explicitly attaching a boundary to X, he finds
his X inside of X. In other words, he constructs the sort of manifold one
would get from the Borel–Serre X by removing an open collar neighborhood
of the boundary. Grayson’s method was based on a new approach to reduc-
tion theory introduced by Stuhler [229,230] instead of the classical reduction
theory used by Borel and Serre.

(b) The theorem generalizes to an arbitrary linear algebraic group defined
over Q, but one has to define the integers d and l slightly differently in the
general case.

13.1.5 Virtual Notions

One says that a group virtually has a certain property if a subgroup of finite
index has that property. It is sometimes convenient to use this language in
order to avoid the assumption that Γ is torsion-free. For example, any arith-
metic subgroup Γ ≤ G(Q) is virtually torsion-free, and it has a well-defined
virtual cohomological dimension vcd Γ ; this is the common cohomological di-
mension d − l of its torsion-free subgroups of finite index. Similarly, Γ is
virtually of type FL, or, more briefly, it is of type VFL, because it has a sub-
group of finite index that is of type FL. Finally, the arithmetic group Γ is a
virtual duality group. Note that we can dispense with “virtual” when talking
about finite presentation: Γ is itself finitely presented since it has a finitely
presented subgroup of finite index.

For our canonical example of SLn, one has d = (n(n + 1)/2) − 1 and
l = n− 1, so
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vcd (SLn(Z)) =
n(n− 1)

2
.

There is an easy way to remember this result—it says that vcd(SLn(Z)) is
equal to the “obvious” lower bound on this vcd that one gets by looking at
the strict upper-triangular subgroup of SLn(Z).

In order to explain this, we need to recall some facts about solvable groups.
Let Γ be an abstract solvable group. Choose a normal series

1 = Γ0 � Γ1 � · · · � Γr = Γ

with abelian quotients Γi/Γi−1, and set

h :=
r∑

i=1

dimQ Q⊗ (Γi/Γi−1) .

Definition 13.6. The number h, which is independent of the choice of normal
series, is called the Hirsch rank of Γ .

The Hirsch rank is closely related to the homological and cohomological
dimensions of Γ . In particular,

h ≤ cd Γ ≤ h + 1

if Γ is torsion-free [33, Section 7.3].
Returning now to the strict upper-triangular group, it is a torsion-free

nilpotent group of Hirsch rank n(n − 1)/2, whence the “obvious” inequality
vcd(SLn(Z)) ≥ n(n− 1)/2.

Here is another example to illustrate this principle. Consider SLn (Z[1/p]),
where p is a prime number. (This is not arithmetic, but we are about to
enlarge our framework so as to allow groups like this.) Its full upper-triangular
subgroup is a virtually torsion-free solvable group of Hirsch rank n(n−1)/2+
n− 1, so we get

vcd
(
SLn (Z[1/p])

)
≥ n(n− 1)

2
+ n− 1 .

We will see in the next section how to use a Euclidean building to prove that
equality holds.

13.2 S-Arithmetic Groups

Let S be a finite set of prime numbers, and let ZS < Q be the ring of rational
numbers a/b (a, b ∈ Z) such that the primes dividing b are in S. Thus the
elements of ZS are integral except possibly at S. Using ZS instead of Z, we get
the notion of S-arithmetic group:
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Definition 13.7. Let G be a linear algebraic group defined over Q, and let
S be a finite set of primes. Then any subgroup of G(Q) commensurable
with G(ZS) is said to be an S-arithmetic group.

For example, SLn (Z[1/p]) is an S-arithmetic subgroup of SLn(Q), with
S = {p}. In this section we will describe work of Borel and Serre [42] that
extends their results about arithmetic groups to the S-arithmetic case.

13.2.1 A p-adic Analogue of the Symmetric Space

Fix a prime number p, and let L now denote the group G(Qp). Groups of this
type are often called p-adic groups, and are thought of as analogues of real or
complex Lie groups. Assume that the algebraic group G is simply connected
and absolutely almost simple. These assumptions guarantee that L admits a
Euclidean BN-pair, analogous to the one we studied for G = SLn (Section 6.9).
We therefore have a (Euclidean) Bruhat–Tits building X on which L acts.

The building X is a locally finite simplicial complex and is contractible
by Theorem 4.127 or by Theorem 11.16 and Proposition 11.7. Its dimension
is the Qp-rank of G (or, more precisely, of the linear algebraic group over Qp

obtained from G by extension of scalars). Recall that this dimension is n− 1
for the case G = SLn. The stabilizers of the simplices of X are compact open
subgroups of L, and it follows easily that the action of L on X is proper.

For applications to the cohomology of discrete groups, we will want to
know H∗

c (X). This was computed by Borel and Serre [42], using a method
remarkably similar to the method used for the symmetric space associated
to G(R). The first step is to embed X as a dense open subspace of a compact
contractible space X = X∪∂X. The compact space ∂X that is adjoined to X
is, as a set, the geometric realization of the (spherical) building at infinity.
Remark 11.81 and Exercise 11.82 hinted at the possibility of doing this and
also suggested that the topology on ∂X should not be expected to be the
usual simplicial topology. We will say more about the significance of having a
second topology on the geometric realization of a building in Section 14.3.1.

If X is 1-dimensional, for example, then it is a tree and X is its endpoint
compactification. Thus ∂X is the space of ends of X in this case; it is a
Cantor set, whose points are in 1–1 correspondence with the vertices of the
(0-dimensional) spherical building at infinity. If this spherical building were
given the weak topology, however, then it would be discrete.

The Borel–Serre compactification X enables one to compute H∗
c (X). Using

a suitable cohomology theory (e.g., Alexander–Spanier cohomology), one finds
that

Hi
c(X) ∼= Hi(X, ∂X) ∼= H̃i−1(∂X) .

Borel and Serre go on to prove an analogue of the Solomon–Tits theorem
for the reduced Alexander–Spanier cohomology of the compactly topologized
spherical building ∂X: This cohomology is zero except in the top dimension
(which is dim X − 1), and it is free abelian in that dimension. The end result,
then, is that Hi

c(X) vanishes for i �= dimX and is free abelian for i = dimX.
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13.2.2 Cohomology of S-Arithmetic Groups: Method 1

In Section 13.1 our emphasis was on using proper actions of discrete groups
to get homological information. We will return to that point of view in Sec-
tion 13.2.3 below. But first, for the sake of variety, we will show how to get
the same kind of information from an action that is not proper. The method
we will follow here is based on [214] and [57]. To keep the discussion as simple
as possible, we begin with the familiar case G = SLn, and we assume that S
is a singleton {p}. Thus an S-arithmetic group, for the moment, is simply a
subgroup of SLn(Q) commensurable with SLn (Z[1/p]).

Let Γ = SLn (Z[1/p]), viewed as a subgroup of L := SLn(Qp). Note that
Γ is not discrete in L; in fact, it is dense in L. But we can still consider the
(nonproper) simplicial action of Γ on the Bruhat–Tits building X associated
to L. Because of the density of Γ (and the fact that the stabilizers of the
simplices are open in L), a fundamental domain for the L-action on X will
still be a fundamental domain for the Γ -action. Hence Γ has a closed cham-
ber C as strict fundamental domain. Moreover, the stabilizers of the faces
of C are commensurable with SLn(Z). For example, if v is the vertex corre-
sponding to the standard lattice, then we know that the stabilizer of v in L
is SLn(Zp), where Zp is the ring of p-adic integers; hence the stabilizer of v
in Γ is SLn (Z[1/p]) ∩ SLn(Zp) = SLn(Z). Thus the stabilizers are not finite,
as they would be for a proper action, but they are groups that are known to
have good finiteness properties.

Now let Γ be a torsion-free subgroup of SLn(Q) commensurable with
SLn(Z[1/p]), e.g., a torsion-free subgroup of SLn(Z[1/p]) of finite index. Then
Γ acts on X with compact quotient and torsion-free arithmetic stabilizers.
Since torsion-free arithmetic groups are finitely presented and of type FL, it
follows that Γ is finitely presented [51] and of type FL [214, Proposition 11].

To calculate cd Γ and prove duality, we use the equivariant cohomology
spectral sequence for (Γ,X) with coefficients in ZΓ [50, VII.7.10]. All the
stabilizers are duality groups of the same dimension m := vcd(SLn(Z)), so
the spectral sequence is concentrated on the line q = m. Moreover, one
can calculate E∗,m

1 by the method of [57, Sections 2 and 3], and one finds
that it is C∗

c (X)⊗D; here C∗
c denotes simplicial cochains with compact sup-

port, and D is the dualizing module for the torsion-free arithmetic subgroups
of SLn(Z), i.e., D = H̃l−1(∆) ⊗ Ω in the notation of Section 13.1. In view
of the calculation of H∗

c (X) stated in Section 13.2.1, the spectral sequence
collapses at E2 and gives the following result: H∗(Γ, ZΓ ) is concentrated in
dimension vcd(SLn(Z)) + dim X, and in that dimension it is the Γ -module
Hdim X

c (X)⊗D. Thus Γ is a duality group, and we have calculated its dimen-
sion and its dualizing module. In particular,

vcd
(
SLn (Z[1/p])

)
=

n(n− 1)
2

+ n− 1 .

The method works equally well if S consists of more than one prime.
Simply pick some p ∈ S, let Γ act on the corresponding X, and note that the
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stabilizers are (S � {p})-arithmetic. So the analysis can be done by induction
on the number of primes in S. The method also works equally well if SLn is
replaced by any G that is simply connected and absolutely almost simple. To
state the result, let Xp be the Bruhat–Tits building associated to G(Qp), let
dp := dim Xp, and let Dp := H

dp
c (Xp). It is convenient to introduce a fictitious

prime ∞ and to set X∞ equal to the symmetric space associated to G(R).
Let d∞ := dimX∞− l, where l is the Q-rank of G, and let D∞ := Hd∞

c (X∞).
Let S′ = S ∪ {∞}, and set

d :=
∑

p∈S′

dp and D :=
⊗

p∈S′

Dp .

Theorem 13.8. Let G be a simply connected and absolutely almost simple
linear algebraic group defined over Q. Then, with the notation above, any
torsion-free S-arithmetic subgroup of G(Q) is finitely presented and of type FL
and is a duality group of dimension d with dualizing module D.

13.2.3 Cohomology of S-Arithmetic Groups: Method 2

We now sketch the method actually used by Borel and Serre [42] to prove
Theorem 13.8. Instead of letting the torsion-free S-arithmetic group Γ act on
the various Xp one at a time, they let it act on them simultaneously. More
precisely, let Lp := G(Qp) for p ∈ S′, where Q∞ := R. Let L :=

∏
p∈S′ Lp.

Then Γ can be embedded diagonally in the locally compact group L, and it
is discrete in L. The point here is that ZS is a discrete subring of

∏
p∈S′ Qp,

since a sequence of nonzero elements of ZS that converges to 0 p-adically for
all p ∈ S will not converge to 0 in R. Now Γ acts properly on the contractible
space X := X∞×

∏
p∈S Xp. As in the arithmetic case, the quotient Y := Γ\X

is a compact K(Γ, 1)-space.
A suitable triangulation theorem now implies that Γ is finitely presented

and of type FL. Moreover, letting d and D be as above, we can apply the
Künneth theorem to calculate that H∗

c (X) = H∗(Γ, ZΓ ) is concentrated in
dimension d and is isomorphic to D in that dimension. Thus Γ is a d-dimen-
sional duality group with dualizing module D.

Remark 13.9. Borel and Serre proved a more general theorem than the one
stated above. First, they worked over an arbitrary algebraic number field F ,
not just Q. Their L involved the groups G(F̂ ) for various completions F̂ of F ,
which may include several copies of R, several copies of C, and several p-adic
completions. Second, their hypothesis on G was weaker than the one stated
above; it suffices to assume that G is a linear algebraic group (defined over F )
such that the connected component of the identity is reductive.

13.2.4 The Nonreductive Case

The finiteness properties proven by Borel and Serre in the reductive case
hold for some nonreductive groups, but not for all. Consider, for example, the
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following subgroups of the 2× 2 upper-triangular group:

G :=
(

1 ∗
∗

)
, G0 :=

(
1 ∗

1

)
.

Then G is not reductive because it has the connected unipotent group G0 as
a normal subgroup. (See Sections C.7 and C.9 for the relevant definitions.)
Nevertheless, it is not hard to show that G(Z[1/p]) is finitely presented and
of type VFL. On the other hand, G0(Z[1/p]) is isomorphic to the additive
group Z[1/p], so it is not even finitely generated. Another interesting example
is the 3× 3 group

G1 :=

⎛

⎝
1 ∗ ∗
∗ ∗

1

⎞

⎠ ;

one can show that G1(Z[1/p]) is finitely generated but not finitely presented.
The groups G0 and G1 are part of an infinite sequence of groups whose

study was initiated by H. Abels [1]. The next one in the sequence is

G2 :=

⎛

⎜
⎜
⎝

1 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

1

⎞

⎟
⎟
⎠ .

In general, Gn is the subgroup of GLn+2 consisting of upper-triangular ma-
trices such that the diagonal entries in the upper left corner and lower right
corner are 1. (The subscript n indicates the rank of the torus consisting of the
diagonal matrices in Gn.)

We have already noted that G0(Z[1/p]) is not finitely generated, whereas
G1(Z[1/p]) is finitely generated but not finitely presented. And Abels [1]
proved that G2(Z[1/p]) is finitely presented. In order to describe the situation
for arbitrary n, we need to introduce finiteness conditions Fn that generalize
finite generation and finite presentation.

Definition 13.10. We say that a group Γ is of type F1 if it is finitely gener-
ated. For any n ≥ 2, we say that Γ is of type Fn if it is finitely presented and if
the ZΓ -module Z (with trivial Γ -action) admits a free resolution (Pi)i≥0 with
Pi finitely generated for i ≤ n. If Γ is of type Fn for all n, then we say that Γ
is of type F∞; this is equivalent to saying that Γ is finitely presented and that
there is a resolution as above with Pi finitely generated for all i [50, VIII.4.5].
Finally, we make the convention that every group Γ is of type F0. Let φ(Γ )
be the largest n (0 ≤ n ≤ ∞) such that Γ is of type Fn. We call φ(Γ ) the
finiteness length of Γ .

It is easy to see that any group of type VFL is of type F∞ [50, VIII.5.1].
Hence φ(Γ ) = ∞ if Γ is arithmetic, and the same is true if Γ is S-arithmetic
and G is reductive.
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Let’s return now to our sequence of nonreductive groups Gn, and consider
the S-arithmetic groups Γn := Gn(Z[1/p]). The results stated above can be
expressed by saying that φ(Γ0) = 0, φ(Γ1) = 1, and φ(Γ2) ≥ 2. Abels and
Brown [5] generalized these results by showing that φ(Γn) = n for all n. A
slightly different proof was later given by Brown [52]. Both proofs involve
an analysis of the action of Γn on the Bruhat–Tits building X associated
to SLn+2(Qp). (Recall that GLn+2(Qp) acts on this building, so Γn also acts.)
As in Section 13.2.2, the stabilizers are arithmetic groups. The problem, how-
ever, is that the quotient is not compact; so it takes some work to deduce
finiteness properties (or the lack thereof) from the action.

At the moment, this application of buildings is not understood in any sys-
tematic way. In other words, one does not know how to find a suitable building
to use for the study of the finiteness properties of an arbitrary S-arithmetic
group.

Remark 13.11. Given the action of Γn on the (n+1)-dimensional building X,
we can interpret the result that φ(Γn) = n as saying that Γn just barely fails to
be of type F∞. For one has the following general result, which is a consequence
of [52, Theorems 2.2 and 3.2]: Suppose a group Γ acts on a d-dimensional
contractible complex X. If the stabilizer of every simplex is of type F∞, then
Γ is of type F∞ if and only if it is of type Fd.

It should be mentioned, finally, that the F1 and F2 conditions (i.e., finite
generation and finite presentation) are understood for an arbitrary S-arith-
metic group Γ . The results, which are due to Kneser, Borel–Tits, and Abels,
are too complicated to state here. See the introduction to [2] for a survey.

13.3 Discrete Subgroups of p-adic Groups

In Section 13.2.1 we mentioned that Euclidean buildings play a role in the
theory of p-adic groups analogous to the role played by symmetric spaces
in the the theory of real Lie groups. We made use of such buildings in our
discussion of the cohomology of S-arithmetic groups. One can also use the
Euclidean building associated with a p-adic group L to study the cohomology
of discrete subgroups Γ < L. Garland [105] gave a striking application of this
sort. To avoid technicalities, we state a special case of his result, as improved
by Casselman [77]:

Theorem 13.12. Let G be a simple algebraic group defined over Qp and
let l be its Qp-rank. If Γ is a discrete cocompact subgroup of G(Qp), then
Hi(Γ, R) = 0 for 0 < i < l.

Remark 13.13. Here is a simple way to get examples of such discrete
subgroups Γ . Start with a simple algebraic group G0 defined over Q and
R-anisotropic. This is equivalent to saying that G0(R) is compact. On the
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other hand, G0(Z[1/p]) is discrete in G0(R)×G0(Qp) (Section 13.2.3), and it
follows easily that G0(Z[1/p]) is discrete in G0(Qp). Thus we can take G in
the theorem to be the group obtained from G0 by extension of scalars to Qp,
and we can take Γ = G0(Z[1/p]). An easy example of such a G0 is the norm-1
group of a quaternion algebra over Q whose norm form is positive definite
(see Section 6.11).

Garland’s theorem can be viewed as a p-adic analogue of a vanishing the-
orem of Matsushima [161] for the cohomology of locally symmetric spaces.
Matsushima’s proof was based on estimates of the eigenvalues of certain oper-
ators related to the curvature tensor. The most interesting feature of Garland’s
proof of Theorem 13.12 is that it is similarly based on eigenvalue estimates,
where the operators are now p-adic curvature operators. The underlying space
here is the quotient Y = Γ\X, where X is a Euclidean building; one can think
of Y as a p-adic analogue of a locally symmetric space.

The formal similarity between Garland’s method and Matsushima’s is ex-
plained geometrically by the work of Pansu [183]. See also [30,98,138,153,184]
for further results related to Garland’s ideas.

13.4 Cohomological Dimension of Linear Groups

A special case of the results of Section 13.2 is that vcd(SLn(ZS)) < ∞ for any
n and S. The proof of this does not require the full force of the arguments
we sketched as long as we do not care about the precise value of the virtual
cohomological dimension. In particular, we need the proper action of SLn(ZS)
on the contractible finite-dimensional space X =

∏
p∈S′ Xp, but we do not

need the spaces Xp. As a consequence, we have the following theorem, first
pointed out by Serre [214, Théorème 5]:

Theorem 13.14. Let F be an algebraic extension of Q and let Γ be an arbi-
trary finitely generated subgroup of GLn(F ). Then vcd Γ < ∞.

To prove this, we may assume that F is finite over Q, and then we can
easily reduce to the case F = Q. [An n-dimensional vector space over F is a
finite-dimensional vector space over Q.] Then Γ ≤ GLn(A) for some finitely
generated subring A < Q; hence Γ ≤ GLn(ZS) for some S. Finally, we may
replace Γ by Γ ∩ SLn(ZS), since det(Γ ) is a finitely generated abelian group.
The theorem now follows from the result about SLn(ZS) stated above.

It is natural to ask what can be said if F is not assumed to be algebraic.
For example, what if F is a rational function field Q(X)? Easy examples
show that finitely generated subgroups do not necessarily have finite vcd in
this case. Suppose, for instance, that Γ = G(Z[X]), where G is the 2 × 2
matrix group defined at the beginning of Section 13.2.4. Then Γ is finitely
generated, but vcdΓ = ∞ because the unipotent subgroup G0(Z[X]) is free
abelian of infinite rank.
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It turns out that this example is essentially the only kind of counterexam-
ple. In other words, the failure of vcdΓ to be finite can always be explained
in terms of the unipotent subgroups of Γ . This is the content of the following
theorem of Alperin and Shalen [21]:

Theorem 13.15. Let Γ be a finitely generated subgroup of GLn(F ), where F
is a field of characteristic 0. Then vcd Γ < ∞ if and only if there is an upper
bound on the Hirsch ranks of the unipotent subgroups of Γ .

Recall that any unipotent subgroup U of GLn(F ) is torsion-free and nilpo-
tent by Kolchin’s theorem (Section C.7). So the Hirsch rank of U is indeed
defined and differs from cdU by at most 1 (see Section 13.1.5). Thus “Hirsch
rank” could be replaced by “cohomological dimension” in the statement of the
theorem. The “only if” part is now obvious. We will say a few words about
the proof of the “if” part, in order to indicate how buildings enable one to
reduce the question of finite vcd to the question of finding a bound on cdU ,
where U ranges over the unipotent subgroups of Γ .

As in the proof of Serre’s theorem, the finite generation of Γ guarantees
that Γ ≤ GLn(A) for some finitely generated subring A ≤ F . We may assume
that F is the field of fractions of A and that Γ ≤ SLn(A). The first step
in the proof is pure commutative algebra. One shows that there is a finite
collection {vi} of discrete valuations on F that can be used to test integrality
of elements of A, in the following sense: Let Ai be the valuation ring of vi and
let B be the ring of algebraic integers in F ; then A ∩

⋂
i Ai ≤ B.

Let Xi be the Bruhat–Tits building associated to SLn(F ) and the valua-
tion vi (Section 6.9). Then Γ acts on Xi for all i. We can either analyze one
of these actions at a time, as in Section 13.2.2, or we can let Γ act on the
product as in Section 13.2.3. Either way, we are reduced to finding a bound
on vcd Γ ′, where Γ ′ ranges over the subgroups of Γ that stabilize a vertex in
each Xi. Now the stabilizer of a vertex of Xi stabilizes an Ai-lattice in Fn;
hence its characteristic polynomial has coefficients in Ai. Consequently, the
characteristic polynomial of each element of Γ ′ has coefficients in the ring of
integers B. One says that Γ ′ has integral characteristic.

Intuitively, Γ ′ resembles a subgroup of the arithmetic group SLn(B), and
so one might hope to be able to bound vcdΓ ′ by embedding Γ ′ as a discrete
subgroup of a product SLn(R)r1×SLn(C)r2 . Now this is certainly not possible
in general—unipotent groups again provide counterexamples. (Note that any
unipotent group has integral characteristic.) But Alperin and Shalen, using
techniques introduced by Bass for studying groups of integral characteristic,
show that unipotent groups are the only obstruction. More precisely, there is
a unipotent normal subgroup U � Γ ′ such that Γ ′/U is a discrete subgroup
of a Lie group as above. Since vcdΓ ′ ≤ cd U + vcd Γ ′/U , we are done by the
hypothesis on the unipotent subgroups.
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13.5 S-Arithmetic Groups over Function Fields

We close with a discussion of the finiteness properties of some matrix groups
in characteristic �= 0. Let K be the function field of an irreducible projective
smooth curve C defined over a finite field k := Fq. Readers not familiar with
these concepts can think of C as something like a Riemann surface and K
as the field of meromorphic functions on C. The canonical example is the
rational function field K = k(t), which corresponds to the case that C is the
projective line (analogue of the Riemann sphere).

Let S be a finite nonempty set of (closed) points of C, and let OS < K
be the ring of functions that have no poles except possibly at points in S.
We can also describe OS in terms of discrete valuations. Each point p of the
curve C gives rise to a discrete valuation vp on K such that vp(f) is the order
of vanishing of f at p. Thus vp(f) < 0 if and only if f has a pole at p; hence
the valuation ring Op associated to vp is the set of functions that do not have
a pole at p. The definition of OS can now be rewritten as

OS =
⋂

p/∈S

Op .

Suppose, for example, that K = k(t). Then the curve has one point at infinity
together with one point for every irreducible polynomial in k[t]. If S consists
only of the point at infinity, then OS is the polynomial ring k[t].

Let G be a linear algebraic group defined over K. We can then define
the notion of S-arithmetic subgroup of G(K) exactly as in Definition 13.7,
with Q replaced by K and ZS replaced by OS . For example, SLn (k[t]) is an
S-arithmetic subgroup of SLn(k(t)) when S = {∞} as above.

Assume now that G is simply connected and absolutely almost simple. For
each p ∈ S we have a locally compact group Lp := G(Kp), where Kp is the
completion of K with respect to vp, and we have a Bruhat–Tits building Xp

on which Lp acts properly. Set

L :=
∏

p∈S

Lp and X :=
∏

p∈S

Xp .

As in the number field case, the group Γ := G(OS) is a discrete subgroup
of L. It therefore acts properly on the contractible space X. And, as in the
number field case again, the quotient Γ\X is compact if and only if l = 0,
where l is the K-rank of G. One can deduce that Γ is of type VFL, and hence
of type F∞, when l = 0. (Note: Part of what has to be proved here is that
Γ is virtually torsion-free, which is not automatic in characteristic �= 0. The
proof in the present case uses the compactness of Γ\X [214, Théorème 4].)

If l > 0, on the other hand, the situation becomes different from that in the
number field case, at least as far as the Fn properties are concerned. Indeed, Γ
need not even be finitely generated. The simplest example is Γ = SL2 (k[t]).
The space X is a tree in this case, and there is a half-line that is a strict
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fundamental domain for the action. By analyzing the stabilizers along this
half-line [217, Section II.1.6] one can see that Γ is not finitely generated.
[This is a theorem of Nagao, which had been proved earlier without the aid of
the tree.] More generally, SLn (k[t]) acts on its (n − 1)-dimensional building
with a sector as strict fundamental domain, and one suspects that this group
is of type Fn−2 but not of type Fn−1. We will return to this example below.

In the rest of this section we summarize what is known about the finiteness
properties of Γ = G(OS) for arbitrary G, K, and S. Assume throughout this
discussion that l > 0, and set

d := dim X =
∑

p∈S

dp , (13.2)

where dp = dimXp (= the Kp-rank of G). Note that dp ≥ l, so we always
have d ≥ 1. The first result is that finite generation and finite presentation
are completely understood in terms of d (see Behr [32]):

Theorem 13.16.

(1) Γ is finitely generated if and only if d ≥ 2.
(2) Γ is finitely presented if and only if d ≥ 3.

For example, SL2(OS) is finitely generated if and only if |S| ≥ 2 and finitely
presented if and only if |S| ≥ 3. Similarly, SL3(OS) is finitely generated for
any S and is finitely presented if and only if |S| ≥ 2. And for n ≥ 4, SLn(OS)
is finitely presented for any S.

For SL2, not only does one know when Γ is finitely generated or finitely
presented, but one in fact knows the precise finiteness length (see Defini-
tion 13.10). This is given by the following theorem of Stuhler [231]:

Theorem 13.17. SL2(OS) has finiteness length d− 1 = |S| − 1.

Suppose, next, that G = SLn for arbitrary n and that we are in the
simplest possible case: OS = k[t]. Then Γ = SLn (k[t]), and X has only one
factor, which is a Euclidean building of dimension d = n− 1. We know from
the results stated above that the finiteness length of Γ is 0 if n = 2, is 1 if
n = 3, and is at least 2 if n ≥ 4. The following result, due independently to
Abels and Abramenko (see [3,4,6]), almost settles the question for arbitrary n:

Theorem 13.18. For any n there is an integer N such that SLn (Fq[t]) has
finiteness length n− 2 if q ≥ N .

If n ≤ 5, Abramenko has shown that one can take N = 2, i.e., there is
no restriction on q. If n ≥ 6, however, the best known value of N is N =
max1≤i≤n−2

(
n−2

i

)
, again due to Abramenko, but this is not believed to be

sharp. Taking n = 6, for example, one does not know the finiteness length of
SL6 (Fq[t]) for q = 2, 3, 4, 5. Abramenko [9, Section III.2] went on to generalize
Theorem 13.18 to arbitrary classical groups (including symplectic, orthogonal,
and unitary groups). Here is one version of the result:
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Theorem 13.19. Let G be an absolutely almost simple Fq-group that is not
of exceptional type, and let l be its Fq-rank. If q ≥ 22l−1, then G (Fq[t]) and
G
(
Fq[t, t−1]

)
are both of type Fl−1, and G (Fq[t]) is not of type Fl (so it has

finiteness length precisely l − 1).

If we turn now to a general G,K, S (with l > 0), the theorems stated
above suggest the following question (with d as in equation (13.2)):

Question 13.20. Is the finiteness length φ(Γ ) always equal to d− 1?

Several people have conjectured that the answer is yes. At the time of this
writing, however, all that is known (aside from the special cases mentioned
earlier) is the following result of Bux and Wortman [67]:

Theorem 13.21. φ(Γ ) < d.

(In view of Remark 13.11, this is equivalent to saying that Γ is not of type F∞.)

The simplest group for which one does not know the precise finiteness
length is the group Γ = SL3

(
Fq[t, t−1]

)
. Here |S| = 2, and X is a product

of two Euclidean buildings of dimension 2, so d = 4. We know that Γ is
finitely presented by Theorem 13.16, and we know that Γ is not of type F4

by Theorem 13.21. So the finiteness length φ(Γ ) is either 2 or 3, and the
conjecture mentioned above predicts that φ(Γ ) = 3.

Remark 13.22. In this section we have focused on a particular kind of finite-
ness property, for which the function field case seems very different from the
number field case. But if one asks slightly different questions, then the two
cases do not seem quite so different. In fact, Grayson’s version of the Borel–
Serre construction for number fields [116, 117] was inspired by homological
finiteness results in the function field case proved by Serre for SL2 and Quillen
for SLn. See [217, Sections II.2.8 and II.2.9] and [115]. Similar ideas can be
found in the work of Stuhler [229,230].
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Other Applications

In the last chapter we surveyed some of the applications of buildings to the
cohomology theory of groups. We have also mentioned applications of the
Bruhat–Tits fixed-point theorem to the structure of groups acting on build-
ings. As we saw in Section 12.4, this has very wide applicability via the Davis
realization. And of course, the theory of buildings has been deeply intertwined
with the theory of algebraic groups since the beginning of the subject, as we
have noted many times in this book. More recently, the connection between
twin buildings and Kac–Moody groups has been discovered (see Section 8.11).

The purpose of the present chapter is to mention briefly some additional
applications of buildings, with pointers to the literature for readers who want
to know more. There has been an explosion of such applications, far beyond
what could have been envisioned in the early days of the theory of buildings,
and we make no claim of completeness. See also Tits’s survey [248] for the
applications known to him as of the early 1970s.

We could not have written this chapter without the help of experts in the
various application areas. In particular, we wish to thank Michael Aschbacher,
Werner Ballmann, Dan Barbasch, Francis Buekenhout, Stephen DeBacker,
Ralf Gramlich, Lizhen Ji, Bill Kantor, Bruce Kleiner, Dimitri Leemans, En-
rico Leuzinger, Antonio Pasini, Bertrand Rémy, Peter Schneider, Ernie Shult,
Steve Smith, Ron Solomon, Ulrich Stuhler, Gudlauger Thorbergsson, and
Richard Weiss.

14.1 Presentations of Groups

It has been known for a long time that one can often obtain a presentation
for a group G by considering a fundamental domain for the action of G on a
suitable space. This idea goes back to the work of Poincaré, Klein, and Fricke.
Here is an easily stated result of this type; it is an improvement by Brown [51]
of a result of Soulé [222]:
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Proposition 14.1. Suppose a group G acts on a simply connected simplicial
complex ∆, and suppose F ⊆ ∆ is a simplicial fundamental domain in the
sense of Definition 3.74. Then G is the sum of the vertex stabilizers Gv amal-
gamated along the edge stabilizers Ge, where v ranges over the vertices of F
and e ranges over the edges of F .

This means, by definition, that G is the direct limit of the system consisting
of the groups Gv and Ge, together with the inclusions

Gv

Ge

Gv′

whenever e is an edge of F with vertices v, v′. [See, for example, Serre [217,
Section I.1.1] for the definition of “direct limit.”] An equivalent formulation
is that one can get a presentation for G by combining presentations of the
groups Gv and then introducing relations to identify the copy of Ge in Gv

with the copy of Ge in Gv′ , where e, v, and v′ are as above.
A variant of this result (which is actually a special case of it) can be found

in Tits [259]. See also [73; 195, Chapter 3]. It is stated in terms of group
actions on posets and is formulated with applications to buildings in mind.
Suppose a group G acts on a poset X, and suppose that F is a fundamental
domain for the action. By this we mean that F is closed under passage to
predecessors and that every element of X is G-equivalent to a unique element
of F . Note that the existence of such a fundamental domain implies that
Gy ≤ Gx whenever x ≤ y. Here, as usual, Gx is the stabilizer of x.

Proposition 14.2. If the poset X is simply connected, then G is the direct
limit of the system consisting of the stabilizers Gx (x ∈ F ) and the inclusions
Gy ↪→ Gx for x < y in F .

(Simple connectivity of a poset is defined combinatorially in the cited refer-
ences. It is equivalent to simple connectivity of the flag complex of X in the
usual sense of topology.)

As in Proposition 14.1, we may express the conclusion of Proposition 14.2
in the language of amalgamations: G is the amalgam (or amalgamated sum)
of the subgroups Gx relative to the inclusions Gy ↪→ Gx for x < y.

We now proceed to some specific presentations that can be obtained when
a group acts on a building. All of them exhibit the group as an amalgam of
various subgroups, though in some cases the proofs in the literature use the al-
gebraic theory of BN-pairs instead of directly applying one of the propositions
above.

14.1.1 Chamber-Transitive Actions

Suppose a group G admits a chamber-transitive, type-preserving action on
a building ∆ of type (W,S). Choose a fundamental chamber C, and let GJ
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(J ⊆ S) be the stabilizer of the face of C of cotype J . For example, G∅ is the
stabilizer of C.

In this subsection we will be concerned only with sets J such that |J | ≤ 2.
We set Gs := G{s} (s ∈ S) and Gs,t := G{s,t} (s, t ∈ S, s �= t). As a first
application of Proposition 14.2, Tits [259, Section 14] proves that G is the
amalgam of the the groups Gs,t with m(s, t) < ∞, the groups Gs for s ∈ S,
and the group G∅; the amalgam is formed relative to the inclusions Gs ↪→ Gs,t

and G∅ ↪→ Gs.
Note, for plausibility, that this result reduces to the Coxeter presentation

of W if ∆ = Σ(W,S) and G = W . For another familiar example, suppose
W is the infinite dihedral group. Then ∆ is a tree on which G acts with an
edge as fundamental domain. The conclusion in this case is that G is the
amalgamated free product Gs ∗G∅ Gt, where S = {s, t}. This could also be
deduced from the theory of groups acting on trees [217, Section I.4].

14.1.2 Further Results for BN-Pairs

We specialize now to the case that G has a BN-pair. We can then apply the
results of Section 14.1.1 to the action of G on ∆(G,B). The groups GJ in this
case are the standard parabolics PJ , so we obtain a description of G as an
amalgam of spherical standard parabolic subgroups of rank ≤ 2.

There are two further descriptions of G as an amalgam, as well as a third
one in the spherical case. The first result says that G is the sum of the rank-1
parabolics Ps (s ∈ S) and the group N , amalgamated along B (which is a
subgroup of each Ps) and the intersections N ∩ Ps. This is proved in [247,
Proposition 13.3]; see also [217, Section II.1.7, Theorem 8].

For the second result, which can be deduced easily from the first, assume
that the rank of (W,S) is at least 3. Then G is the sum of the maximal
standard parabolics PS�{s}, amalgamated along their intersections. See [217,
Section II.1.7, Corollary 3].

For the final result, known as the Curtis–Tits theorem, assume that we are
in the spherical case, i.e., that W is finite. For simplicity, assume further that
our BN-pair comes from an RGD system as in Section 7.8.5. We then have
a family of “rank-1” groups Hs := T 〈Us, U−s〉 (s ∈ S) as in Section 7.8.3,
and we set Hs,t := 〈Hs,Ht〉 for s �= t in S. The Curtis–Tits theorem [247,
Theorem 13.32] then says that G is the sum of the groups Hs,t, amalgamated
along the subgroups Hs. Equivalently, G is the direct limit of the system
consisting of the groups Hs and Hs,t and the inclusion maps

Hs

Hs,t

Ht

For general (nonspherical) RGD systems as defined in Chapter 8, Abramenko
and Mühlherr [12] proved that the Curtis–Tits theorem remains valid provided
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(W,S) is 2-spherical and the associated twin building satisfies condition (co) of
Section 5.11. It is this generalization of the Curtis–Tits theorem that enabled
us to give a simple description of certain Kac–Moody groups in Section 8.11.6.

14.1.3 The Group U+

Still in the setting of a general RGD system, we proved in Theorem 8.85 that
U+ is an amalgam of its subgroups Uw (w ∈ W ). Our proof was based on
work that we had already done in Section 8.7, but we could instead have
deduced the theorem from Proposition 14.2. This is done in [259, Section 15];
see also [73]. The starting point is that U+ acts on ∆− with Σ− as fundamental
domain (cf. Remark 8.35). Here (∆+,∆−) is the twin building associated to
the RGD system, and (Σ+, Σ−) is the fundamental twin apartment.

14.1.4 S-Arithmetic Groups

We already saw in Chapter 13 that (Euclidean) buildings are very useful for
deriving results about the finite presentability of S-arithmetic groups; see in
particular Theorem 13.8 (where the part referring to finite presentability does
not require the assumption that the S-arithmetic subgroup is torsion-free) and
Theorem 13.16. These general results are qualitative in the sense that they
do not provide explicit (finite) presentations or at least not any “nice” ones.
This changes in special situations, where simplicial fundamental domains are
available and one can therefore apply Proposition 14.1.

As a first example, consider the group Γ := SL2 (Z[1/p]). It acts on the
building ∆ associated to G := SL2(Qp), which is a tree; see Section 6.9.
Since Γ is dense in G, it acts chamber transitively (even Weyl transitively)
on ∆, as we discussed in Section 6.10.2. If we choose the fundamental edge
e = {v, w} so that the vertex stabilizers in G are, respectively, Gv = SL2(Zp)
and Gw = d SL2(Zp)d−1 with d := diag(1, p), then an immediate application of
Proposition 14.1 yields that Γ is the free product of SL2(Z) and d SL2(Z)d−1,
amalgamated along their intersection (see also [217, Section II.1.4]).

But Proposition 14.1 can also be applied when the fundamental domain
F is infinite. One of the best-known examples of this is Serre’s interpretation
of Nagao’s theorem (see [217, Section II.1.6]): Here we consider the subgroup
Γ := SL2(k[t]) of G := SL2(K), where k is a field and K := k((1/t)) is the field
of formal Laurent series over k; this is the completion of k(t) with respect to
the discrete valuation v := v∞ of k(t) introduced in Example 6.108(b). The
group Γ is a discrete subgroup of G, and it is an S-arithmetic subgroup of G
(with S = {v}) if k is finite.

Let ∆ again be the tree associated to G. It is shown in [217] that the
action of Γ on this tree admits a ray F as simplicial fundamental domain.
Moreover, this ray can be chosen such that if the vertices of F are consec-
utively numbered x0, x1, . . . , then Γx0 = SL2(k) and Γx1 < Γx2 < · · · is a
strictly increasing sequence whose union is equal to SB2(k[t]), the group of all
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upper-triangular matrices in SL2(k[t]). It now follows from Proposition 14.1
that Γ is the free product of SL2(k) and SB2(k[t]), amalgamated along their
intersection SB2(k). Since SB2(k[t]) is an infinite, strictly increasing union of
subgroups, it is not finitely generated. Combining this with the presentation
of Γ as an amalgam, one deduces that Γ is not finitely generated (not even for
finite k). This is strikingly different from the situation for arithmetic groups
and was quite a surprise when it was first discovered by Nagao.

The example discussed in the previous paragraph was generalized by
Soulé [223] to the following situation: Let G be a simply connected, almost-
simple Chevalley group (e.g., G = SLn), set Γ := G(k[t]) and G := G(K), and
consider the action of Γ on the Euclidean Bruhat–Tits building ∆ associated
to G. Soulé proves that this action again admits a simplicial fundamental do-
main F , which can be chosen to be a sector in the fundamental apartment
of ∆. Applying Proposition 14.1, one again gets a presentation of Γ as an
amalgam of vertex stabilizers. Since F is infinite, this amalgam first involves
infinitely many subgroups of Γ . As in the previous paragraph, however, these
vertex stabilizers can be organized into finitely many families of increasing
sequences so that the original amalgam can be transformed into one involv-
ing only finitely many subgroups of Γ . For details, we refer to [223] or to
[259, Section 15.7], where the fundamental domain F is derived differently.

The presentations we discussed in the last two paragraphs involve infi-
nitely many generators and relations. But the group Γ := SLn (Fq[t]) (to name
one example) is finitely presented if n ≥ 4, as was shown by Rehmann and
Soulé [194]. So it is natural to look for different actions of Γ that yield nice fi-
nite presentations. This is indeed possible, and it again involves the Euclidean
building ∆ of G := SLn(K), where K := Fq((1/t)). Consider the fundamental
chamber C of ∆ (suitably chosen with respect to the Γ -action), and remove
the vertex x0 of C with Γx0 = SLn(Fq) to obtain a panel P := C �{x0} in ∆.
It can be shown (see Abramenko [6]) that the Γ -invariant complex Γ · P is
simply connected if (q, n) �= (2, 4). This yields (by Proposition 14.1 again) a
presentation of Γ as an amalgam of the finite stabilizers Γx, where x ranges
over the n − 1 vertices of P . One can derive similar amalgam presentations
(using some results from [9]) for groups of the form G (Fq[t]), where G is a
classical Fq-group of rank ≥ 3 and q is “sufficiently big.”

14.2 Finite Groups

Recall that finite buildings are very closely related to finite simple groups, as
we indicated in Section 9.10. It is therefore not surprising that the theory of
buildings plays a role in the proof of the classification theorem for finite simple
groups that we stated in that section (both the existing “proof” and the vari-
ous revised proofs being developed). The first connection involves “recognition
theorems” for simple groups, which are needed at several places in the proof.
Typically one has an abstract simple group G with a collection of subgroups
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resembling subgroups of a known simple group Ḡ, and one wants to conclude
that G ∼= Ḡ. A possible approach if Ḡ is a group of Lie type is to construct a
simplicial complex with G-action from the collection of subgroups and prove
that it is isomorphic to the building associated with Ḡ.

Suzuki [232] was one of the first to give such a proof. More recent proofs
along these lines, for rank-2 groups of Lie type, can be found in [25, Sec-
tion F.4; 109, Section 30]. And Aschbacher and Smith [25, Section I.5] mention
another case in which they could have used this method but chose to give a
more elementary proof instead. It is not clear what role the method will have
in future revised proofs.

In order to even state a recognition theorem, one has to thoroughly un-
derstand the structure of the target group Ḡ. Here again, buildings can be
useful. For example, the proof of the Curtis–Tits theorem in [110, Section 2.9]
essentially uses the simple connectivity of spherical buildings of rank ≥ 3 to
express certain groups of Lie type as amalgams of parabolic subgroups. (See
also Section 14.1.2 above.)

There is a big generalization of the Curtis–Tits theorem, which also gener-
alizes some results of Phan. The resulting “Phan theory,” which makes serious
use of buildings, is still under active development and is being used in the on-
going revision of the proof of the classification theorem. See [113, p. 333] for
an example of this, and see Gramlich [114] for a comprehensive survey of Phan
theory.

Next, we mention that the theory of buildings, especially the “local ap-
proach” in [255], inspired Buekenhout to invent “diagram geometries.” These
are generalizations of buildings that can be used for simple groups other than
those of Lie type. For example, they have been used to prove recognition the-
orems for some sporadic groups; see [23, 135, 136] for examples. There is now
a vast literature on diagram geometries, with several successes, but there is
still no general picture that includes all of the sporadic groups. In addition
to the references already cited, the reader can consult [61, 62, 187] and the
forthcoming book by Smith [219, Chapter 2].

Root subgroups are used as tools in the classification and elsewhere, and
these subgroups, as we know from Chapter 7, have interpretations in terms
of buildings. There are generalizations to some of the sporadic groups, which
are related to the generalizations of buildings mentioned above. See Timmes-
feld [238].

Finally, moving away from the classification, which involves applications of
spherical buildings, we mention that the theory of Euclidean buildings has also
had applications to finite group theory due to Kantor, Liebler, and Tits [142].
See also Ronan [200, Section 10.6].



14.3 Differential Geometry 657

14.3 Differential Geometry

L. Ji [140] has written a survey of the applications of buildings to geometry
and topology, with a comprehensive bibliography. We confine ourselves here
to mentioning a few of the high points.

14.3.1 Mostow Rigidity

Mostow [167] gave the first application of buildings to differential geometry
in his proof of strong rigidity of locally symmetric spaces. We will not give
a precise description of the locally symmetric spaces that occur in Mostow’s
theorem, but we have already seen some typical examples in Section 13.1.2. For
our present purposes, the reader needs to know only that we are talking about
certain Riemannian manifolds of the form Y = Γ\X, where X is a complete
simply connected Riemannian manifold of nonpositive curvature associated
with a noncompact semisimple real Lie group L, and Γ is a torsion-free discrete
subgroup of L.

We assume that Y has finite volume (which is automatic in the arithmetic
setting of Section 13.1.2). Since Y is an Eilenberg–Mac Lane space of type
K(Γ, 1), it is uniquely determined up to homotopy type by its fundamental
group Γ , viewed as an abstract group. The remarkable fact proved by Mostow
is that under suitable rank and irreducibility assumptions, Y is actually de-
termined as a Riemannian manifold by Γ , up to scaling of the metric.

Mostow’s proof makes essential use of Tits’s rigidity theorem for spherical
buildings (Theorem 5.205). Such buildings arise in differential geometry as
boundaries at infinity of symmetric spaces. Recall that as we suggested at the
beginning of Section 11.8, every complete CAT(0) space has a boundary at
infinity that can be constructed from equivalence classes of geodesic rays. In
the present setting, the CAT(0) space is the symmetric space X associated
with a Lie group L = G(R), where G is a semisimple algebraic group defined
over R, and the boundary X∞ turns out to be in 1–1 correspondence (as a set)
with the geometric realization of the spherical building ∆ associated with G;
see [29, 167]. This explains why there is a connection with buildings. Further
details can be found in [140] and the references cited there.

Remarks 14.3. (a) A geodesic ray in the symmetric space X starting at a
given x ∈ X is determined by its initial direction vector; so X∞ is topologically
a sphere, decomposed into (infinitely many) simplices. In view of the bijection
between X∞ and |∆| mentioned above, we get a new topology on |∆|, quite
different from the simplicial topology, under which |∆| is homeomorphic to a
sphere. We can view this new topology as imposing some extra structure on
the building ∆. We saw hints of this in a different context in Remark 11.81,
Exercise 11.82, and Section 13.2.1. This situation has been axiomatized by
Burns and Spatzier [65], and further applications of such “topological build-
ings” can be found in [140]. See also [199].



658 14 Other Applications

(b) The “geodesic compactification” X ∪ X∞ is one of many possible com-
pactifications or partial compactifications of a symmetric space in which the
space at infinity can be described in terms of a spherical building. The general
theory is surveyed in Ji [140], and details are given in [40,125].

14.3.2 Further Rigidity Theorems

Mostow’s rigidity theorem inspired a tremendous amount of further work,
including many extensions of the theorem. See, for instance, Ballmann et
al. [28, 29], Burns–Spatzier [66], Gromov–Schoen [122], Kleiner–Leeb [146],
Margulis [158], Pansu [184], Prasad [190], and further references cited in [140].
We will not attempt to summarize this work, but one interesting feature is that
Euclidean buildings are used in addition to spherical buildings. For example,
Gromov and Schoen [122] develop a theory of harmonic maps into Euclidean
buildings. And Kleiner and Leeb [146] even have occasion to use R-buildings
(cf. Remark 11.106); these arise in connection with the asymptotic geometry
of symmetric spaces.

14.3.3 Isoparametric Submanifolds

The basic reference for this subsection is Thorbergsson’s survey [237], which
includes a detailed history of the subject.

Given a surface Σ in R
3 and a point x ∈ Σ, consider the curves in Σ

cut by planes normal to Σ at x. The curvature at x, as we run through all
these curves, achieves a maximum and minimum value. These extreme values
are called the principal curvatures of Σ at x. They can also be described as
the eigenvalues of the “shape operator” (also called the Weingarten operator),
on the tangent plane to Σ at x. The product of the principal curvatures is
the Gaussian curvature. The surface is called isoparametric if the principal
curvatures are constant. For example, spheres, planes, and circular cylinders
are isoparametric. The study of isoparametric surfaces goes back at least as
far as 1918, when they arose in a problem in geometric optics.

More generally, one can consider isoparametric hypersurfaces in Euclidean
space R

n+1, the sphere Sn+1, or hyperbolic space H
n+1. There are now n

principal curvatures at each point (counted with multiplicity), and one again
requires that they be constant. Such hypersurfaces were classified early on
in the Euclidean and hyperbolic cases, but É. Cartan showed in the 1930s
that the theory is much more difficult in the spherical case. He constructed
several interesting families of isoparametric hypersurfaces in spheres, and such
hypersurfaces are still not classified today. As we will see, they are related to
rank-2 buildings, which are also unclassified. (The buildings that arise are not
Moufang in general, so the classification results stated in Chapter 9 do not
apply.)
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In the 1980s the concept was generalized to submanifolds of codimension
bigger than 1, and buildings entered the subject in a 1991 paper of Thorbergs-
son [235] classifying compact isoparametric submanifolds of Euclidean space
of codimension at least 3. The result is that under mild hypotheses, any such
submanifold is a principal orbit of the isotropy representation of a symmetric
space, also called a generalized flag manifold. We will not state the hypotheses
or define the technical terms used in the conclusion; the main point for our
purposes is the connection with Lie groups, and this is where buildings come
in. Namely, Thorbergsson constructed a simplicial complex from his isopara-
metric submanifold, and he showed that it is a (topological) spherical building
when the codimension in Euclidean space is at least 3. He then appealed to
the results of [65].

In a follow-up paper [236], he considered some codimension-2 examples.
In codimension 2, the isoparametric submanifolds in question are the same as
isoparametric hypersurfaces in a sphere. The examples considered by Thor-
bergsson had four distinct principal curvatures, and he again showed that his
complex was a building, of type C2, i.e., the flag complex of a polar plane.
Immervoll [134] later generalized this result to arbitrary isoparametric hyper-
surfaces with four principal curvatures. It is conjectured that the complex is
always a building, and the result is known except possibly if there are exactly
six distinct principal curvatures, each of multiplicity 2. In this case there is
precisely one known isoparametric hypersurface, which is conjectured to be
the only one, and the complex for this example is indeed known to be a build-
ing (of type G2).

Further useful references for this material beyond those cited above are
Kramer [148, Chapter 8] and Ji [140].

14.3.4 Singular Spaces and p-adic Groups

Differential geometry concerns smooth spaces, and the fundamental concept
is curvature. We have seen in this book that some curvature notions can
be extended to singular spaces, and to buildings in particular, via CAT(κ)
theory. See Section 12.2 for a list of examples. A different sort of extension of
curvature to buildings is Garland’s p-adic curvature (Section 13.3).

For geometers interested in extending concepts from smooth manifolds
to singular spaces, buildings often play the role of test examples. This is
analogous to the special role played by symmetric spaces in the theory of
simply connected smooth manifolds of nonpositive curvature.

In the same spirit, Euclidean buildings have been used to prove structure
theorems (Iwasawa and Cartan decompositions, etc.) for p-adic groups, in
much the same way that symmetric spaces are used for real Lie groups. See,
for instance, Ronan [201,202].

Note, finally, that singular spaces arise naturally in many areas of math-
ematics, including differential geometry itself, where they occur as Gromov–
Hausdorff limits of smooth manifolds; see Gromov [120,121].
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14.4 Representation Theory and Harmonic Analysis

L. Solomon [220] was the first to notice a connection between buildings and
representation theory, in the context of finite groups. Let G be a finite group
with a BN-pair, and let ∆ be the corresponding building. Then the action
of G on the unique nonvanishing reduced homology group of ∆ yields a rep-
resentation of G. Solomon observed that this is the Steinberg representation,
first constructed by Steinberg [226] for the groups GLn(Fq). It is interesting
that Steinberg did not actually construct the representation explicitly, but
only its character. He then appealed to abstract results from representation
theory to prove that the function he constructed was in fact the character
of a representation. The homology of the building provided the first concrete
realization of Steinberg’s character.

Further applications of spherical buildings to the representation theory of
finite groups of Lie type were later given by Lusztig [155] and others. See
Smith [218] for a survey.

Next, Euclidean buildings have played a major role in the representation
theory of p-adic groups, often through harmonic analysis. For an early in-
troduction to this theory, see the lecture notes of Macdonald [157]. There is,
unfortunately, only a limited amount of expository material on the more re-
cent developments. See, for instance DeBacker [93, 94] and Schneider [209].
Here are a few of the research papers; the list is not meant to be complete,
but only to provide some entry points into the vast literature:

• Adler and DeBacker [20]
• Barbasch and Moy [31]
• Cunningham and Hales [87]
• DeBacker [91,92]
• Hakim and Murnaghan [128]
• Kim and Murnaghan [144]
• Moy and Prasad [171,172]
• Rogawski [198]
• Schneider and Stuhler [210,211]
• Teitelbaum [233]
• Vigneras [269]
• Yu [285], based on Adler [19]

In a somewhat different direction, there has been a great deal of recent
work on harmonic analysis on Euclidean buildings with a view toward appli-
cations to random walks. See, for example, [76, 186] and the references cited
in those papers.
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Cell Complexes

A.1 Simplicial Complexes

A.1.1 Definitions

Recall that a simplicial complex with vertex set V is a nonempty collection ∆
of finite subsets of V (called simplices) such that every singleton {v} is a
simplex and every subset of a simplex A is a simplex (called a face of A). The
cardinality r of A is called the rank of A, and r−1 is called the dimension of A.
There are different conventions in the literature as to whether the empty set
is considered a simplex. Our convention, as forced by the definition above, is
that the empty set is a simplex; it has rank 0 and dimension −1. A subcomplex
of ∆ is a subset ∆′ that contains, for each of its elements A, all the faces of A;
thus ∆′ is a simplicial complex in its own right, with vertex set equal to some
subset of V.

Note that ∆ is a poset, ordered by the face relation. As a poset, it has the
following formal properties:

(a) Any two elements A,B ∈ ∆ have a greatest lower bound A ∩B.
(b) For any A ∈ ∆, the poset ∆≤A of faces of A is isomorphic to the poset of

subsets of {1, . . . , r} for some integer r ≥ 0.

Note. We will often express (b) more concisely by saying that ∆≤A is a
Boolean lattice of rank r.

Conditions (a) and (b) actually characterize simplicial complexes, in the
sense that any nonempty poset ∆ satisfying (a) and (b) can be identified with
the poset of simplices of a simplicial complex. Namely, take the vertex set V
to be the set of rank-1 elements of ∆ [where the rank of A is defined to be
the rank of the Boolean lattice ∆≤A]; then we can associate to each A ∈ ∆
the set A′ := {v ∈ V | v ≤ A}. It is easy to check that A �→ A′ defines a poset
isomorphism of ∆ onto a simplicial complex with vertex set V.

We will therefore extend the standard terminology as follows:
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Definition A.1. Any nonempty poset ∆ satisfying (a) and (b) will be called
a simplicial complex. The elements of ∆ will be called simplices, and those of
rank-1 will be called vertices.

Note that in contrast to (a), two simplices A,B ∈ ∆ do not necessarily
have a least upper bound (or any upper bound). We say that A and B are
joinable if they have an upper bound; in this case they have a least upper
bound A ∪ B, which is simply the set-theoretic union when ∆ is viewed as a
set of subsets of its vertex set. More generally, an arbitrary set of simplices in
a simplicial complex is said to be joinable if it has an upper bound, in which
case it has a least upper bound.

We visualize a simplex A of rank r as a geometric (r − 1)-simplex, the
convex hull of its r vertices. One makes this precise by forming the geomet-
ric realization |∆| of ∆, which is a topological space partitioned into (open)
simplices |A|, one for each nonempty A ∈ ∆. To construct this topological
space, start with an abstract real vector space with V as a basis. Let |A| be
the interior of the simplex in this vector space spanned by the vertices of A,
i.e., |A| consists of the linear combinations

∑
v∈A λvv with λv > 0 for all v

and
∑

v∈A λv = 1. We then set

|∆| :=
⋃

A∈∆

|A| .

If ∆ is finite, then all of this is going on in R
N , where N is the number

of vertices of ∆, and we simply topologize |∆| as a subspace of R
N . The

question of how to topologize |∆| in the general case is more subtle, but
the most commonly used topology is the weak topology with respect to the
closed simplices: One first topologizes each closed simplex as a subspace of
Euclidean space, and one then declares a subset of |∆| to be closed if and
only if its intersection with each closed simplex is closed. For more details
see any standard topology text, such as [129, p. 103; 179, Sections 2 and 3;
224, Section 3.1].

Exercises

A.2. (a) Why is ∆ required to be nonempty in Definition A.1?
(b) What should we mean by the “empty simplicial complex”?

A.3. Show that condition (a) in Definition A.1 can be replaced by the follow-
ing two conditions:

(a1) ∆ has a smallest element.
(a2) If two elements A,B ∈ ∆ have an upper bound, then they have a least

upper bound A ∪B.
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A.1.2 Flag Complexes

Let P be a set with a binary relation called “incidence,” which is reflexive
and symmetric. For example, P might consist of the points and lines of a
projective plane, with the usual notion of incidence; or P might consist of the
points, lines, and planes of a 3-dimensional projective space; or P might be a
poset, with x and y incident if they are comparable (i.e., if x ≤ y or y ≤ x).

A flag in P is a set of pairwise incident elements of P . For example, if
P is a poset with incidence defined as above, a flag is simply a chain, i.e., a
linearly ordered subset.

Definition A.4. The flag complex associated to P is the simplicial com-
plex ∆(P ) with P as vertex set and the finite flags as simplices. A flag complex
of rank 2 (dimension 1) is also called an incidence graph.

In the case of a poset, the flag complex is also called the order complex of
the poset. One example of this construction appears naturally in the founda-
tions of the theory of simplicial complexes:

Example A.5. If P is the poset of nonempty simplices of a simplicial com-
plex Σ, then ∆(P ) is the barycentric subdivision of Σ [179, Lemma 15.3;
224, 3.3]. See Figure A.1 for an example, where Σ consists of a 2-simplex and
its faces, and the vertices of the barycentric subdivision are labeled with the
corresponding element of P . Note how the six 2-simplices in the barycentric
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Fig. A.1. A 2-simplex and its barycentric subdivision.

subdivision correspond to the maximal chains of (nonempty) simplices of Σ.
From the point of view of geometric realizations, an element of the poset P is
a simplex, and the corresponding vertex of ∆(P ) is its barycenter. Thus there
are three types of barycenters, corresponding to the three types of simplices
of Σ (vertex, edge, 2-simplex). These types are indicated by the three colors
(black, white, gray) in the picture of ∆(P ).

Remark A.6. The requirement that P be simplicial in this example is not
necessary; P could just as easily be the poset of cells of a more general kind of
complex, called a regular cell complex (see Section A.2), where the cells are not
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necessarily simplices. The interested reader can draw some low-dimensional
examples to illustrate this.

Not all simplicial complexes are flag complexes. For example, the boundary
of a triangle is not a flag complex. [If it were, then the three vertices would be
pairwise incident and hence would be the vertices of a simplex of the complex.]
Here is a useful characterization of flag complexes:

Proposition A.7. The following conditions on a simplicial complex ∆ are
equivalent:

(i) ∆ is a flag complex.
(ii) Every finite set of pairwise joinable simplices is joinable.
(iii) Every set of three pairwise joinable simplices is joinable.
(iv) Every finite set of pairwise joinable vertices is joinable.

Proof. It is immediate that (i) =⇒ (ii) =⇒ (iv) =⇒ (i) and that
(ii) =⇒ (iii). The proof that (iii) =⇒ (ii) is a straightforward induction
and is left as an exercise. 	


A.1.3 Chamber Complexes and Type Functions

Definition A.8. Let ∆ be a finite-dimensional simplicial complex. We say
that ∆ is a chamber complex if all maximal simplices have the same dimension
and any two can be connected by a gallery.

Here a gallery, as usual, is a sequence of maximal simplices in which
any two consecutive ones are adjacent, i.e., are distinct and have a common
codimension-1 face. There is also a more general notion of pregallery, in which
consecutive chambers are allowed to be equal, as in Chapter 1. The maximal
simplices of a chamber complex are called chambers, and their codimension-1
faces will be called panels. A chamber complex is said to be thin if each panel
is a face of exactly two chambers.

Example A.9. Although many examples of thin chamber complexes occur
throughout this book, we mention here the classical examples: If |∆| is a
connected manifold without boundary, then ∆ is a thin chamber complex.
Proofs can be found in many topology textbooks. For the convenience of the
reader, we outline a proof in Exercise A.17 below, based on local homology
calculations. [Note: In the topological literature, thin chamber complexes are
often called pseudomanifolds.]

Note that the set C = C(∆) of chambers has a well-defined distance func-
tion d(−,−), defined to be the minimal length of a gallery joining two cham-
bers. In other words, d(−,−) is the standard metric on the vertices of the
chamber graph, the latter being defined in the obvious way. If there is any
danger of confusion, we will also refer to the distance just defined as the gallery
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distance. The diameter of ∆, denoted by diam∆, is the diameter of the metric
space of chambers.

We can also consider galleries between arbitrary simplices A and B, i.e.,
galleries C0, . . . , Cl with A ≤ C0 and B ≤ Cl, and we define d(A,B) to be the
minimal length of such a gallery. Equivalently, d(A,B) is the distance between
the sets C≥A and C≥B in the metric space C. We will again call d(A,B) the
distance, or gallery distance, between A and B. The reader is warned, however,
that this distance function on simplices is not a metric; one can, for instance,
have d(A,B) = 0 with A �= B. In fact, d(A,B) = 0 if and only if there is a
chamber with both A and B as faces or, equivalently, if and only if A and B
are joinable.

Let ∆ be a chamber complex of rank n (dimension n−1), and let I be a set
with n elements (which can be thought of as colors). A type function on ∆ with
values in I is a function τ that assigns to each vertex v an element τ(v) ∈ I, in
such a way that the vertices of every chamber are mapped bijectively onto I.
Less formally, each vertex is colored, vertices that are joined by an edge have
different colors, and the total number of colors is equal to the rank of ∆ (so
that a chamber has exactly one vertex of each color). Given a vertex v, we
will call τ(v) the type of v.

Definition A.10. We say that ∆ is colorable, or vertex colorable, if it admits
a type function.

Colorable complexes are often called “balanced” complexes in the combina-
torics literature.

A type function, if it exists, is essentially unique: Any two type functions
(with values in sets I and I ′) differ by a bijection I ∼= I ′. Equivalently, the
partition of vertices into types is unique. To see this, just note that if the
type function is known on a chamber, then it is uniquely determined on any
adjacent chamber. See Figure A.2 for an illustration of this in the rank-3 case.
In principle, then, one could try to construct a type function by assigning
types to the vertices of an arbitrarily chosen “fundamental chamber” and
then moving out along galleries. If one knows a priori that ∆ is colorable,
then this method is guaranteed to succeed.

Fig. A.2. The type function on adjacent chambers.
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If n = 2, then ∆ is a graph; it is colorable if and only if it is bipartite in the
usual sense of graph theory. (The vertices are partitioned into two subsets,
and every edge has one vertex in each subset.) This is the case if and only if
∆ contains no circuits of odd length. For another familiar example, suppose
the chamber complex ∆ is a barycentric subdivision as in Example A.5. Then
every vertex of ∆ corresponds to a simplex of the original complex, and we may
declare its type to be the dimension of that simplex. (See Figures 1.3 and A.1
for illustrations of this.) Similarly, if ∆ is the flag complex of a projective
space or affine space, then the vertices naturally fall into types (point, line,
plane,. . . ).

It is useful to think of type functions as chamber maps. Recall first that
a simplicial map from a simplicial complex ∆ to a simplicial complex ∆′ is
a function φ from the vertices of ∆ to those of ∆′ that takes simplices to
simplices. If the image φ(A) of a simplex A always has the same dimension
as A, then φ is called nondegenerate. A nondegenerate simplicial map is the
same as a poset map φ : ∆ → ∆′ such that φ maps ∆≤A isomorphically to
∆′

≤φ(A) for every A ∈ ∆.

Definition A.11. If ∆ and ∆′ are chamber complexes of the same dimension,
then a simplicial map φ : ∆ → ∆′ is called a chamber map if it takes chambers
to chambers or, equivalently, if it is nondegenerate.

Note that a chamber map takes adjacent chambers to chambers that are
either equal or adjacent, and hence it takes galleries to pregalleries. This is
why we need the concept of “pregallery.” Note further that the image of a
chamber map ∆ → ∆′ is always a chamber subcomplex of ∆′, in the sense of
the following definition.

Definition A.12. Given a chamber complex ∆, a chamber subcomplex of ∆
is a simplicial subcomplex Σ that is a chamber complex in its own right and
has the same dimension as ∆. Equivalently, the maximal simplices in Σ are
chambers in ∆, and any two can be connected by a gallery in Σ.

Note that if Σ is a chamber subcomplex of ∆, then the inclusion Σ ↪→ ∆
is a chamber map. Another important kind of chamber map that arises fairly
often in this book is a chamber map φ from ∆ to a subcomplex Σ such that
φ is the identity on Σ; such a map φ is called a retraction of ∆ onto Σ. If a
retraction exists, then Σ is said to be a retract of ∆.

Returning now to type functions, let ∆ be a rank-n chamber complex and
let I be an n-element set as above. Let ∆I be the “simplex with vertex set I,”
i.e., the complex consisting of all subsets of I. Then a type function on ∆ with
values in I is simply a chamber map τ : ∆ → ∆I . Given A ∈ ∆ we will call
τ(A) the type of A; it is a subset of I, consisting of the types of the vertices
of A. As we will see, it is often more convenient to work with the cotype of
a simplex A, defined to be the complement I � τ(A). Its cardinality is the
codimension of A. For example, the cotype of a chamber is the empty set, and
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the cotype of a panel is a singleton. A panel of cotype {i} will be called an
i-panel.

For any chamber C of ∆, the type function τ maps the subcomplex ∆≤C

generated by C isomorphically onto ∆I ; hence we may compose τ with the
inverse isomorphism to get a retraction φ : ∆ → ∆≤C . In concrete terms,
φ(A) is simply the unique face of C having the same type as A. Conversely,
a retraction onto ∆≤C can be viewed as a type function on ∆, with the set I
of types being the set of vertices of C. Thus we have another characterization
of colorability:

Proposition A.13. ∆ is colorable if and only if ∆≤C is a retract of ∆. 	

Next, we record the easy observation that a chamber map φ between col-

orable chamber complexes induces a type-change map that describes the effect
of φ on the colors. More precisely:

Proposition A.14. Let ∆ and ∆′ be colorable chamber complexes with type
functions τ and τ ′, respectively, having values in sets I and I ′. If φ : ∆ → ∆′

is a chamber map, then there is a bijection φ∗ : I → I ′ such that for any
simplex A ∈ ∆,

τ ′(φ(A)) = φ∗(τ(A)) .

Proof. View τ as a chamber map ∆ → ∆I as above, and similarly for τ ′. Then
the composite τ ′ ◦ φ gives a type function on ∆ with values in I ′, so it must
differ from τ by a bijection I → I ′. This bijection is the desired φ∗. 	


Finally, we note a useful property of retracts. Recall that a subcomplex ∆′

of a simplicial complex ∆ is said to be full if it contains every simplex of ∆
whose vertices are all in ∆′. The reader can prove the following result as an
exercise:

Lemma A.15. If ∆′ is a retract of ∆, then it is a full subcomplex. 	


Exercises

A.16. (a) Give an example of a thin chamber complex that has three mutu-
ally adjacent chambers.

(b) Show that a colorable thin chamber complex cannot contain three mutu-
ally adjacent chambers.

A.17. The purpose of this exercise is to outline a proof that every connected
triangulated manifold (without boundary) is a thin chamber complex. To
facilitate certain inductive arguments, we work more generally with homology
manifolds. Recall that if X is a topological space, then the local homology
of X at a point x ∈ X is defined to be H∗(X,X �{x}). By excision, this does
not change if we replace X by a neigborhood of x. A topological space X is
called a homology n-manifold if its local homology at every point is the same
as that of R

n, i.e., Hi(X,X � {x}) ∼= Z if i = n and 0 otherwise. Let X be
the geometric realization |∆| of a finite-dimensional simplicial complex ∆.
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(a) Let A be a nonempty simplex, and let x be a point in the correspond-
ing geometric open simplex |A| ⊆ X. Show that Hi(X,X � {x}) ∼=
H̃i−k−1(lk A) for all i, where k := dimA. Here the tilde denotes reduced
homology, and lkA is the link of A in ∆ (Definition A.19 below). [Re-
duced homology is obtained by forming the chain complex in the usual
way, but including the empty simplex in dimension −1.]

(b) Show that X is a homology n-manifold if and only if for every k ≥ 0 and
every k-simplex A, lk A has the same homology as the sphere Sn−k−1.

Assume from now on that X is a homology n-manifold.

(c) Show that every maximal simplex of ∆ has dimension n.
(d) Show that every (n−1)-simplex of ∆ is a face of exactly two n-simplices.
(e) With A as in (a), show that |lk A| is a homology (n− k − 1)-manifold.
(f) If X is connected, show that ∆ is gallery connected and hence a thin

chamber complex.

A.1.4 Chamber Systems

We wish to show that if ∆ is a sufficiently nice chamber complex, then ∆ is
completely determined by the system consisting of its chambers together with
a suitable refinement of the adjacency relation. Thus we can forget about the
vertices and, indeed, all the nonmaximal simplices, when it is convenient to
do so.

To refine the adjacency relation, we assume that ∆ is colorable. Choose
a type function with values in a set I. Then any panel of ∆ has cotype {i}
for some i ∈ I, i.e., it is an i-panel. Given i ∈ I, two adjacent chambers of ∆
will be called i-adjacent if their common panel is an i-panel. The chamber
system associated to ∆ is the set C = C(∆) of chambers together with the
relations of i-adjacency, one for each i. One can view this chamber system
as the chamber graph of ∆, together with a coloring of the edges; the edge
between two adjacent chambers gets color i if the chambers are i-adjacent.

It will be convenient to introduce further relations on chambers, called
J-equivalence, one for each subset J ⊆ I. We say that two chambers are
J-equivalent if they can be connected by a gallery C0, . . . , Cl (l ≥ 0) such
that any two consecutive chambers Ck−1, Ck are j-adjacent for some j ∈ J .

Definition A.18. The equivalence classes of chambers under J-equivalence
are called J-residues, or residues of type J . If J is a singleton {i}, then we
simply say “i-equivalent” and “i-residue.”

Thus two chambers C,D are i-equivalent if and only if they have the same
i-panel or, in other words, if and only if either C = D or C is i-adjacent to D.

In order to state conditions under which we can recover a chamber com-
plex ∆ from its chamber system, we need to recall some more terminology.
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Definition A.19. The link of a simplex A, denoted by lkA or lk∆ A, is the
subcomplex of ∆ consisting of the simplices B that are disjoint from A [i.e.,
A ∩B is the empty simplex] and joinable to A.

Note that as a poset, lk A is isomorphic to the poset ∆≥A via B �→ B ∪A
(B ∈ lk A). In particular, the maximal simplices of lkA are in 1–1 correspon-
dence with the chambers of ∆ having A as a face. But lk A need not be a
chamber complex. For it might not be possible to connect two chambers in
∆≥A by a gallery in ∆≥A.

Proposition A.20. Let ∆ be a colorable chamber complex. Assume that the
link of every simplex is a chamber complex, and assume further that every
panel is a face of at least two chambers. Then ∆ is determined up to isomor-
phism by its chamber system. More precisely:

(1) For every simplex A, the set C≥A of chambers having A as a face is a
J-residue, where J is the cotype of A.

(2) Every residue has the form C≥A for some simplex A.
(3) For any simplex A, we can recover A from C≥A via

A =
⋂

C≥A

C .

(4) ∆, as a poset, is isomorphic to the set of residues in C, ordered by reverse
inclusion.

Proof. Note first that (4) implies that ∆ is determined by its chamber system,
since the residues are defined entirely in terms of the chamber system. We
proceed now to (1)–(4).

(1) Our first assumption implies that the chambers in C≥A are all J-equiv-
alent to one another, so there is a J-residue R with C≥A ⊆ R. Since J-equiv-
alent chambers have the same face of cotype J , we also have the opposite
inclusion; hence C≥A = R.

(2) Let R be an arbitrary J-residue. Then the chambers in R all have the
same face A of cotype J , so R ⊆ C≥A. In view of (1), equality must hold.

(3) We can think of simplices as sets of vertices, so that the greatest lower
bound in the statement is simply the set-theoretic intersection. If v is a vertex
of ∆ such that v /∈ A, we must find a chamber C ≥ A with v /∈ C. Start with
an arbitrary chamber C ≥ A. If v /∈ C, we are done. Otherwise, let P be the
panel of C not containing v. Then there is a chamber D �= C with P < D.
We then have D > A but v /∈ D.

(4) It is immediate from (1)–(3) that there is a bijection from ∆ to the set
of residues, given by

A �→ C≥A ,

with inverse
R �→

⋂

C∈R
C .
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These bijections are order-reversing if the residues are ordered by inclusion.
	


Exercise A.21. Let ∆ be a colorable chamber complex, and assume only
that the link of every vertex is again a chamber complex. Show that ∆ is still
determined up to isomorphism by its chamber system.

*A.2 Regular Cell Complexes

In this section we outline the theory of regular cell complexes, with emphasis
on the aspects that are needed in Chapter 12. For further information and a
more detailed account, see [34; 37, Section 4.7; 84; 154].

A.2.1 Definitions and First Properties

By a ball we mean a topological space homeomorphic to a closed ball in Euclid-
ean space of some dimension d ≥ 0. A ball e has a (relative) interior int e,
homeomorphic to an open d-ball, and a boundary ∂e, homeomorphic to the
sphere Sd−1 (which is empty if d = 0).

Definition A.22. A regular cell complex is a collection K of balls in a Haus-
dorff space |K| such that:

(1) The interiors int e for e ∈ K partition |K|.
(2) For each e ∈ K, the boundary ∂e is a union of finitely many elements

of K (necessarily of dimension less than that of e).
(3) |K| has the weak topology with respect to the collection K, i.e., a subset

of |K| is closed if its intersection with each e ∈ K is closed. [This is
redundant if K is finite.]

The elements of K are called closed cells, and their relative interiors are called
open cells.

A regular cell complex K has a natural face relation, corresponding to the
inclusion relation on closed cells. Thus K is a poset. For each cell e ∈ K, the
set K≤e of faces of e is again a regular cell complex, whose underlying space
is e itself. Similarly, the set K<e of proper faces of e is a regular cell complex
whose underlying space is the sphere ∂e.

Two regular cell complexes K,K ′ are said to be isomorphic if there is a
homeomorphism f : |K| → |K ′| that maps every cell of K onto a cell of K ′.
(It then follows that f induces a poset isomorphism K → K ′.)

The canonical example of a regular cell complex is the set K of nonempty
simplices of a simplicial complex, with |K| being the geometric realization of
that complex as defined in Section A.1.1. Here is a simple example of a regular
cell complex that is not simplicial:
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Example A.23. Let X be the n-cube [0, 1]n, and let K consist of the (closed)
faces of X in the usual sense, i.e., the subsets gotten by freezing zero or more
coordinates at 0 or 1. Then K is a regular cell complex with |K| = X. See
Exercise A.27 below for a description of K as a poset.

Example A.23 is the foundation for an important class of regular cell com-
plexes:

Definition A.24. A cubical complex is a regular cell complex with the fol-
lowing two properties:

(1) For each cell e, the subcomplex K≤e is isomorphic to a standard cube,
viewed as a regular cell complex as in Example A.23.

(2) The intersection of two cells, if nonempty, is again a cell.

One can also characterize cubical complexes abstractly, in the spirit of Defin-
ition A.1; see Exercises A.30 and A.31.

Cubical complexes have become quite important in recent years, largely
because of a theorem of Gromov [48, Theorem II.5.20; 119, 4.2.C]: Suppose
K is a finite-dimensional cubical complex in which each cell comes equipped
with a metric. Assume that the isomorphisms in (1) above can be taken to
be isometries, and assume that the metric assigned to a face of a cell e agrees
with the one it inherits as a subspace of e. Then there is a metric on X =
|K| obtained by minimizing lengths of piecewise linear paths, and Gromov’s
theorem says that X is a CAT(0) space if and only if the link of every vertex
is a flag complex. [See Exercise A.28 below for the notion of “link” in the
present context.]

Returning now to a general regular cell complex K, recall that K is a
poset and hence has an associated flag complex ∆ = ∆(K). As we suggested
in Remark A.6, ∆ is the barycentric subdivision of K. In particular, |∆| is
homeomorphic to |K|. To get a specific homeomorphism, we have to choose
for each cell e a homeomorphism between e and the cone over ∂e; the cone
point then corresponds to a chosen “barycenter” in int e. See, for instance,
[37, proof of Proposition 4.7.8]. Note that if we then identify |∆| with |K|, we
recover the closed cell e as the union of the open simplices in |∆| corresponding
to the flags e0 < e1 < · · · < ed, with ed ≤ e.

This gives us a way of reconstructing the topological space |K| from the
abstract poset K: Simply define |K| to be |∆(K)| and, for each e ∈ K, define
the corresponding closed cell to be |∆(K≤e)|. This circle of ideas leads to the
following result [34, Proposition 3.1; 37, Proposition 4.7.23]:

Proposition A.25.

(1) A poset P is isomorphic to the poset of cells of a regular cell complex if
and only if |∆(P<x)| is homeomorphic to a sphere for each x ∈ P .
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(2) If P satisfies the condition in (1), then there is a unique (up to isomor-
phism) regular cell complex whose poset of cells is isomorphic to P . Its
underlying space is |∆(P )|, and its cells are the subspaces ex := |∆(P≤x)|
for x ∈ P .

(3) Two regular cell complexes K,K ′ are isomorphic as regular cell complexes
if and only if they are isomorphic as posets. 	


Exercises

A.26. Let P be the poset of cells of a hyperplane arrangement (Section 1.4),
with the smallest cell removed. Show that P is a regular cell complex whose
underlying space is a sphere. [The intention is that this should be done di-
rectly; it will also follow from the results of Section A.2.3 below.]

A.27. Let K be the standard cube, as in Example A.23. Note that the set of
vertices (0-cells) of K is P = {0, 1}n, which is itself a poset in an obvious way.
[Declare 0 < 1, and order P componentwise. Equivalently, identify P with the
Boolean lattice of subsets of {1, . . . , n}.] Describe the poset structure on K in
terms of the poset P . Figure A.3 might provide a clue, where we have written
a, b, c instead of 1, 2, 3, i.e., we are identifying P with the poset of subsets
of {a, b, c}.

c

∅ a

a, c

a, b

a, b, cb, c

b

Fig. A.3. The faces of a cube.

A.28. If e is a cell of a cubical complex K, show that the poset K≥e is a
simplicial complex. It is called the link of e.

Remark A.29. This terminology is motivated by the simplicial case; see the
comment following Definition A.19. There is also a geometric explanation
[48, Chapter I.7]. Briefly, one should think of the link of e as the space of
directions orthogonal to e. It is decomposed into spherical pieces, one for each
cell f > e. To understand intuitively why the link is simplicial in the cubical
case, it suffices to consider the link of a vertex, in which case one need only
note that a cube, in the neighborhood of a vertex, looks like a simplicial cone.
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A.30. Show that a poset P is isomorphic to the poset of cells of a cubical
complex if and only if it satisfies the following two conditions:

(a) If two elements x, y ∈ P have a lower bound, then they have a greatest
lower bound.

(b) For any x ∈ P , the poset P≤x is isomorphic to the poset of faces of a cube.

A.31. Show that condition (a) in Exercise A.30 can be replaced by:

(a′) If two elements x, y ∈ P have an upper bound, then they have a least
upper bound.

[This exercise is the cubical analogue of Exercise A.3.]

A.32. Let K be a regular cell complex, let e be an n-cell for some n ≥ 2,
and let e′ < e be a face of dimension n− 2. Show that there are exactly two
(n− 1)-cells f such that e′ < f < e.

A.33. A regular cell complex is said to have the intersection property if the
intersection of two cells is either empty or is again a cell. For example, simpli-
cial and cubical complexes have the intersection property, as does the poset
of cells of a hyperplane arrangement.

(a) If K has the intersection property, show that every cell is the least upper
bound of its vertices.

(b) If K has the intersection property and f < e in K, show that f is an
intersection of codimension-1 faces of e.

A.2.2 Regular Cell Complexes from Polytopes

A subset X of a Euclidean space V is called a polytope if X is compact, has
nonempty interior in V , and is the intersection of finitely many closed half-
spaces. We will assume for simplicity (and without loss of generality) that the
origin is an interior point of X. It follows that X can be defined by finitely
many linear inequalities of the form gj ≤ 1, where (gj)j∈J is a family of linear
functions indexed by a finite set J . The assumption that X has nonempty
interior is made for convenience; if it failed, we could replace V by the span
of X.

By a slight variant of what we did in Section 1.4, the polytope X has a
natural decomposition as a regular cell complex, where the open cells are the
nonempty sets defined by equalities gj = 1 or strict inequalities gj < 1, one
for each j ∈ J . The unique top-dimensional cell is the interior of X, which is
defined by gj < 1 for all j. For example, the cube [0, 1]n is a polytope, and the
cell structure that we have just defined agrees with the one in Example A.23.

The set of proper faces of the polytope X forms a subcomplex, which is a
regular cell complex in its own right, whose underlying space is topologically a
sphere. The top-dimensional faces of this subcomplex, i.e., the codimension-1
faces of X, are called the facets of X.
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The face lattice of X is the poset of cells of X, together with the empty
set. As the terminology suggests, it is indeed a lattice, i.e., it has least upper
bounds and greatest lower bounds. [Since it is finite and has a largest element,
we need only check the existence of greatest lower bounds; these are given by
set-theoretic intersections of closed cells.] For example, Exercise A.27 showed
that the face lattice of a cube is the poset of closed intervals in a Boolean
lattice, together with the empty set, ordered by inclusion.

Every polytope X has a dual polytope X∗, sometimes called the polar of X
[286, Section 2.3]. With the hypotheses and notation above, the dual of X
is the subset of the dual vector space V ∗ consisting of all linear functions
g ∈ V ∗ such that g ≤ 1 on X. The face lattice of the dual is isomorphic
to the opposite of the face lattice of X. The empty face of X∗ corresponds
to the top-dimensional cell of X, the vertices of X∗ correspond to the facets
of X, and so on. These vertices are in fact the linear functions gj above if the
defining inequalities gj ≤ 1 form a minimal set of inequalities defining X. (By
extension of the terminology we used in Section 1.4, the hyperplanes gj = 1
are then the walls of X.)

A.2.3 Regular Cell Complexes from Arrangements

Let H = {Hi}i∈I be an essential hyperplane arrangement in V , and let Σ be
the poset of conical cells as in Section 1.4.1. The nontrivial elements of Σ,
i.e., those different from {0}, intersect the unit sphere in subsets that are the
cells of a regular cell decomposition of the sphere. In Chapter 1 we treated
this in detail for reflection arrangements (i.e., arrangements coming from finite
reflection groups), in which case the cell complex is simplicial. It is not hard to
check directly that the assertion remains true in general, but we will instead
deduce it from a stronger assertion. Namely, we will construct a polytope X
whose proper faces correspond to the nontrivial conical cells; the boundary
of X then gives, by radial projection, the desired cell decomposition of the
sphere.

Roughly speaking, we get X by choosing suitable affine hyperplanes that
cut across the chambers. More precisely, choose for each i ∈ I a linear function
fi : V → R such that Hi is given by fi = 0. SinceH is essential, the fi span the
dual space V ∗. For any sequence τ = (τi)i∈I with τi = ±1, set gτ :=

∑
i∈I τifi.

We then define X ⊆ V by the 2|I| inequalities gτ ≤ 1, one for each τ . Note that
the defining inequalities imply that |fi| ≤ 1 on X, so X is compact [because
the fi span V ∗] and hence a polytope.

It will follow from what we do below that the inequalities gτ ≤ 1 are
redundant in general and that X is actually defined by the inequalities gσ ≤ 1
in which σ is the sign sequence of a chamber. Since gσ > 0 on C if σ = σ(C)
for a chamber C, this implies that we can visualize the facets of X (given by
gσ = 1) as cutting across the chambers and matching up correctly along faces.
For example, letH consist of three lines in the plane as in Figure 1.4. Then the
line f1 +f2 +f3 = 1 cuts across the chamber +++, the line −f1 +f2 +f3 = 1
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cuts across the chamber −++, and they agree on the common panel, where
f1 = 0; see Figure A.4. The polytope X in this case is a solid hexagon.

f3 = 0

f1 + f2 + f3 = 1

−f1 + f2 + f3 = 1

−++

+++

f1 = 0

f2 = 0

Fig. A.4. The facets of X cut across the chambers.

Returning now to the general theory, we wish to show that the proper faces
of X are in 1–1 correspondence with the cells A �= {0} in Σ. The discussion
that follows is adapted from [56, Appendix].

Given A �= {0} in Σ, let σ = σ(A) and let hσ :=
∑

i∈I σifi. [Note that
hσ = gσ if A is a chamber. But if A is not a chamber, then hσ is not one
of the linear functions gτ occurring in the definition of X.] We have hσ > 0
on A, and A is the cone over

A1 := A ∩ {hσ = 1} .

Note that A1 is defined by the following linear equalities and inequalities,
where I0 := {i ∈ I | σi = 0}:

fi = 0 for i ∈ I0, (A.1)
σifi > 0 for i /∈ I0, (A.2)
hσ = 1. (A.3)

We claim that A1 is a (relatively open) face of X. In fact, we will show that
A1 is the face defined by

gτ = 1 if τ is consistent with σ, (A.4)
gτ < 1 otherwise. (A.5)

Here τ is consistent with σ if τi = σi for all i such that σi �= 0. [Recall that
τi is required to be ±1 for all i.]



676 A Cell Complexes

For any τ that is consistent with σ, we can write gτ = hσ +
∑

i∈I0
τifi.

Moreover, we can change the sign of any τi with i ∈ I0 and still have a sequence
consistent with σ. It follows that (A.4) is equivalent to (A.1) and (A.3). And
in the presence of (A.1) and (A.3), (A.5) is equivalent to (A.2). Thus we have
transformed (A.4) and (A.5) to (A.1)–(A.3), whence the claim.

We now have V �{0} partitioned into the cones over some of the (relatively
open) faces A1 of the boundary ∂X of X. It follows that the cells A1 are in fact
all of the faces of X, and we have established the desired 1–1 correspondence
between the faces of X and the elements of Σ (other than {0}). It is easy to
check that this correspondence is a poset isomorphism, i.e., it preserves the
face relation.

Finally, our assertion that X is defined by the inequalities gσ ≤ 1 cor-
responding to the chambers follows from the general fact that a polytope
with nonempty interior can always be defined by one inequality for each facet
[286, Theorem 2.15]. Alternatively, one can check the assertion directly.

Remark A.34. The dual polytope X∗ is the convex hull of the linear func-
tions gτ . It is a special kind of polytope called a zonotope. In some treatments
of the subject one starts with this zonotope and then defines X to be its dual.
See [37, Example 4.1.7; 286, Corollary 7.18]. Zonotopes associated to reflection
arrangements play an important role in the theory of geometric realizations
of Coxeter complexes; see Section 12.3.5.

A.3 Cubical Realizations of Posets

Every poset P gives rise to a flag complex ∆(P ). It is a simplicial complex
with P as vertex set. Our purpose here is to call attention to a class of posets
for which one can lump certain simplices of ∆(P ) together to create a cu-
bical complex. The motivating example is the case that P is the Boolean
lattice {0, 1}n; we saw in Exercise A.27 how to construct the standard cube
(viewed as a regular cell complex) from P . But we did not explain there the
connection between this cube and ∆(P ), so let’s go back to the beginning and
do that. Our discussion will make use of the Hasse diagram of a poset P . This
is a graph with one vertex for each element of P and one edge for each “cover
relation” x 	 y, where the latter means that x < y and there is no z with
x < z < y. By convention, y is drawn higher than x in the diagram.

Examples A.35. (a) Let P be the poset {0, 1} with 0 < 1, i.e., the Boolean
lattice of rank 1. The flag complex ∆(P ) has four simplices: the empty chain,
the two singletons, and the chain 0 < 1. Its geometric realization can be
identified with the unit interval [0, 1], which is also the 1-cube.

(b) Let P be the direct product {0, 1} × {0, 1} with the componentwise or-
dering, i.e., P is the Boolean lattice of rank 2. Its Hasse diagram is shown
on the left and its flag complex on the right in Figure A.5. Note that ∆(P )



A.3 Cubical Realizations of Posets 677

triangulates the unit square [0, 1]× [0, 1], or the 2-cube. If we delete the dotted
edge so that the two 2-simplices are lumped together, we see the standard cell
structure on the 2-cube.

(0, 1)

(1, 1)

(0, 0)

(1, 0)

Fig. A.5. The Hasse diagram and flag complex of {0, 1} × {0, 1}.

Example A.35(b) illustrates the following classical fact:

Proposition A.36. If P and Q are posets, then the canonical map

|∆(P ×Q)| → |∆(P )| × |∆(Q)|

is a homeomorphism. Here P ×Q is ordered componentwise.

Note. If the posets are infinite, one has to be careful about how the product
on the right is topologized.

We omit the proof, which can be found in [100, II.8.9; 154, pp. 96–97;
163, Theorem 2].

Example A.37. Let P = {0, 1}n, i.e., the Boolean lattice of rank n. Then
Proposition A.36 implies that ∆(P ) triangulates the n-cube. The reader is
encouraged to draw the Hasse diagram when n = 3; the cube will be visible
in the picture (which should be compared with Figure A.3).

We can now give conditions on a poset P under which we can construct
a cubical complex with vertex set P . The answer is very simple and is in the
spirit of Proposition A.25. The result is probably well known, but we are not
aware of a reference for it.

Proposition A.38. Let P be a poset in which every closed interval [x, y]
(x, y ∈ P , x ≤ y) is a Boolean lattice. Then one can construct a cubical
complex K = ∆c(P ) with the following properties:

(1) The underlying space of K is |∆(P )|.
(2) The cells of K are the subspaces ex,y :=

∣∣∆
(
[x, y]

)∣∣, where x ≤ y in P .
In particular, the vertices of K are the same as those of ∆(P ), i.e., they
are the elements of P .
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(3) As a poset, K is isomorphic to the set of closed intervals in P , ordered
by inclusion.

Note, then, that K has a vertex for each x ∈ P , an edge from x to y for each
cover relation x 	 y, a square for each interval [x, y] of rank 2, and so on.
Intuitively, this says that the cells of K are precisely the cubes that one sees
when one draws the Hasse diagram.

Sketch of proof. Given x ≤ y in P , the subspace ex,y ⊆ |∆(P )| defined in (2)
is a triangulated cube by Example A.37. In particular, it is a ball. Its inte-
rior is the union of the open simplices in |∆(P )| corresponding to the chains
x = x0 < · · · < xd = y, so it is clear that the interiors of the balls ex,y parti-
tion |∆(P )|. The rest of the proof is routine and is left to the reader. 	


Remark A.39. It may happen that P is itself the poset of (nonempty) cells
of a regular cell complex L. Then ∆(P ) is the barycentric subdivision of L,
while ∆c(P ) is a coarser subdivision into cubes. It has a vertex be for each
cell e of L, which we can visualize as the barycenter of e, and it has one cube
for each face relation e ≤ f between cells of L. The vertices of this cube are
the barycenters of the faces g with e ≤ g ≤ f .

Examples A.40. (a) Let P be the poset of nonempty simplices of a sim-
plicial complex Σ. Then P satisfies the hypotheses of Proposition A.38 and
Remark A.39. We therefore obtain a cubical subdivision of |Σ|, with one cube
for every pair consisting of a simplex of Σ and a nonempty face of it. See
Figure A.6 for the case that Σ consists of a 2-simplex and its faces. Note
that one can see, from the orientations on the edges, the smallest and largest
vertex of each cube and hence the corresponding interval in P .

Fig. A.6. The cubical and barycentric subdivisions of a 2-simplex.

(b) Now let P be the poset of all simplices of Σ, including the empty simplex;
more briefly, P = Σ. The hypotheses of the proposition are again satisfied, and
we obtain a cubical subdivision of the cone over Σ. It has one cube for every
pair consisting of a simplex of Σ and a face of it, one or both of which might
be empty. (The cube corresponding to the case that both are empty is the
cone point.) Figure A.7 illustrates this when Σ is the boundary of a square.
Combinatorially, K is a solid octagon, decomposed into four quadrilaterals
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(corresponding to the intervals from the empty simplex to the four original
edges).

Fig. A.7. The cubical subdivision of the cone over a square.



B

Root Systems

The reader can consult Bourbaki [44] or Humphreys [131, 133] for a detailed
treatment of root systems. Here we will just present the definition and one or
two consequences.

B.1 Notation

Let V be a Euclidean vector space with inner product 〈−,−〉. Recall from
Section 1.1 that the orthogonal reflection s with respect to a hyperplane H
in V is given by

s(x) = x− 2
〈α, x〉
〈α, α〉α , (B.1)

where α is any nonzero vector in H⊥. If we set

α∨ :=
2α

〈α, α〉 , (B.2)

this takes the simpler form

s(x) = x− 〈α∨, x〉α . (B.3)

The relation between α∨ and α is probably best remembered by the property
that α∨ is the scalar multiple of α satisfying

〈α∨, α〉 = 2 . (B.4)

This shows that there is a symmetric relationship between α and α∨, so that
(α∨)∨ = α.
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B.2 Definition and First Properties

Let Φ be a generalized root system in V (Definition 1.5). Thus Φ is a finite
set of nonzero vectors, and Φ is WΦ-invariant, where WΦ is the (finite) group
generated by the reflections sα (α ∈ Φ).

Definition B.1. We say that Φ is a root system, or a crystallographic root
system, if it satisfies the following condition:

(Cry) 〈α∨, β〉 is an integer for all α, β ∈ Φ.

One sometimes assumes further that Φ spans V , which is equivalent to
saying that the reflection group WΦ is essential, but this is less important;
it can always be achieved by replacing V by the span of Φ. Condition (Cry)
arises naturally in the theory of Lie algebras, and it also arises naturally in
the theory of infinite Euclidean reflection groups (see Section 10.1.8).

Assume now that we have chosen a fundamental chamber for the Weyl
group W = WΦ. Recall from Section 1.5.10 that this gives rise to a notion of
positive root and to a system of simple roots α1, . . . , αn, corresponding to the
fundamental reflections s1, . . . , sn that generate W . By Exercise 1.120, every
positive root is a nonnegative linear combination of the αi. In the presence
of (Cry), we can say more:

Proposition B.2. Let Φ be a root system that spans V .

(1) Every positive root is a nonnegative linear combination of the simple
roots, with integer coefficients.

(2) The additive subgroup of V generated by Φ is a lattice in V , i.e., it is the
free abelian group generated by a vector-space basis.

Proof. The content of (1), in view of what we already know, is that every
root is an integral linear combination of the simple roots. To see this, recall
from Exercise 1.121 that every root α is W -equivalent to a simple root αj .
Now as we repeatedly apply the generating reflections si to get from αj to α,
condition (Cry) and formula (B.3) show that we repeatedly subtract integral
multiples of simple roots. Hence α is an integral linear combination of simple
roots. Statement (2) follows immediately from (1), since the αi form a basis
for V . 	


Exercise B.3. The Cartan matrix of Φ relative to the system of simple roots
α1, . . . , αn is the n × n matrix A = (aij) given by aij = 〈α∨

i , αj〉. Show that
it is related to the Coxeter matrix M = (mij) by

aij = −2
‖αj‖
‖αi‖

cos
π

mij
.

Consequently,
aijaji = 4 cos2

π

mij
.
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B.3 The Dual Root System

If Φ is a generalized root system, then

Φ∨ := {α∨ | α ∈ Φ}

is again a generalized root system, said to be dual to Φ. It is crystallographic
(and hence a root system) if and only if Φ is. In particular, a root system Φ
naturally gives rise to two lattices, the root lattice, generated by Φ, and the
coroot lattice, generated by Φ∨. Note that Φ and Φ∨ have the same Weyl
group W , and that both lattices are W -invariant.

B.4 Examples

The examples that follow are based on those in Section 1.2, and they use the
same notation.

Example B.4. Let Φ be the root system of type An−1, consisting of the
vectors ei − ej (i �= j). Since each root α satisfies 〈α, α〉 = 2, we have α∨ = α
and Φ∨ = Φ. The root lattice and coroot lattice (in the subspace V of R

n

spanned by the roots) are equal to

Z
n ∩ V = {(x1, . . . , xn) ∈ Z

n |
∑

xi = 0} .

It has a basis α1, . . . , αn−1, where αi = ei− ei+1. This is the system of simple
roots corresponding to the fundamental chamber x1 > · · · > xn.

Example B.5. Let Φ be the root system of type Bn, consisting of the vectors
±ei± ej (i �= j) together with the vectors ±ei. The roots α = ±ei± ej satisfy
〈α, α〉 = 2, so α∨ = α. The roots α = ±ei satisfy 〈α, α〉 = 1, so α∨ = 2α. Thus
Φ∨ is the root system of type Cn. The root lattice is the standard lattice Z

n,
while the coroot lattice is the sublattice

{(x1, . . . , xn) ∈ Z
n |
∑

xi ≡ 0 mod 2} , (B.5)

which is of index 2 in Z
n.

The root lattice, of course, has its standard basis e1, . . . , en. But the present
point of view leads to a different basis, consisting of the vectors

e1 − e2, e2 − e3, . . . , en−1 − en, en .

These are the simple roots corresponding to the fundamental chamber

x1 > · · · > xn > 0

that we wrote down in Example 1.82. The same fundamental chamber leads
to the basis

e1 − e2, e2 − e3, . . . , en−1 − en, 2en

for the root lattice of type Cn, and hence for the coroot lattice of type Bn,
given in (B.5).
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Example B.6. If Φ is the root system of type Dn, consisting of the vectors
±ei ± ej (i �= j), then Φ∨ = Φ. The root lattice and the coroot lattice are
equal to the lattice in (B.5) again. From the point of view of Dn, however, the
natural basis to write down is

e1 − e2, e2 − e3, . . . , en−1 − en, en−1 + en ;

this arises from the fundamental chamber given in Example 1.83.

*B.5 Nonreduced Root Systems

Recall from Section 1.1 our convention that (generalized) root systems Φ are
always assumed to be reduced, which means that for any α ∈ Φ, the only
scalar multiples of α that are in Φ are ±α. But nonreduced root systems arise
naturally in connection with algebraic groups defined over fields that are not
algebraically closed (see Section 7.9.3), so we will mention them briefly. Note
first that the only way a crystallographic root system can fail to be reduced is
if it contains a pair {α, 2α}. More precisely, if α and λα are both roots for some
λ ∈ R, then necessarily λ ∈

{
±1,±2,± 1

2

}
. Indeed, we have 〈λα, α∨〉 = 2λ

and 〈α, (λα)∨〉 = 2/λ, so our assertion follows from the fact that 2λ and 2/λ
are both integers.

We close by mentioning the unique family of irreducible, nonreduced, crys-
tallographic root systems:

Example B.7. For each n ≥ 1, the root system of type BCn is defined to
be the union of the systems of type Bn and Cn in R

n, i.e., it consists of the
vectors ±en, ±2en, and ±ei ± ej for 1 ≤ i, j ≤ n, i �= j.



C

Algebraic Groups

A typical example of what we want to talk about in this appendix is the group
SLn(k), where k is a field. As a set, this is defined by the equation det(aij) = 1,
which is a polynomial equation of degree n in the n2 variables aij . And the
group structure is given by the matrix-multiplication map

SLn(k)× SLn(k) → SLn(k) ,

which is also describable by polynomials. In fact, each of the n2 components
of this map is a quadratic function of 2n2 variables. As this example suggests,
we will be looking at groups G of the following form: G is a set defined by
polynomial equations, with a group structure defined by a polynomial map.

We will see later that there are many properties of such groups that are
revealed only when we pass from k to a bigger field k′. Examples are given in
Sections C.6–C.9 below. Thus we will want to take the defining equations for G
and look at their solutions over various extensions k′ of k. More generally, there
are reasons for looking at solutions over k-algebras R that are not necessarily
fields. [By a k-algebra here we mean a commutative ring with identity that
comes equipped with a homomorphism k → R. Since k is a field, the given
homomorphism is necessarily 1–1, and we may think of R as a ring that
contains k as a subring.] These considerations lead to the notion of group
scheme. There are many references for this material, but we will mostly follow
Waterhouse [278].

C.1 Group Schemes

Suppose we are given a collection of polynomial equations in m variables with
coefficients in a field k. For any k-algebra R, let G(R) ⊆ Rm be the solution
set of the given equations. Assume further that we are given m polynomials
in 2m variables such that the map Rm × Rm → Rm that they define sends
G(R)×G(R) into G(R) for every R and makes G(R) a group. What we have,
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then, is not just a single group, but rather a group-valued functor on the
category of k-algebras. [Take a moment to verify this assertion; the essential
point is that the formulas defining the group structure are compatible with
k-algebra maps.]

Definition C.1. A functor G defined by polynomials as above is called an
algebraic affine group scheme over k, and the group G(R) is called the group
of R-points of G.

The canonical example is G = SLn, viewed now as the functor R �→
SLn(R).

Remark C.2. Readers familiar with topological groups might be surprised
that we did not require the inversion map g �→ g−1 to be a polynomial map.
The reason for not requiring it is that it turns out to be a formal consequence
of our definition [278, Chapter 1]. In our SLn example, for instance, Cramer’s
rule provides a polynomial formula for the inverse.

Examples C.3. (a) Fix a matrix g ∈ SLn(k). For any k-algebra R, let G(R)
be the centralizer of g in SLn(R). Then G is defined by polynomial equa-
tions (which depend on the given g), and the group law is given by matrix
multiplication. Thus G is an algebraic affine group scheme over k.

(b) The multiplicative group is the functor R �→ R∗, the latter being the group
of invertible elements of R. To describe it by an equation, note that we have
x ∈ R∗ if and only if there is a y ∈ R with xy = 1. Since y is uniquely
determined by x, we can identify R∗ with the “hyperbola” xy = 1 in the
plane R2. The group structure is given by

(x, y) · (x′, y′) = (xx′, yy′) .

[Note, incidentally, that we have the polynomial formula (x, y)−1 = (y, x) for
inversion.] Another way to describe this group by equations is to identify it
with the diagonal subgroup of SL2, i.e., with the matrix group defined by the
equations a12 = a21 = 0, det(aij) = 1.

(c) The general linear group GLn can be treated similarly: We identify it with
the set of solutions of the equation det(aij) · y = 1 in n2 + 1 variables aij , y.
[Exercise: Write down a polynomial formula for inversion.] Alternatively, we
can identify GLn with the matrix group

⎛

⎜⎜⎜
⎝

∗ . . . ∗
...

. . .
...

∗ . . . ∗
∗

⎞

⎟⎟⎟
⎠

< SLn+1 ,

which is defined by adding 2n equations to the determinant equation defin-
ing SLn+1. When n = 1, this example reduces to Example (b).
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(d) The additive group is defined by G(R) = R, with addition as the group
law. It is the set of solutions of the empty set of equations in one variable,
and the group structure is clearly given by a polynomial map. Alternatively,
G can be identified with the matrix group ( 1 ∗

0 1 ).

(e) The circle group is the curve x2 + y2 = 1 in the plane, with group struc-
ture given by imitating the familiar rule for multiplying complex numbers of
norm 1:

(x, y) · (x′, y′) = (xx′ − yy′, xy′ + x′y) .

Once again, our group can be identified with a matrix group; namely, it is
isomorphic to the rotation group, consisting of the matrices

(
a b
c d

)
∈ SL2 sat-

isfying the equations a = d and b = −c.

(f) Similarly, the 3-sphere x2
1 + x2

2 + x2
3 + x2

4 = 1 has a polynomial group law
given by imitating the rule for multiplying quaternions x = x1+x2i+x3j+x4k
of norm 1. Alternatively, we get the same group law by formally writing z =
x1 + ix2 and w = x3 − ix4 and identifying the quaternion x with the 2 × 2
matrix (

z w
−w̄ z̄

)
;

see formula (6.27) in Section 6.11. Here the bars denote “complex conjugation”
in the ring R[i] = R⊕Ri obtained by formally adjoining i =

√
−1 to R. Thus

the 3-sphere group is isomorphic to the special unitary group SU2, whose
group of R-points is the subgroup of SL2(R[i]) consisting of the matrices(

a b
c d

)
satisfying a = d̄ and b = −c̄.

(g) For any integer n ≥ 2, there is a group scheme µn, called the group of nth
roots of unity, defined by µn(R) := {x ∈ R | xn = 1} with group structure
given by multiplication. This is a group of 1× 1 matrices.

Remark C.4. It is no accident that we were able to represent every example
as a matrix group. In fact, one of the first theorems of the subject is that
every affine algebraic group scheme is isomorphic to a closed subgroup of
some GLn, i.e., a subgroup defined by polynomial equations in the n2 matrix
entries [278, Section 3.4].

Exercise C.5. Let G be the 3-sphere group as in Example C.3(f). Note that
we identified G(R) with a group of 2 × 2 matrices, but the matrices did not
have entries in R. Thus our matrix representation does not, on the face of it,
have the form described in Remark C.4. Exhibit G as a closed subgroup of
some GLn.

C.2 The Affine Algebra of G

Let G be an algebraic affine group scheme defined by a set of polynomial
equations in m variables. Write the equations in the form f(x1, . . . , xm) = 0,
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and let I be the ideal in the polynomial ring k[X1, . . . , Xm] generated by the
given f ’s. The affine algebra of G is the quotient A := k[X1, . . . , Xm]/I. For
example, the affine algebra of the circle is k[X,Y ]/(X2 + Y 2 − 1).

The affine algebra A of G represents G in the following sense: For any
k-algebra R, the set G(R) is in 1–1 correspondence with the set Hom(A,R)
of algebra homomorphisms A → R. More concisely, G = Hom(A,−). Of
course this describes G only as a set-valued functor. To describe the group
structure on G we need to impose some extra structure on A, consisting of a
comultiplication c : A→ A⊗A satisfying certain axioms. The algebra A with
this extra structure is called a Hopf algebra. See [278, Chapter 1] for details.

C.3 Extension of Scalars

Suppose we have a field extension k′ ≥ k. Then any polynomial with coeffi-
cients in k also has coefficients in k′. So if G is a group scheme defined as above
by polynomials with coefficients in k, then G yields a group scheme G′ over k′

defined by the same formulas. In other words, we simply “restrict” G from
the category of k-algebras to the subcategory of k′-algebras. [Any k′-algebra
can be viewed as a k-algebra.] The group scheme G′ is said to be obtained
from G by extension of scalars from k to k′. If G is represented by a Hopf
algebra A over k, then G′ is represented by the Hopf algebra A′ := k′ ⊗k A
over k′.

Here is an example to show what can happen when one extends scalars.
Let G be the circle group over R. After extending scalars to C, the resulting G′

is still the circle group, viewed now as a group scheme over C. But the defining
equation for the circle can be written as (x + iy)(x − iy) = 1 over C, and it
follows easily that there is an isomorphism G′ → GL1 given by (x, y) �→ x+iy.
Thus G becomes isomorphic to the multiplicative group after extension of
scalars, but the two group schemes are easily seen to be nonisomorphic over R.

C.4 Group Schemes from Groups

Let’s go back to the näıve point of view, as in the first paragraph of this
appendix. Thus we assume that we are given a group G0 ⊆ km that is the
solution set of a collection of polynomial equations and that has a group
law G0 × G0 → G0 defined by a polynomial map. Assume further that the
inversion map G0 → G0 is a polynomial map. There is then a canonical way
to “extend” G0 to a group scheme G, with G0 as the group of k-points G(k).
Namely, consider all polynomial equations that are satisfied by G0, and define
G(R) to be the set of solutions of the same equations in Rm. It is not hard to
show that the polynomial formula defining the group structure on G0 works
for arbitrary R and makes G a group scheme [278, Section 4.4].
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This passage from groups to group schemes has a simple interpretation
in terms of Hopf algebras: Given G0, let A be the ring of functions G0 → k
given by polynomials. Equivalently, A = k[X1, . . . , Xm]/I, where I is the
ideal consisting of all polynomials that vanish on G0. Then the group structure
on G0 yields a Hopf algebra structure on A, and the group scheme G is simply
the functor Hom(A,−) represented by A.

A group scheme G over k that arises from a group G0 in this way will
be said to be determined by its k-points. For example, one can show that
GLn and SLn are determined by their k-points as long as k is infinite [278,
Section 4.5]. On the other hand, the group scheme µ3 over Q is not determined
by its group of Q-points, which is the trivial group.

It is easy to characterize the group schemes G that are determined by their
k-points: If A is the affine algebra of G, then G is determined by its k-points
if and only if no nonzero element of A goes to zero under all k-algebra homo-
morphisms A → k. In case k is algebraically closed, Hilbert’s Nullstellensatz
allows us to restate the criterion as follows [278, Section 4.5]: G is determined
by its k-points if and only if A is reduced, i.e., if and only if A has no nonzero
nilpotent elements.

C.5 Linear Algebraic Groups

We are ready, finally, for the main definition. Let k be a field and let k̄ be its
algebraic closure. Let G be an algebraic affine group scheme over k, and let
Ḡ be the group scheme over k̄ obtained from G by extension of scalars.

Definition C.6. We say that G is a linear algebraic group defined over k if
the group scheme Ḡ is determined by its group of k̄-points.

For example, GLn and SLn are linear algebraic groups over k for any k,
and µ3 is a linear algebraic group over k unless k has characteristic 3. In
characteristic 3, on the other hand, µ3 over k̄ is not determined by its group
of k̄-points, which is the trivial group; so µ3 is not a linear algebraic group
defined over k in this case.

Remarks C.7. (a) Our primary interest here is in actual groups rather than
group functors. This is why we insist that we should get an actual group (i.e.,
the group scheme associated to an actual group) after extension of scalars.
But it would be too restrictive to demand that G itself be the group scheme
associated to a group, since that would exclude such examples as µ3 over Q

or SLn over a finite field.

(b) The word “linear” in Definition C.6 serves as a reminder of the fact,
mentioned at the end of Section C.1, that G is isomorphic to a closed subgroup
of a general linear group.
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(c) In view of Hilbert’s Nullstellensatz, we can restate the definition of “linear
algebraic group defined over k” in terms of the affine algebra A of G (see
the last paragraph of Section C.4): The group scheme G is a linear algebraic
group defined over k if and only if k̄ ⊗k A is reduced. This is equivalent to
a condition called smoothness [278, Chapter 11], and there are techniques
for checking it. In characteristic 0 it is known that all algebraic affine group
schemes are smooth, so there is nothing to check. In characteristic p, however,
we have already seen that smoothness can fail (e.g., µ3 in characteristic 3).

C.6 Tori

Let G be the n-dimensional torus over R, i.e., the product of n copies of the
circle group. The example in Section C.3 shows that G becomes isomorphic
to the direct product (GL1)n of n copies of the multiplicative group after
extension of scalars to C. This motivates the following terminology.

Definition C.8. A linear algebraic group G is a torus of rank n if G becomes
isomorphic to (GL1)n after extension of scalars to k̄. The torus is said to be
split (or k-split) if it is already isomorphic to (GL1)n over k.

We saw in Chapter 6 the canonical examples in which split tori arise “in
nature”; namely, the diagonal groups called T in Sections 6.5–6.7 are split
tori. And we saw examples of nonsplit tori in Section 6.11.3. Other natural
examples of nonsplit tori can be found in orthogonal and unitary groups (with
respect to quadratic and Hermitian forms other than the standard ones).

C.7 Unipotent Groups

An element g ∈ GLn(k) is called unipotent if g − 1 is nilpotent. This is
equivalent to saying that g is conjugate to an element of Un(k), where Un here
is the strict upper-triangular group (not the unitary group), i.e., the group of
upper-triangular matrices with 1’s on the diagonal. A group of n×n matrices
is called unipotent if each of its elements is unipotent. This is equivalent, by
a theorem of Kolchin [278, Section 8.1], to saying that the group is conjugate
to a subgroup of Un(k). Finally, if G is a linear algebraic group over k, choose
an embedding of G as a closed subgroup of some GLn, and call G unipotent
if G(k̄) is a unipotent subgroup of GLn(k̄). This is equivalent to saying that
there is an element of GLn(k) that conjugates G into Un [278, Section 8.3].
Moreover, this notion is independent of the choice of embedding of G in a
general linear group.
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C.8 Connected Groups

There is a topology on km, called the Zariski topology, in which the closed
sets are the subsets defined by polynomial equations. The subset G(k) ⊆ km

inherits a Zariski topology, and we can therefore apply topological concepts,
such as connectivity, to G(k). More useful for us is the Zariski topology on
G(k̄) ⊆ k̄m. In particular, we will say that the linear algebraic group G is
connected if G(k̄) is connected in the Zariski topology. For example, GLn

and SLn are connected (for any k), but µ3 over Q is not. Note, however, that
GLn(k) is disconnected if k is a finite field, whereas the disconnected group
µ3 has the property that µ3(Q) is connected. Thus it is important to look
at G(k̄) rather than G(k) in order to get the “right” answer.

C.9 Reductive, Semisimple, and Simple Groups

Let G be a connected linear algebraic group over k.

Definition C.9. G is called reductive if G(k̄) contains no nontrivial connected
normal unipotent subgroup.

For example, GLn and SLn are reductive.

Definition C.10. G is called semisimple if G(k̄) contains no nontrivial con-
nected normal solvable subgroup.

For example, SLn is semisimple but GLn is not (because of its center).
Note that any semisimple group is reductive, since unipotent matrix groups
are solvable (and even nilpotent) by Kolchin’s theorem.

If G is semisimple, then G(k̄) is “almost” a finite direct product of simple
groups. More precisely, G(k̄) has the following properties: (a) it has only fi-
nitely many minimal nontrivial closed connected normal subgroups Ni; (b) the
Ni commute and generate G(k̄); (c) the canonical surjection

∏
i Ni � G(k̄)

has finite kernel; and (d) each Ni is almost simple, which means that its cen-
ter Zi is finite and that the quotient Ni/Zi is simple as an abstract group.
Proofs can be found in [132, Sections 27.5 and 29.5]. If there is only one Ni,
i.e., if G(k̄) is almost simple, then G is said to be absolutely almost simple.
For example, SLn is absolutely almost simple.

C.10 BN-Pairs and Spherical Buildings

If G is reductive, then the group G(k) has a BN-pair whose associated building,
sometimes called the Tits building of G, is spherical. We will give a brief
description of this in the semisimple case. (See also Section 7.9.3 where the
BN-pair is described from the point of view of RGD systems.) For more details,
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see [247] and the references cited there. See also [132, Section 28.3] for the
case that k is algebraically closed, and see Warner [277, Section 1.2] for an
analytic approach in case k = R.

A Borel subgroup of G(k̄) is a maximal connected solvable subgroup
of G(k̄). Borel subgroups exist and are unique up to conjugacy. If k is al-
gebraically closed, any Borel subgroup can serve as the B of the BN-pair in
G(k) = G(k̄). Let T be a maximal torus in G. These also exist and are unique
up to conjugacy. Since T (k) is connected and solvable, we can choose the Borel
subgroup B to contain T (k). Still assuming that k = k̄, we can then take the
N of the BN-pair to be the normalizer of T (k) in G(k). The resulting spherical
building has rank l (dimension l − 1), where l is the rank of T . Its chambers
are in 1–1 correspondence with the Borel subgroups of G, and its apartments
are in 1–1 correspondence with the maximal tori in G. This construction is
described in Chapter 6 for several groups G, and further information is given
in Sections 7.9.2 and 7.9.3.

It is immediate from the definitions above that the parabolic subgroups
with respect to this BN-pair are the subgroups of G(k) that contain a Borel
subgroup. There is another characterization of them, whose statement involves
concepts that we have not defined (and will not define): They are the sub-
groups of the form P (k), where P is a closed subgroup of G such that G/P
is a projective variety. For example, let G = SLn and let P be the subgroup
defined by ai1 = 0 for i > 1 (i.e., P is the stabilizer of the line [e1]); then G/P
is (n− 1)-dimensional projective space.

When k �= k̄, the situation is more complicated, the problem being that
G(k̄) might not have a Borel subgroup that is defined over k (i.e., which is
the group of k̄-points of a linear algebraic subgroup of G defined over k).
Orthogonal groups provide examples of this phenomenon (see Section 6.7.2).

To get a BN-pair, in general, one has to forget about Borel subgroups
and instead take B to be the group P (k) for some minimal parabolic sub-
group P of G, where now “parabolic” is defined by the property that G/P
is a projective variety. B is again unique up to conjugacy. We can choose B
to contain T (k), where T is now a maximal k-split torus in G, and we take
N to be the normalizer of T (k) in G(k). The rank of the resulting spheri-
cal building is again equal to the rank l of T . This rank l is also called the
k-rank of G. It can be strictly smaller than the rank of the building associated
to G(k̄). In fact, it can be zero, in which case the building is empty (i.e., it
consists only of the empty simplex). The group G is said to be anisotropic,
or k-anisotropic, if l = 0. The terminology is motivated by the case of the
orthogonal group (Section 6.7.2). More generally, if k′ is an extension of k,
we say that G is k′-anisotropic if the group over k′ obtained by extension of
scalars is anisotropic.
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C.11 BN-Pairs and Euclidean Buildings

Here we will be even briefer. Suppose G is absolutely almost simple and
isotropic and is defined over a field K with a discrete valuation. Assume that
K is complete with respect to the valuation and, to avoid technicalities, that
the residue field is perfect. Assume further that G is simply connected. (This
is another term that we have not defined; an example is SLn.) Then there is a
Euclidean BN-pair in G(K), analogous to the one in Section 6.9 for SLn(K).
The associated Euclidean building, often called the Bruhat–Tits building of G,
has dimension l, where l is again the K-rank of G; thus the dimension of
this building exceeds by 1 the dimension of the spherical building associated
to G(K). When K is locally compact (e.g., K = Qp), the parabolic subgroups
of G(K) with respect to this BN-pair are open and compact. Theorem 11.38
therefore provides a description of the Bruhat–Tits building in terms of the
maximal compact subgroups of G(K). Here, of course, we use the locally com-
pact topology that comes from the valuation, not the Zariski topology. For
more information see Bruhat–Tits [59,60], Tits [252], or Weiss [283].

Remark C.11. The assumption that the residue field is perfect is made only
to handle a few special cases, and it may not be necessary even then. More
precisely, it is not necessary if the conjecture in Weiss [283, 21.16] is true.

C.12 Group Schemes versus Groups

We have insisted on thinking of algebraic groups as functors because we find
this point of view useful. But in so doing, we may have given the misleading
impression that a “typical” linear algebraic group G defined over k is not
determined by its group of k-points. We will therefore close by stating a the-
orem that says that G is determined by its k-points much more often than
one might expect. Let G be a linear algebraic group defined over k. Then
G is determined by its k-points whenever the following three conditions are
satisfied: (a) G is connected; (b) k is infinite; and (c) either k is perfect or G
is reductive. (Note that (b) and (c) hold automatically in characteristic 0.)
For a proof of this theorem see Borel [39, Corollary 18.3], where the result is
stated in the following equivalent form: If (a), (b), and (c) hold, then G(k) is
Zariski-dense in G(k̄).



Hints/Solutions/Answers to Selected Exercises

Chapter 1

1.29. By considering sign sequences, check that this union is an intersection
of open half-spaces.

1.45. Consider the set HA of hyperplanes in H containing A, and let ΣA be
the set of HA-cells. There is an obvious 1–1 map Σ≥A → ΣA that sends an
H-cell B ≥ A to the unique HA-cell containing it.

1.61. See Proposition 1.40.

1.62. Think in terms of sign sequences. Given chambers C ≥ A and D ≥ B,
σ(C) and σ(D) must disagree wherever A and B have opposite (nonzero)
signs, i.e., in d(A,B) places. To minimize the length, we try to make them
agree elsewhere. For example, if σi(A) = 0 and σi(B) = +, then necessarily
σi(D) = +, so we want σi(C) = +. This line of reasoning shows that we
minimize d(C,D) precisely by taking C ≥ AB and D = BC.

1.65. The implication (ii) =⇒ (i) is immediate from Proposition 1.56. To
prove (i) =⇒ (ii), one has to show that if C is a chamber not in D, then
there is a hyperplane H separating C from D. Choose D ∈ D at minimal
distance from C, and let D,D′, . . . , C be a minimal gallery from D to C.
Then D′ /∈ D, and the hyperplane H separating D from D′ also separates D
from C. To complete the proof, we will show that all chambers in D are on the
D-side of H. Given E ∈ D, we have d(E,D) = d(E,D′)± 1. The sign cannot
be +, because then there would be a minimal gallery from E to D passing
through D′, which would contradict (i). So the sign is −, which means that
E and D are on the same side of H.

1.68. It is immediate from the definitions that (ii) =⇒ (i). For the converse,
assume first that Σ′ contains a chamber, in which case we will prove (i) =⇒
(v) =⇒ (iv) =⇒ (ii).
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(i) =⇒ (v): Consider a minimal gallery A ≤ C0, C1, . . . , Cl = C. If Ai is
the common panel between Ci−1 and Ci, then we have C0 = AC, C1 = A1C,
and so on. So if (i) holds and A,C ∈ Σ′, one sees inductively that all Ci ∈ Σ′.

(v) =⇒ (iv): Trivial.
(iv) =⇒ (ii): Consider the intersection of the closed half-spaces (bounded

by hyperplanes in H) that contain all the cells in Σ′. Let Σ′′ be the set of cells
in this intersection. If (iv) holds, we know by Exercise 1.65 that Σ′ and Σ′′

have the same chambers. To show that they are equal, observe that Σ′′ is a
subsemigroup of Σ containing a chamber, which implies that every maximal
simplex of Σ′′ is a chamber.

Suppose now that Σ′ does not necessarily contain a chamber. To prove
(i) =⇒ (ii), note that (i) implies that all maximal cells of Σ′ have the same
support L. [If A and B are maximal, then A = AB and B = BA; now use
the fact that AB and BA have the same support.] We can now replace the
ambient vector space V by L and thereby reduce to the case already treated,
where Σ′ contains a chamber.

Finally, we show that (i) and (ii) are equivalent to (iii): If (iii) holds, then
Σ′ is a subsemigroup because the line segment from a point of A to a point
of B passes through AB. So (iii) implies (i) and (ii). Conversely (ii) =⇒ (iii)
because an intersection of half-spaces is convex.

1.87. W ∼= A5 × {±1}.
1.101. (a) V ′ is invariant under the rank-1 operator s−1, whose image is Res

and whose kernel is Hs.
(b) If m(s, t) > 2, then the operator t−1 is nonzero on es. So es ∈ V ′ =⇒

et ∈ V ′. Now use connectivity of the Coxeter diagram.
(c) Either V ′ is contained in

⋂
s∈S Hs = 0 or else V ′ contains some (and

hence all) es.
(d) Suppose u : V → V commutes with all w ∈W . It suffices to show that u

has a real eigenvalue λ, since the λ-eigenspace is then a nonzero W -invariant
subspace, hence is the whole space V . The existence of such an eigenvalue
follows from the fact that u commutes with any reflection s ∈ W , and s has
a 1-dimensional eigenspace (which is therefore u-invariant).

1.112. First, we need a description of the barycentric subdivision of the
boundary of an (n − 1)-simplex. The boundary of an (n − 1)-simplex is the
abstract simplicial complex consisting of the proper subsets of {1, 2, . . . , n}. Its
barycentric subdivision consists of chains of such subsets (see Section A.1.2).
Here are two possible ways to identify this with Σ. Method 1: The symmetric
group W acts on the barycentric subdivision in an obvious way; calculate a
fundamental domain and stabilizers. Method 2: The cells of Σ correspond to
ordered partitions of {1, 2, . . . , n} (Section 1.4.7). These are in 1–1 correspon-
dence with chains of nonempty proper subsets.

1.120. We may assume that W is essential, so that the simple roots form a
basis for the ambient vector space. The result is then equivalent to the (almost
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obvious) fact that in R
n a nonzero linear functional

∑
cixi is positive on the

positive orthant (given by xi > 0 for all i) if and only if ci ≥ 0 for all i.

1.121. Recall from the proof of Theorem 1.69 that every hyperplane in H is
W -equivalent to a wall of the fundamental chamber.

1.125. l(w) = l(w−1) = the number of walls separating C from w−1C.

Chapter 2

2.9. The upper sheet of the hyperboloid Q = −1 is one of the standard
models of the hyperbolic plane.

2.30. (b) This follows from Exercise 2.28 if j > i, so assume j < i. We
may also assume i ≥ 2, and we argue by induction on i. Suppose first that
j �= i− 1. Then wi−1 is si-reduced by (a) and sj-reduced by induction. So it
is {si, sj}-reduced, and we have

l(wisj) = l(wi−1sisj) = l(wi−1) + 2 = i + 1

by Proposition 2.20. Now suppose j = i−1, and note that wi−2 is si−1-reduced
and si-reduced. Hence it is {si−1, si}-reduced, and we have

l(wisi−1) = l(wi−2si−1sisi−1) = l(wi−2) + 3 = i + 1

by Proposition 2.20 again. [Readers who want to look ahead at Theorem 2.33
might find it instructive to think about this exercise from the point of view
of that theorem.]

2.31. (a) The wi are (right) J-reduced by Exercise 2.30, with a renumbering
of the generators si. To see that they are the only J-reduced elements, note
that W acts transitively on {1, 2, . . . , n} and WJ is the stabilizer of 1. Since
wi takes 1 to i + 1 [using a left action of W on {1, . . . , n}], the wi form a
complete set of coset representatives for W/WJ . Alternatively, one can argue
directly with S-words.

(b) As in (a), the left J-reduced elements are s1s2 · · · si, and 1 and s1

are the only two of these that are also right J-reduced. [The fact that there
are only two (WJ ,WJ )-double cosets can also be deduced from the theory of
permutation groups; it says that W acts doubly transitively on {1, 2, . . . , n}.]

(c) Here W has infinitely many generators s1, s2, . . . , with m(si, si+1) = 3
and m(si, sj) = 2 if j > i + 1. The Coxeter diagram is an infinite path with
unlabeled edges. There is also a permutation group interpretation: W is the
group of permutations w of the natural numbers such that w fixes all but
finitely many elements. Setting J := S � {s1}, we find as in (a) and (b)
that the right J-reduced elements are the si · · · s1 (i = 0, 1, 2, . . . ), the left
J-reduced elements are the s1 · · · si (i = 0, 1, 2, . . . ), and the (J, J)-reduced
are elements are 1 and s1.
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2.42. See [246].

2.47. As in the finite case, we may assume that J = S � {s}. If there are
infinitely many t ∈ S with m(s, t) > 2, then the elements ts provide infinitely
many J-reduced elements and we are done. Otherwise, the Coxeter diagram
of (WJ , J) falls into finitely many connected components J1, J2, . . . , at least
one of which (say J1) must be infinite. Choose t ∈ J1 with m(s, t) > 2, and
observe, as above, that it suffices to find infinitely many

(
J1 � {t}

)
-reduced

elements of WJ1 or, equivalently, to show that WJ1�{t} has infinite index
in WJ1 . Thus our problem for W and s has been reduced to the same problem
for WJ1 and t. Continuing in this way, we have two possibilities: Either the
process terminates after finitely many steps and we are done, or else there
is an infinite sequence (s1, s2, . . . ) = (s, t, . . . ) of distinct elements of S such
that m(si, si+1) > 2 for all i ≥ 1. We can now set wi := si · · · s2s1 and check
that the wi form an infinite set of J-reduced elements (see Exercise 2.30).

2.51. This is not obvious if one defines “Coxeter system” via (C), as is often
done. But it is easy using (A) or (D).

2.89. We may assume that A is a face of the fundamental chamber C. Let
C ′ be the intersection of the open half-spaces U+(s), where s ranges over the
fundamental reflections that fix A. Then, as in the proof of Lemma 2.58, C ′

is essentially the fundamental chamber for the dual of the canonical linear
representation of WA. If WA is finite, then it is a finite reflection group acting
on V ∗, with HA as its set of walls. [Just note that HA is a WA-invariant set of
hyperplanes whose reflections generate WA.] So every HA-cell is WA-equiva-
lent to a face of C ′. Since every face of C ′ contains a face of C, it follows that
every HA-cell contains a cell of X.

2.90. If we can show that Xf is open, then it will automatically be the full
interior of X by Lemma 2.86. [If y is in the interior of X, choose x ∈ Xf

and note that y is in [x, y′) for a suitable y′ ∈ X.] Consider now a point
x ∈ Xf , and let A be the cell containing x. Let U =

⋃
B≥A B. Everything in

(a) and (b) will follow easily if we show that U is open in V ∗. By Lemma 2.85,
HA is finite. And, as we saw in the proof of that lemma, there are only finitely
many chambers ≥ A. So we may enlarge HA to a finite set H′ containing the
walls of all chambers ≥ A. We claim that the cells ≥ A are the same as the
H′-cells ≥ A. This claim, together with Exercise 1.29, will complete the proof
that U is open.

To prove the claim, we appeal to Exercises 1.45 and 2.89. Combining the
bijections of those exercises, we get a bijection from the cells in X with A as
a face to the H′-cells with A as a face; it sends a cell B ≥ A to the unique
H′-cell B′ containing B. But the definition of H′ implies that any such B is
already an H′-cell, so B′ = B and the claim is proved.
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Chapter 3

3.11. (a) We may assume that C is the fundamental chamber. Then D = wC
for some w ∈W , and the hypothesis says that l(ws) ≤ l(w) for all s ∈ S. Now
apply Corollary 2.19.

(b) This follows trivially from (a). For a direct proof, observe that Σ has
finite diameter if and only if the length function on W is bounded, and this
is the case if and only if W is finite.

3.12. (a) The equivalence of the two formulations is obtained using the
W -action. To prove the first version, suppose d(C, y) is bounded as y ranges
over all vertices of type s. Then there are finitely many chambers containing
all these vertices.

(b) We may assume that x is a vertex of the fundamental chamber, i.e., x
is a standard subgroup WI , where I = S � {s′} for some s′ ∈ S. A vertex y of
type s is a coset wWJ with J := S�{s}, and a gallery from x to y is a sequence
u, us1, us1s2, . . . , us1 · · · sl of elements of W with u ∈ WI , si ∈ S for all i, and
us1 · · · sl ∈ wWJ . Hence d(x, y) is the minimum value of l(u−1v) with u ∈ WI

and v ∈ wWJ , i.e., d(x, y) is the length of the shortest representative of the
double coset WIwWJ (see Proposition 2.23). There are infinitely many such
double cosets by Proposition 2.45, so the length is unbounded.

3.13. We may assume that A is a face of the fundamental chamber. Then
A is a standard subgroup, and the exercise reduces to the fact that A acts
transitively on itself by left translation.

3.57. Argue as in the proof of Lemma 3.45: Take a minimal gallery from C
to sC and fold it onto α.

3.58. (a) The canonical isomorphism Σ → Σ′, on the level of chambers,
associates to a permutation π the chain of subsets

{π(1)} ⊂ {π(1), π(2)} ⊂ · · · ⊂ {π(1), . . . , π(n− 1)} .

So a chamber X1 ⊂ · · · ⊂ Xn−1 of Σ′ is in α′
ij if and only if the first set Xk

that contains i does not contain j. The vertices of chambers of this form are
exactly the sets described in the statement of (a).

(b) The root opposite to α′
ij is α′

ji. Hence ∂α′
ij = α′

ij ∩α′
ji. Now apply (a).

(c) This follows from (a) and (b).

3.59. (a) Let Σ = Σ(W,S), with fundamental chamber C, and let H be the
wall corresponding to the reflection t. Then H separates C from wC; for other-
wise we would have d(C, twC) > d(C,wC) by Exercise 3.57, contradicting the
hypothesis l(tw) < l(w). Consider now the gallery C = C0, . . . , Cd = wC cor-
responding to the given decomposition of w. It must cross H, so there is an in-
dex i such that Ci−1 = tCi. There are now two ways to finish. Method 1: Since
the wall separating Ci−1 from C is the wall fixed by t, we have t = usiu

−1,
where u = s1 · · · si−1; now calculate tw. Method 2: We have a pregallery
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C0, . . . , Ci−1, tCi, . . . , tCd

from C to twC with exactly one repetition. The gallery obtained by deleting
the repetition has type (s1, . . . , ŝi, . . . , sd).

(b) (i) =⇒ (ii) trivially. For (ii) =⇒ (iii), take t = usiu
−1 with

u = s1 · · · si−1. Finally, (iii) =⇒ (i) by the strong exchange condition.
(c) Acyclicity follows from the fact that the length l(w) strictly increases

along any directed path. This implies that if w′ ≤ w and w ≤ w′, then w′ = w.
Transitivity of “≤” is trivial.

(d) Assume first that there is a directed edge w′ → w, and choose a reduced
decomposition w = s1 · · · sd. Then w′ = s1 · · · ŝi · · · sd for some 1 ≤ i ≤ d,
and sw′ = ss1 · · · ŝi · · · sd. If l(sw) > l(w), this yields an edge sw′ → sw =
max {sw,w}. Otherwise, we may assume that the decomposition of w has
been chosen such that s1 = s. If i = 1, then sw′ = w and there is nothing to
prove, so assume i > 1. Then we have a path

sw′ = s2 · · · ŝi · · · sd → s2 · · · sd → w ;

hence sw′ < w = max {sw,w}.
In the general case, there is a path w′ = w0 → w1 → · · · → wk = w. By

the special case already treated, we have

sw′ = sw0 ≤ max {sw0, w0} ≤ · · · ≤ max {swk, wk} = max {sw,w} ,

and the proof is complete.
(e) If w′ < w and we start with an arbitrary decomposition of w, then,

by repeated applications of the strong exchange condition, we obtain w′ by
deleting some letters. Hence (i) =⇒ (ii). It is trivial that (ii) =⇒ (iii).
Finally, to show that (iii) =⇒ (i), suppose we have a reduced decomposition
w = s1 · · · sd, and let w′ be obtained by deleting some letters. We will show
by induction on d = l(w) that w′ < w. Set u = s2 · · · sd, and note that u < w.
If s1 is one of the letters deleted in passing from w to w′, then w′ is obtained
from u by deleting zero or more letters; hence w′ ≤ u < w by induction.
Otherwise, w′ = s1u

′, where u′ is obtained from u by deleting some letters.
By induction, u′ < u, and (d) now implies w′ ≤ max {s1u, u} = w. Since
l(w′) < l(w), we have strict inequality.

3.62. The support of A is the intersection of the walls containing A; hence
it is the fixed-point set of the reflections fixing A. Now recall that these re-
flections generate the stabilizer of A. [We may assume that A is a face of
the fundamental chamber, i.e., A is a standard subgroup WJ , J ⊆ S. The
stabilizer is WJ .]

3.81. If A ∈ H, choose an arbitrary chamber > A and consider its image
under the reflection sH .

3.83. (a) If there were only finitely many walls, then Σ would have finite
diameter and hence would be finite by Exercise 3.11(b).
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(b) Proposition 3.78 implies that d(x,C), for any chamber C, is bounded
by the number of walls not containing x. Now apply Exercise 3.12(a).

3.97. (a) Consider a chamber D′ /∈ D such that D′ is adjacent to some
chamber in D. It suffices to prove that there is a unique root α that contains D
but not D′. Equivalently, we must show that there is a unique chamber D ∈ D
adjacent to D′. Suppose, to the contrary, that D1 and D2 are two distinct
such chambers. Then we have a gallery D1,D

′,D2, which is easily seen to be
minimal (see, for instance, Exercise A.16). This contradicts the assumption
that D is convex.

(b) We know from the solution to (a) that D′
2 ∈ α1; hence

d(D′
1,D

′
2) = d(D1,D

′
2) + 1 .

And we have
d(D1,D

′
2) = d(D1,D2) + 1 ,

since D1 ∈ D ⊆ C(α2). Combining these two equations, we get d(D′
1,D

′
2) =

d(D1,D2) + 2. [Alternatively, observe that a gallery D′
1,D1, . . . , D2,D

′
2 as in

the statement of the exercise does not cross any wall twice.]

3.117. Method 1: Apply Proposition 3.78. Method 2: The inequality is ob-
vious, since any gallery from A2 to B is also a gallery from A1 to B. Now
suppose A2 ≥ A1B, and consider a minimal gallery C0, . . . , Cl from A2 to B.
Then this is also minimal from C0 to B, so d(A2, B) = d(C0, B). On the
other hand, C0 ≥ A1B, so we know from Theorem 3.108 that C0 can start a
minimal gallery from A1 to B. Hence d(A1, B) = d(C0, B) = d(A2, B).

3.120. (a) If D �= C, then the first step of a minimal gallery from C to D
crosses a wall H ∈ HC , so σH(D) �= σH(C).

(b) Consider the chamber AC. We have σH(AC) = σH(C) for all H ∈ HC ,
so AC = C by (a).

(c) Suppose σH(A) ≤ σH(B) for all H ∈ HC . Then every panel of C
containing B also contains A. Now use the fact that B is the intersection of
the panels of C containing it.

(d) Suppose σH(B) = σH(A) for all H ∈ HC . Then B ≤ C by (b), and
then B = A by (c).

3.121. (a) Let Ps and Pt be the panels of C corresponding to the walls Hs

and Ht, and consider the codimension-2 face A := Ps ∩ Pt of C. The first
step is to replace D by AD in order to reduce to the case D ≥ A. Since
σH(AD) = σH(D) for H = Hs or Ht, this replacement is legitimate as long
as we show that Hs and Ht are still walls of AD. Consider H := Hs, for
instance. Set P := Ps and let Q be the panel of D contained in H. Then
a consideration of sign sequences shows that AP is a panel of AD and is
contained in H; hence H is indeed a wall of AD.

We may now assume that D ≥ A. The next step is to replace Σ by lkΣ A
in order to reduce to the case that Σ has rank 2. This is easily justified via
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Proposition 3.79. Finally, the rank-2 case is easy. If m < ∞, then we have
already given the proof as part of the “geometric proof” of Corollary 1.91.
And if m = ∞, then Σ is a triangulated line, and there is no D �= C having
the same two walls as C.

(b) If m = 2 and Σ has rank 2, then there are four chambers, all having
the same two walls.

(c) This is immediate from (a), since irreducibility implies that there is a
path in the Coxeter diagram connecting any two of the reflections si.

3.146. The assumption d(C,D) = d− 1 implies that C and D are separated
by all walls but one, so there is a unique root containing them.

3.150. We may assume that the given simplices are chambers. Their sign
sequences all agree except with respect to finitely many walls. We therefore
have a collection of roots α, whose bounding walls include almost all H ∈ H,
such that the convex hull is contained in their intersection. This determines
the sign sequence of a chamber in the convex hull except for finitely many
coordinates.

3.156. (a) This is immediate from Exercise 3.83(b) and the finiteness
of d(x, y).

(b) This follows easily from (a). [First figure out what the walls look like
in a join of Coxeter complexes.]

3.168. (a) For any simplex B ∈ Σ, we have B ∈ H ⇐⇒ AB ∈ H. [For
the implication ⇐= , use the fact that B ∈ suppAB.] As in the proof of
Lemma 3.162, we therefore have

B ∈ H ⇐⇒ AB ∈ H ∩Σ≥A ⇐⇒ (AB � A) ∈ H ′ .

(b) As above, we have

B ∈ α =⇒ (AB � A) ∈ α′ (∗)

for any simplex B ∈ Σ. Similarly,

B ∈ −α =⇒ (AB � A) ∈ (−α)′ = −α′ . (∗∗)

To prove the converse of (∗), suppose AB�A is in α′. If AB�A is also in −α′,
then it is in H ′; hence B is in H ⊆ α by (a). Otherwise, (∗∗) implies B /∈ −α,
so B is in α.

Chapter 4

4.13. Given chambers C,D ≥ A, any minimal gallery from C to D is con-
tained in an apartment. Now apply Proposition 3.93.
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4.24. (a) V has 24 − 1 = 15 nonzero vectors. Given such a nonzero vector v,
the totally isotropic 2-dimensional subspaces containing v are the 2-dimen-
sional subspaces of the 3-dimensional space v⊥ containing v. These are in
1–1 correspondence with the 1-dimensional subspaces of the 2-dimensional
space v⊥/F2v, and there are 22−1 = 3 of these. So far we have proven that Q
has 15 points, each contained in 3 lines. So there are 45 point–line pairs. Since
it is immediate that every line has 3 points, it follows that there must be 15
lines. Alternatively, it is not hard to directly count the 2-dimensional totally
isotropic subspaces of V . [A pair of orthogonal nonzero vectors determines
one.]

(b) The vertices of the quadrilateral, in cyclic order, are e1, e2, f1, f2; note
that any two cyclically consecutive ones are orthogonal in V , hence collinear
in Q.

(c) This is straightforward and is also a special case of a result to be proved
in Section 6.6.

(d) The description of the apartments in the statement of (a) implies that
any pair of opposite vertices has the form (i) or (ii). It remains to show that
any two vertices as in (i) or (ii) are opposite. Consider case (i), for instance.
We are given two nonzero vectors e′1, f

′
1 with 〈e′1, f ′

1〉 = 1, and we wish to
extend them to a symplectic basis e′1, e

′
2, f

′
1, f

′
2. Let U be the 2-dimensional

space spanned by e′1, f
′
1, and note that since our bilinear form is nondegenerate

on U , we have an orthogonal decomposition V = U ⊕ U⊥. It follows that the
form is nondegenerate on the 2-dimensional space U⊥, so we can take e′2, f

′
2

to be any two nonorthogonal vectors in U⊥.
(e) Q cannot contain 6 pairwise noncollinear points, since that would yield

6 · 3 = 18 distinct lines. Similarly, Q cannot contain 6 pairwise nonintersect-
ing lines. We will construct 5 pairwise noncollinear points, i.e., 5 pairwise
nonorthogonal vectors in V . [One can also construct 5 pairwise nonintersect-
ing lines by a similar method.]

Start with two nonorthogonal vectors, say e1, f1. There are 4 vectors or-
thogonal to neither of these, namely, the vectors that have both a nonzero
e1-component and a nonzero f1-component. One of these vectors (e1 + f1)
is orthogonal to the others. But if we delete this one, the remaining 3 are
pairwise nonorthogonal. This gives us the following 5 pairwise nonorthogonal
vectors:

e1, f1, e1 + f1 + e2, e1 + f1 + f2, e1 + f1 + e2 + f2 .

4.32. First, we need to distinguish between left vector spaces (i.e., left k-mod-
ules) and right vector spaces. Since a right vector space over k is the same
thing as a left vector space over the opposite division ring kop, there is no loss
of generality in just considering left vector spaces. The only other change is in
Exercise 4.31. Since the dual of a left vector space is naturally a right vector
space, and hence a left vector space over kop, the result is that the building
associated with an n-dimensional (left) vector space over k is isomorphic in
a type-reversing way to the building associated with an n-dimensional (left)
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vector space over kop. Moreover, one cannot in general say that the building
associated to a vector space admits a type-reversing automorphism, unless
k ∼= kop.

4.50. Given n pairwise joinable simplices, we may assume inductively that
the first n − 1 are joinable. Hence there is an apartment Σ containing all n
simplices. They are still pairwise joinable in Σ because Σ is a retract of ∆, so
they are joinable because Σ is a flag complex (Exercise 3.116). Alternatively,
skip the induction and recall that it suffices to consider the case n = 3.

4.52. (a) Given a chamber D �= C, we must find an apartment Σ containing
C but not D. Choose a minimal gallery C,C ′, . . . , D from C to D. By the
convexity of apartments, we are reduced to finding an apartment Σ containing
C but not C ′. Let C ′′ be a chamber different from C and C ′ that is adjacent
to C along the panel C ∩ C ′. Then we can take Σ to be any apartment
containing C and C ′′.

(b) ∆ might contain only one apartment.

4.61. (a) Suppose α is a root in an apartment Σ, and let Σ′ be another apart-
ment containing α. Let φ : Σ → Σ′ be the isomorphism fixing the intersection
pointwise (cf. (B2′′)). Then φ takes roots of Σ to roots of Σ′, since roots are
defined intrinsically in terms of the simplicial structure. Hence α = φ(α) is a
root of Σ′.

(b) This follows from the solution to (a).

4.77. Let Σ be an apartment containing C and D. Then the hypothesis
implies that d(C,D′) < d(C,D) for every chamber D′ ∈ Σ adjacent to D.
Now apply Exercise 3.11. See also Exercise 1.59 for some geometric insight.

4.89. Observe first that ∆′ has the same Weyl group (W,S) as ∆ by Propo-
sition 4.63. Now use the fact that the Weyl distance between two chambers
can be computed by using any apartment containing them.

4.90. Choose a chamber D ∈ Σ at maximal distance from C. We must show
that d(C,D) = diam ∆ or, equivalently, that δ(C,D) = w0, where w0 is the
longest element of W (Sections 1.5.2 and 2.3.2). Suppose not. Then w :=
δ(C,D) must satisfy l(ws) > l(w) for some s ∈ S. If D′ is the chamber of Σ
that is s-adjacent to D, it follows that δ(C,D′) = ws and hence d(C,D′) >
d(C,D), contradicting the choice of D.

4.100. We need to be a little careful because of nonassociativity of the
product. But we can deduce the assertion from the fact that it holds in any
apartment (Proposition 3.112(4)). Note that in the spherical case, we need
only the more elementary version of the theory given in Section 1.4.6.

4.108. (a) The assertions about Λ and Λ′ follow from the results of Sec-
tion 3.6.6 (see Proposition 3.136 and Corollary 3.141). Moreover, we have
K ⊆ Λ and K ⊆ Λ′ by Lemma 3.140; hence K ⊆ Λ ∩ Λ′. The opposite
inclusion is trivial.



Hints/Solutions/Answers 705

(b) Walls (and hence supports) in a Coxeter complex are defined intrinsi-
cally in terms of the simplicial structure. So an isomorphism between Coxeter
complexes takes supports to supports.

(c) View φ as a chamber map from Λ to Λ′. The standard uniqueness
argument (in which we move out along Λ-galleries starting at M) then shows
that φ is uniquely determined by the fact that it fixes M pointwise. Now recall
that K is a chamber subcomplex of both Λ and Λ′, and consider K-galleries
starting at M .

4.109. Choose apartments Σ and Σ′ containing α and α′, respectively, and let
−α and−α′ be the opposite roots in the chosen apartments. Let φ : Σ → Σ′ be
an isomorphism fixing Σ ∩Σ′ pointwise. In particular, φ fixes H := ∂α = ∂α′

pointwise. Then φ(α) is a root of Σ′ bounded by H, so φ(α) = ±α′. We may
assume that φ(α) = −α′. (Otherwise compose φ with the reflection of Σ′ that
interchanges ±α′.) There is then an isomorphism ψ : Σ → α ∪ α′ such that
ψ|α = id and ψ|−α = φ|−α. [Draw a picture.] Proposition 4.59 now implies
that α ∪ α′ is an apartment.

4.112. It is not hard to prove this using the ideas of the present section. But
a more general result will be proved in the next chapter (Corollary 5.118), and
the reader may prefer to look ahead and translate that proof into simplicial
language.

4.114. Let L be a thick line and p a thick point. If p and L are incident,
then the result follows from Exercise 4.113. Otherwise, consideration of an
apartment containing p and L shows that there is a vertex p′ opposite p such
that p′ and L are incident. To complete the proof, note that p′ is thick by
Exercise 4.100.

4.125. In view of Theorem 4.66, it suffices to show that ∆′ is weak. Let
P be a panel of ∆′, and let Σ be an apartment of ∆ contained in ∆′. By
Exercise 4.90, Σ contains a panel P ′ opposite P . We can now get two chambers
of ∆′ containing P by projecting from CP ′ to CP and applying Exercise 4.100
(and the closure of ∆′ under projections).

Chapter 5

5.10. Assuming (WD2a) and (WD2b) instead of (WD2), we have to show
that (WD2) holds when l(sw) < l(w). Note first that by (WD2a), s-equiva-
lence is an equivalence relation. [Symmetry follows from the second proof of
Lemma 5.3(1).] Now suppose that δ(C ′, C) = s ∈ S and δ(C,D) = w, where
l(sw) < l(w). Apply (WD3) to get a chamber C ′′ such that δ(C ′′, C) = s
and δ(C ′′,D) = sw. Then C ′′ ∼s C ′. If C ′′ = C ′, we are done. Otherwise,
δ(C ′, C ′′) = s, and then δ(C ′,D) = s(sw) = w by (WD2b).

5.20. (a) We have to show that every minimal gallery has reduced type.
Suppose there is a minimal gallery from C to D of type s = (s1, . . . , sn),
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and set w = δ(C,D). By Lemma 5.16 there is a decomposition of the form
w = si1 . . . sim

with 1 ≤ si1 < · · · < sim
< n. In view of Corollary 5.17(1), we

then have
n = d(C,D) = l(w) ≤ m ≤ n .

Hence l(w) = m = n, and s is a reduced decomposition of w.
(b) This is immediate from (a) and Lemma 5.16.

5.40. (a) The projection C0 := projP D has the property that d(C,D) =
d(C0,D) + 1 for all C �= C0 in P by the gate property (Proposition 5.34(3)).
So if two chambers in P have different distances from D, one of them must
be C0.

5.63. Given φ ∈ Iso(W ) and w ∈W , we have

φ(1)−1φ(w) = δ(φ(1), φ(w)) = δ(1, w) = w .

Hence φ(w) = φ(1)w. Thus the set of isometries can be identified with W
acting on itself by left translation.

5.83. (a) By definition, there is an isometry φ : β → C for some root β ⊂W .
Then C = φ(v) for some v ∈ β such that v is adjacent to a chamber v′ /∈ β. It
follows, as in Remark 5.82, that β = vαs for some s ∈ S. So we may assume
that β = αs and φ(1) = C. Since l(sw) = l(w) + 1 for all w ∈ αs, we can
extend φ to an isometry αs ∪ {s} → C by setting φ(s) = D as in the proof
of Theorem 5.73. That theorem now yields an extension of φ to an isometry
φ : W → C, whose image is the desired apartment A.

(b) Continuing with the notation of the solution to (a), consider V :=
φ−1(A∩A′). It is a convex subset of W containing αs but not s. This implies
that V = αs (see Exercise 3.96); hence A ∩A′ = φ(V ) = α.

(c) Every root in a thick building is an intersection of two apartments by
(a) and (b). We can now appeal to the fact that every convex subset of an
apartment A is an intersection of roots (Proposition 3.94).

5.84. Identify A with the set of chambers of a Coxeter complex Σ, so that
we can apply the results of Chapter 3. Specifically, we will use the concepts
and results of Exercise 3.97 and its solution (where M was called D). Thus
M has walls, which are subcomplexes of Σ, each wall H determines a root αH

(called C(αH) in the exercise just cited), and we have

M =
⋂

H

αH ,

where H ranges over the walls of M. For each such wall H, choose a chamber
D− ∈ A�M such that D− is adjacent to a chamber D+ ∈ M, and let M−

be the set obtained from M by adjoining all these chambers D−, one for each
wall H of M. By thickness, we can choose for each wall a chamber D′ ∈ C
that is adjacent to both D+ and D−. Let M′ be the set obtained from M by
adjoining all these chambers D′.
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Using Exercise 3.97(b), one checks that M′ is isometric to M+. In
more detail, that exercise gave a minimal gallery that we would write as
D−

1 ,D+
1 , . . . , D+

2 ,D−
2 in the present notation. Replacing the extremities by

D′
1 and D′

2 yields a gallery of the same (reduced) type, which is therefore
minimal and can be used to show that δ(D′

1,D
′
2) = δ(D−

1 ,D−
2 ). It now fol-

lows from Theorem 5.73 that M′ is contained in an apartment A′. For each
wall H as above, the convex set A ∩ A′ contains D+ but not D−, so it is
contained in αH . Hence A ∩A′ =M.

5.138. The first equation follows from the definition of δ∗ and a standard
property of w0. Now suppose C ′ op D in C. Then d0 − d(C,D) = d(C ′,D)−
d(C,D) ≥ d(C,C ′), with equality if and only if C is in the convex hull of C ′

and D.

5.163. C+ and C− are opposite residues of (spherical) type S, so the projection
maps projC+

and projC− induce mutually inverse σ0-isometries between C+
and C− by Proposition 5.152.

5.168. Surprisingly, we do not have to assume that S is spherical. Let J be
the type of R, and let K be the type of S. Set w1 := min

(
δ∗(R,S)

)
. Then

the characterization of projR S is

projR S = {C ∈ R | w0(J)w1 ∈ δ∗(C,S)} . (∗)

Moreover, if C ∈ R and D ∈ S satisfy δ∗(C,D) = w0(J)w1, then C =
projR D. To prove this, suppose first that δ∗(C,D) = w0(J)w1 for some
D ∈ S. Then δ∗(C,D) = max

(
δ∗(R,D)

)
, so C = projR D. This proves the

“moreover” assertion, which implies that the right side of (∗) is contained in
the left. For the opposite inclusion, assume C = projR D for some D ∈ S,
and set w := δ∗(C,D). Then Lemma 5.149 and equation (5.11) imply that
l(w0(J)w) = l(w)− l(w0(J)). After some further (slightly tricky) arguments,
one concludes that w is in w0(J)w1WK ; hence w0(J)w1 ∈ wWK = δ∗(C,S).

For the second part of the exercise, one shows as in the proof of Lemma
5.36(2) that projR S is a residue of type w0(J)(J ∩ w1Kw−1

1 )w0(J)−1. Start
by choosing C1 ∈ projR S and D1 ∈ S such that δ∗(C1,D1) = w0(J)w1. In
particular, C1 = projR D1. For C ∈ Cε with u := δε(C,C1), one now checks
that

C ∈ projR S ⇐⇒ u ∈WJ ∩ w0(J)w1WKw−1
1 w0(J)−1 .

The proof uses (∗) together with the fact that δ∗(C,D1) = δε(C,C1)δ∗(C1,D1)
for C ∈ R, so that δ∗(C,S) = uw0(J)w1WK .

5.169. Let J be the type of R. Choose C0 ∈ R∩Mε and set w := δ∗(C0,D).
If w is not the longest element w∗

1 of δ∗(R,D), then there exists s ∈ J such
that l(sw) > l(w). Letting P be the s-panel containing C0, we conclude that
C1 := projP D is inR∩Mε and satisfies d∗(C1,D) > d∗(C0,D). Continuing in
this way, we obtain a gallery C0, C1, . . . in R∩Mε along which the numerical
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codistance to D is strictly increasing. Since J is spherical, the process must
terminate after finitely many steps with Cn = projR D ∈ R ∩Mε.

5.189. Let J be the common type ofR and S, and set w := δ∗(C,D). Since C,
C ′, and D are in Σ, we have δ−(C ′,D) = w, so δ∗(R,D) = WJw = δ−(S,D).
Set w1 := min(WJw) and D1 := projS D. Thus w1 = δ−(D1,D).

(a) For any X ∈ R, we now deduce

δ∗(X,D) = w1 = δ−(D1,D) =⇒ δ∗(X,D1) = 1 ,

and, conversely,

δ∗(X,D1) = 1 =⇒ d∗(X,D) ≤ d(D1,D) = l(w1) =⇒ δ∗(X,D) = w1 ,

since the latter is minimal in δ∗(R,D).
(b) Set C0 := projR D. Then δ∗(C0,D) = max(WJw) = w0(J)w1 =⇒

d∗(C0,D1) ≥ d∗(C0,D) − d(D,D1) = l(w0(J)). Since δ∗(R,S) = WJ , this
implies that δ∗(C0,D1) = w0(J) and hence C0 = projR D1. The connection
with Exercise 5.167 is now the following: For any X ∈ R, we have δ∗(X,D1) =
1 ⇐⇒ δ+(X,projR D1) = w0(J) ⇐⇒ X and C0 are opposite in R.

5.199. Use Corollary 5.194 and the convexity of twin apartments.

Chapter 6

6.37. Argue by induction on d. [Note that the case d = 1 is precisely (Bru3).]
The induction is completely routine for the second inclusion. For the first, we
may assume that the decomposition is reduced. Then

C(ww′) ⊆ C(s1)C(s2 · · · sdw
′) by (Bru3)

⊆ C(s1)C(s2 · · · sd)C(w′) by induction
= C(w)C(w′) by part (3) of Proposition 6.36.

6.49. The first assertion follows from the fact that B is self-normalizing.
The second assertion follows from the first and the fact that Z(G) is normal
in G, so that Z(G) ≤

⋂
g∈G gBg−1. We can restate this assertion as follows:

If a group G acts Weyl transitively on a thick building ∆, then Z(G) acts
trivially. Applying this statement to the image of G in Aut∆, we obtain the
third assertion of the exercise.

6.54. (a) Check the usual two conditions (see Definition A.1). Note that the
standard parabolic subgroups PJ = BWJB are in 1–1 correspondence with
the standard parabolic subgroups WJ of W . Note further that for g ∈ G
and J,K ⊆ S, the smallest (with respect to inclusion) standard parabolic
subgroup of G containing g, PJ , PK corresponds to the smallest standard par-
abolic subgroup of W containing w, J,K, where g ∈ C(w). The existence of
this was shown in the proof of Theorem 3.5.
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(b) Define ι : Σ(W,S) → ∆ by ι(wWJ ) = wPJ , where the notation is
as in the solution to (a). Check that ι is well defined and is a simplicial
map. Note that the image of ι is Σ. Define ρ : ∆ → Σ(W,S) by ρ(gPJ ) =
wWJ if g ∈ C(w). To see that ρ is well defined, suppose g′ = gh is another
representative of the coset gPJ (h ∈ PJ). Then h ∈ C(wJ ) for some wJ ∈ WJ ,
and g′ ∈ C(w)C(wJ ). Now apply Exercise 6.37 to show that the representative
g′ yields the same coset wWJ . Show that ρ is simplicial and that ρι = idΣ(W,S),
so ι maps Σ(W,S) isomorphically onto Σ.

Note, for use in the solution to (c), that the proof has given us a retraction
ρ′ := ιρ : ∆ → Σ, given by ρ′(gP ) = wP if g ∈ C(w).

(c) To verify (B1), we may assume that one of the two given simplices is
a standard parabolic subgroup P . The other one is then gQ for some g ∈ G
and some standard parabolic Q. Writing g = bnb′ with n ∈ N and b, b′ ∈ B,
we have gQ = bnQ ∈ bΣ, so bΣ is an apartment containing P and gQ.

It follows from what we have done so far that ∆ is a chamber complex.
It has a G-invariant type function given by gPJ �→ S � J . Strong transitivity
is also immediate; for G is transitive on A, and the subgroup N stabilizes Σ
and is transitive on C(Σ).

Finally, we verify (B2′′). Given two apartments with a common chamber C,
we must construct an isomorphism between them fixing their intersection. By
strong transitivity, we may assume that one of the two apartments is Σ and
that C is the standard parabolic coset B. Let Σ′ be the other apartment.
Since the stabilizer of C is precisely the subgroup B, we can apply strong
transitivity again to find an isomorphism φ : Σ′ → Σ given by the action of
some element b ∈ B. We show that φ fixes Σ′ ∩Σ by showing that φ = ρ′|Σ′ ,
where ρ′ is the retraction mentioned above.

Every simplex of Σ′ = b−1Σ has the form b−1wP for some w ∈ W and
some standard parabolic P ; the definition of ρ′ now gives

ρ′(b−1wP ) = wP = b · b−1wP = φ(b−1wP ) ,

as required.

6.89. (a) This is the algebraic analogue of Example 5.136(a). It can be done
algebraically, or it can be deduced from that example.

(b) This is almost immediate from the solution to Exercise 5.163. Namely,
if C± are the fundamental chambers of C(G,B+, B−), then projC− C+ =
w0C−. Since B+ stabilizes C+, it follows that B+ stabilizes w0C−; hence
B+ ≤ w0B−w0. Similarly, B− ≤ w0B+w0. [This solution is a nice example
of the use of buildings to obtain short, transparent proofs of purely algebraic
results.]

6.90. (a) In view of the Birkhoff decomposition, it suffices to show that for
all w ∈ W , B+ � wB−w−1. Equivalently, we will show that B+ does not fix
the chamber D− := wC− of Σ−. Here, as usual, Σ is the fundamental twin
apartment of C(G,B+, B−). Our method will be to use strong transitivity to
prove the existence of an element b ∈ B+ such that bD− �= D−.
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Let D+ := wC+; it is the chamber of Σ+ opposite D−. Since Σ+ has
infinitely many walls (see Exercise 3.83(a)) and only finitely many of them
separate C+ from D+, there is a root α+ of Σ+ containing both C+ and D+.
The corresponding twin root α = (α+, α−) then contains C+ but not D−. By
thickness and Lemma 5.198, there is a twin apartment Σ′ �= Σ containing α,
and strong transitivity implies that Σ′ = bΣ for some b ∈ B+. Since Σ∩Σ′ =
α by Exercise 5.202, we conclude that bD− /∈ Σ and hence bD− �= D−.

(b) Now the result to be proved is that B+ does not fix any vertex v−
of Σ−. [Here we work in the simplicial buildings associated to C±, and we still
denote by Σ the corresponding simplicial apartment.] Let v+ be the vertex
of Σ opposite v−. As in the solution to (a) above, but using Exercise 3.83(b)
instead of (a), we can find a root α+ that contains both C+ and v+, with
v+ /∈ ∂α+. The corresponding twin root contains C+ but not v−, and the
argument in (a) gives an element b ∈ B+ that does not fix v−.

6.114. (b) The first assertion will be proved in Section 6.10.2.
(c) For the first assertion, see Serre [217, Section II.1.1].

6.115. (a) Every vertex in the link has a unique representative L with πA2 <
L < A2. So the vertices of the link correspond to the 1-dimensional subspaces
of the 2-dimensional k-vector space A2/πA2.

(b) Before specializing to K = k(t), note that in general, a lattice L as
in the solution to (a) has the form L = πA2 + Ax with x ∈ A2

� πA2. For
L = [e1, πe2], we can take x = e1. For all other L, we can take x = λe1+e2 with
λ ∈ A, and λ is uniquely determined mod π. We denote by Lλ the resulting
lattice πA2 + Ax. Thus, for example, L0 = [[πe1, e2]], and Lλ for any λ is
the image of L0 under the action of the elementary matrix E12(λ) := ( 1 λ

0 1 ).
What is special about the case K = k(t) is that the residue field k can also
be viewed as a subring of A; the desired subgroup U is then {E12(λ) | λ ∈ k}.
6.123. This result is given in Lam [150, Corollary VI.2.5(1)]. Here is a sketch
of a direct proof: By Hilbert’s criterion, it suffices to show that the equation
αx2 + βy2 = 1 has a solution over Qp. By standard results about lifting
solutions of equations [215, Section II.2.2, Corollary 2], it suffices to solve
the equation mod p. We now appeal to the fact that a nondegenerate binary
quadratic form over a finite field of characteristic �= 2 represents every nonzero
element; see, for instance, [215, Section IV.1.7, Proposition 4], where this result
is proved by an easy counting argument.

6.124. We try to replace the basis vector e2 ∈ D by a suitable linear com-
bination e′2 := λe2 + µe4 with λ, µ ∈ Q. Note that any such e′2 anticommutes
with e3 and that (e′2)

2 = λ2α − µ2αβ =: α′ ∈ Q. We will show that λ, µ can
be chosen such that α′ ∈ U2, where U is the group Z

∗
p of p-adic units. Setting

e′4 = e′2e3, we will then have a “quaternion basis” 1, e′2, e3, e
′
4, showing that

D ∼= (α′, β)Q .
The expression defining α′ above is the binary quadratic form 〈α,−αβ〉 in

the variables λ, µ. As in the solution to Exercise 6.123, this form, viewed as a
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form over Qp, represents all elements of U . In particular, we can find λ, µ ∈ Qp

such that λ2α−µ2αβ = 1, for instance. Since U2 is an open subset of Qp, we
can replace λ, µ by approximations in Q and still have λ2α− µ2αβ ∈ U2.

Chapter 7

7.12. (a) Consider the projection C1 := AC0 ∈ Σ. Then gC1 = (gA)C0 ∈ Σ
and hence, since g preserves Weyl distance from C0, gC1 = C1. Being type-
preserving, g fixes the face A of C1.

(b) The lemma says that every simplex of ∆ is U -equivalent to a simplex
of Σ. Since U fixes C0, (a) implies that no two distinct simplices of Σ are
U -equivalent.

7.77. Recall that a root vector α corresponds to the half-space 〈α,−〉 ≥ 0.
We can now appeal to the following elementary fact from linear algebra:
Let f, g, h : V → R be linear functions on a real vector space V . Then h
is a nonnegative linear combination of f and g if and only if h ≥ 0 on
{v ∈ V | f(v) ≥ 0 and g(v) ≥ 0}.
7.78. Method 1: Recall from Example 1.10 that the root system of type An−1

consists of the vectors αij := ei − ej (i �= j), where e1, . . . , en is the standard
basis for R

n. The only strictly positive linear combination of αij and αjk that
is a root is their sum, which is αik, so the result follows from Exercise 7.77.
Method 2: By Example 3.52, we can identify αij (or, more precisely, C(αij))
with the set of permutations π of {1, . . . , n} such that π−1(i) < π−1(j). If
π−1(i) < π−1(j) and π−1(j) < π−1(k), then π−1(i) < π−1(k), and no other
such conclusion can be drawn. So αij ∩ αjk ⊆ αik, and this is the only such
inclusion.

7.97. Choose s ∈ S such that w /∈ αs. We then have w ∈ −αs; hence
1 ∈ w−1(−αs) =: α, so α ∈ Φ+ and wα = −αs.

7.110. The expression is to be interpreted as w̃V w̃−1 for some representative
w̃ of w in N . It is legitimate if V is normalized by T . Note that we must use the
same representative w̃ for both occurrences of w, unless T ≤ V . In particular,
we cannot write sV s instead of sV s−1 for s ∈ S, since s̃V s̃ = s̃V s̃−1 only if
s̃2 ∈ V .

7.112. In view of Proposition 7.106, it suffices to show that there is a
minimal gallery in Σ whose associated sequence of roots contains both α
and β. [Equivalently, there exists w ∈ W such that wα and wβ are both
in Φ(w′) for some w′ ∈ W .] Since Σ contains no nested roots, the intersec-
tions α ∩ β and (−α) ∩ (−β) each contain at least one chamber. Choose a
chamber C ∈ α ∩ β and a chamber D ∈ (−α) ∩ (−β). Then any minimal
gallery from C to D must cross both ∂α and ∂β, so α and β both occur in
the associated sequence of roots.
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7.129. Note that 〈Uα, U−α〉 admits a BN-pair, and apply Exercise 6.50.

7.139. (a) This can of course be done via elementary row/column operations,
but we have already done it: Apply equation (7.25) with µ = 1.

(b) Equation (7.20) implies [h(λ), E12(µ)] = E12(λµλ − µ). This reduces
to the formula to be proved if λµ = µλ.

(c) It suffices to show that every x ∈ D can be written in the form x =
(λ2− 1)µ for some commuting elements λ, µ ∈ D with λ �= 0. If x �= 0,±1, we
can take λ = x and µ = (x2− 1)−1x. Otherwise, we can choose any λ �= 0,±1
and set µ = (λ2 − 1)−1x. Note that such a λ exists precisely when D �= F2

or F3.

Chapter 8

8.36. (a) We may assume that d∗(C+,D′) ≤ d∗(C+, C) and, by Lemma 8.7,
that D = wC− ∈ Σ−. Let α be the twin root of Σ containing D = wC−
but not wsC−, and let P be the s-panel containing D, D′, and wsC−. If
δ∗(C+,D′) �= δ∗(C+,D), then δ∗(C+,D′) = ws, and l(ws) < l(w). Then α
does not contain C−, since d(C−, wsC−) < d(C−, wC−), so α is a positive
root. Transitivity of Uα on C(P, α) now gives us an element u ∈ Uα ≤ U+

such that uD′ = wsC− and uD = D = wC−. All assertions of (a) now follow
in this case, with x = u−1.

Suppose now that δ∗(C+,D′) = δ∗(C+,D) [= w]. Then we must have
l(ws) > l(w), so α is a negative root. Transitivity of U−α on C(P,−α) now
yields an element y ∈ U−α such that D′ = yD, and the assertions of (a) are
satisfied with x = 1.

(b) Combine (a) and Remark 8.35.

8.46. By Corollary 3.166, there is a nested pair of roots α � β. Using the
action of W , we can arrange that the fundamental chamber is in β�α, so that
β is positive and α is negative. Then {−α, β} is a positive nonprenilpotent
pair.

8.60. The geometric interpretation is that ∆ =
⋃

u∈U−
uΣ0, where ∆ =

∆(G,B+) and Σ0 is the fundamental apartment. This is to be expected in
view of Lemma 8.7. To prove the equation, note that it suffices to show that
B−WB+ = G, since WB+ = WTB+ = TWB+. The proof now uses ideas
from the theory of twin BN-pairs, but one has to take care to use only those
facts about (B+, B−, N) that we know at this point.

8.63. U+ fixes the fundamental chamber, but U−s does not. Since there is
no opposite chamber to work with, there is no obvious way to interchange +
and − in this argument.

8.94. The procedure described in the exercise would yield a presentation with
many copies of each generating subgroup Uα, and it is not obvious that they
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are all equal in the direct limit. Now they are in fact all equal in the direct
limit, but we know this only because of the isomorphism lim−→Uw ∼−→ U+. To
put it another way, there is no obvious way to construct the inverse of the
map q : lim−→Uw −→ V that occurred in our proof without making use of the
isomorphism lim−→Uw ∼−→ U+.

Chapter 10

10.1. We may assume x0 = 0. Then if we know the numbers d(x, xi), we can
compute the inner products 〈x, xi〉 via the identity d2(x, y) = ‖x‖2 + ‖y‖2 −
2〈x, y〉, which is essentially the law of cosines.

10.5. We will need this result only when V is the affine span of X. In this case
one can find an affine frame x0, . . . , xn in X and argue as in Exercise 10.3.
The proof in the general case is similar but takes slightly more work. See
[48, Chapter I.2, Proposition 2.20] for a detailed proof of a more general
result.

10.16. The chamber C is defined by 〈ei,−〉 > ci (i = 1, . . . , n + 1). We have
no control over the ci, but we can be sure that

∑n+1
i=1 λici < 0. If we want

to try to make our description of C (and hence of (W,V )) as canonical as
possible, we can first normalize the λi by requiring

∑n+1
i=1 λi = 1. We can

then scale the inner product to achieve
∑n+1

i=1 λici = −1. This determines
the vector (c1, . . . , cn+1) up to translation by a vector in the n-dimensional
subspace of R

n+1 given by
∑n+1

i=1 λixi = 0.

10.34. See Example 10.14(b). The special vertices are those where four lines
intersect rather than two. To get a picture of L, see Remark 10.24(a).

10.46. If Q(α) �= 0, then we have an orthogonal decomposition R
n,1 =

Rα ⊕ α⊥. Suppose now that Q(α) > 0. Then the bilinear form 〈−,−〉 must
have signature (n − 1, 1) on α⊥; hence Q takes negative values on α⊥. It
follows that α⊥ meets H

n. Conversely, suppose α⊥ meets H
n, and choose β

in the intersection. Then R
n,1 = Rβ ⊕ β⊥, and since Q(β) = −1, the bilinear

form 〈−,−〉 must be positive definite on β⊥. Since α ∈ β⊥, we have Q(α) > 0.

10.47. Let V = Rα1 + Rα2. Then H1 ∩ H2 = V ⊥ ∩ H
n. Suppose this

is nonempty, and choose β in it. Then, as in the previous solution, 〈−,−〉
is positive definite on β⊥, which contains V , so 〈−,−〉 is positive definite
on V . Conversely, suppose 〈−,−〉 is positive definite on V . Then, in particular,
〈−,−〉 is nondegenerate on V , so we have an orthogonal decomposition R

n,1 =
V ⊕ V ⊥; hence 〈−,−〉 has signature (n − 2, 1) on V ⊥ and Q takes negative
values on V ⊥. It follows that V ⊥ meets H

n, so H1 ∩H2 �= ∅.
10.48. Consider the restriction of the bilinear form 〈−,−〉 to V := Re1+Re2.
It has matrix ( 1 c

c 1 ), where c := 〈e1, e2〉. In view of the previous exercise,
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the hypothesis implies that this bilinear form is not positive definite, i.e.,
|c| ≥ 1. If strict inequality holds, then the form is nondegenerate but indefi-
nite, i.e., it has signature (1,−1). We then have an orthogonal decomposition
R

n,1 = V ⊕ V ⊥, which implies that Q is positive definite on V ⊥ = e1
⊥ ∩ e2

⊥.
This says precisely that there is no nonzero vector x in e1

⊥ ∩ e2
⊥ with

Q(x) ≤ 0. Conversely, suppose there is no such vector x. Then Q is posi-
tive definite on V ⊥. In particular, it is nondegenerate on V ⊥, so we have an
orthogonal decomposition R

n,1 = V ⊥ ⊕ (V ⊥)⊥ = V ⊥ ⊕ V , and Q must have
signature (1,−1) on V . Thus |c| > 1.

Chapter 11

11.11. Assume first that equality holds in one of the two given inequalities,
say d(z′, x) = d(z, x). Let θ (resp. θ′) be the angle at x in the triangle x, y, z
(resp. x, y, z′). By the fact quoted in the statement of the exercise, we have
θ′ ≤ θ. Now use that fact again to compare the triangles x, p, z and x, p, z′,
and conclude that d(z′, p) ≤ d(z, p).

In the general case, where both of the given inequalities are strict,
introduce an intermediate triangle x, y, z′′, where z′′ is chosen such that
d(z′′, x) = d(z, x) and d(z′′, y) = d(z′, y). [Such a z′′ exists because d(x, y) ≤
d(x, z′) + d(z′, y) ≤ d(x, z) + d(z′, y).] Now apply the first case twice.

11.15. First draw a picture to see why the assertion is plausible. For the
proof, consider the points pt “between” y and y′ as in Exercise 11.14, where
t ranges over the dyadic rationals in [0, 1]. Then

d2(x, pt) ≤ (1− t)d2 + td2(x, y′)− t(1− t)d2(y, y′) .

The right side of this inequality would be a decreasing function of t for small t
if we had d(y, y′) > d(x, y′).

11.22. Let V be the tangent space to M at pt and let ρ : M → V be the
inverse of the exponential map. Then ρ is distance-decreasing and preserves
distances from pt.

11.30. Use the given cocycle to define an action of G on V by affine isometries.

11.50. Let D be the direction of C, and let the wall H be defined by an
equation f = c. We may assume that f > 0 on D and hence that f(x) > c
for some x ∈ C. The subsector x + D of C is then contained in the half-space
f > c.

11.58. To prove the inequality, take a suitable apartment E containing
{x, y′, z′}, and consider ρ = ρE,C , where x ∈ C. [See Bridson–Haefliger [48]
for a proof that is valid in an arbitrary CAT(0) space.] If equality holds, then
ρ is an isometry on {y, z} ∪ C.
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11.59. It suffices to show that x ∈ [y, z], i.e., that d(y, z) = d(y, x) + d(x, z).
This follows from the cosine inequality in Exercise 11.58. (Note that our hy-
pothesis says precisely that θ = π.)

11.84. (a) Let φ be an automorphism of ∆ such that the induced map φ∞
on ∆∞ is the identity. In view of Exercise 4.52, it suffices to show that φ
stabilizes every apartment E = |Σ|. But this is immediate from Theorem 11.79
and the fact that φ stabilizes every apartment of ∆∞.

(b) An automorphism of bounded displacement maps every ray to a par-
allel ray and hence induces the identity map on X∞.

(c) Euclidean Coxeter complexes admit nontrivial translations.

11.94. To prove (0) we must show that any two chambers C1, C2 in X ′ are
contained in an apartment in A. Choose points x1 ∈ C1 and x2 ∈ C2, and
consider the directed line segment from x1 to x2. Working in an apartment E2

in A containing C2, we can continue the line segment in the same direction so
as to obtain a ray starting at x1 that is eventually in E2. (See Exercise 11.59.)
Similarly, we can continue the ray in the opposite direction in an apartment
E1 in A. The result is a line (i.e., a subset isometric to R) such that each end
is eventually in an apartment in A. Perturbing x1 and x2 slightly, if necessary,
we can arrange that the two ends of this line are contained in open sectors.
Our hypothesis now implies that the entire line is contained in an apartment
in A, which then also contains C1 and C2.

The proof of (1) is similar: Given a chamber C of X ′ and an A-sector C,
choose x ∈ C and construct a ray starting at x that is eventually in C. [This
is possible because there is an apartment in the complete system containing
C and a subsector C′ of C. If C′ has direction D, we can use the ray given
by x + td (t ≥ 0) for any d ∈ D.] Now piece this together with a ray in an
apartment in A containing C, where the direction is chosen so as to match up
with the first ray. After a small perturbation if necessary, we get a line in X
whose two ends are contained in A-sectors, and we can finish as in the proof
of (0).

Chapter 12

12.12. This exercise is not trivial at the moment. You can try it to see what
the issues are and then return to it after reading Sections 12.1.4 and 12.1.5.
At that point it should be easy.

12.36. The spherical and hyperbolic laws of cosines can be found in [48,
Chapter I.2]. In the spherical case, for example, the law of cosines says the
following: Given a geodesic triangle with side lengths a, b, c and with vertex
angle θ opposite the side of length c, we have

cos c = cos a cos b + sin a sin b cos θ .
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12.37. For κ = −1, it is

cosh d(z,m) ≤ cosh d(z, x) + cosh d(z, y)
2 cosh(d(x, y)/2)

.

For κ = 1, assume d(x, y) + d(y, z) + d(z, x) < 2π, and conclude that
d(z,m) ≤ π and

cos d(z,m) ≥ cos d(z, x) + cos d(z, y)
2 cos(d(x, y)/2)

.

12.56. See the figure below.

s, t ∅

s

t

12.62. A classical theorem of Schur [212] implies that finitely generated infi-
nite linear groups cannot be torsion groups. (See Wehrfritz [279, Corollary 4.9]
for a modern treatment.) Alternatively, there is a longer but more elementary
proof based on Tits’s solution to the word problem, as in Exercise 2.42. A
third alternative is to apply Proposition 2.74.

Appendix A

A.2. (a) ∆ must contain the empty simplex as an element.
(b) The “empty simplicial complex” ∆ has one element, which is the empty

simplex. The vertex set of ∆ is empty, as is the geometric realization |∆|.
A.16. (a) The boundary of a triangle has this property. More generally, the
boundary of an n-simplex for any n ≥ 2 has n+1 mutually adjacent chambers.

(b) Let C,D,E be distinct chambers in a colorable thin chamber complex.
Suppose C is adjacent to D and D is adjacent to E. We will show that C
is not adjacent to E. Choose a type function with values in a set I. Then
C ∩D is an i-panel for some i ∈ I, and D ∩E is a j-panel for some j ∈ I. By
thinness, i �= j. One can now check that C ∩E has cotype {i, j} and hence is
not a panel, so C is not adjacent to E.
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A.17. (a) A detailed proof can be found in Munkres [179, Lemma 63.1].
The essential point is that the local homology can be computed using the
geometric realization of the star of A, which is a neighborhood of each point
of |A|. Here the star of a simplex A consists of all simplices joinable to A; it
is the simplicial join ∆≤A ∗ lk∆ A.

(b) This is immediate from (a).
(c) Apply (b). Note that lkA is the empty simplicial complex (whose only

simplex is the empty simplex) if A is maximal, so we must have n−k−1 = −1.
[More directly: |A| is an open subset of X homeomorphic to R

k, so the local
homology at each of its points is the same as that of R

k.]
(d) Apply (b). Note that lk A is 0-dimensional, with one vertex for every

n-simplex having A as a face.
(e) Apply (b), noting that the link in lkA of a simplex B is equal to the

link in ∆ of A ∪B.
(f) Arguing by induction on n, we may assume that the link of every non-

empty simplex is gallery connected. Hence any two chambers with nonempty
intersection can be connected by a gallery. To complete the proof, use the
connectivity of X to show that any two chambers can be joined by a sequence
C0, . . . , Cm such that Ci−1 ∩Ci is nonempty for each i = 1, . . . ,m. [Partition
the chambers into suitable equivalence classes, and note that X would be
disconnected if there were more than one class.]

A.27. Every face of the cube has a smallest vertex x and a largest vertex y
with respect to the ordering on P , and the set of vertices of that face is the
closed interval [x, y] in P . [In Figure A.3, we have oriented each edge toward
its larger vertex in order to make this visually obvious.] Thus the cells of K
correspond to intervals in P , ordered by inclusion.

A.30. If these conditions hold, then P can be identified with the poset of
cells of a regular cell complex by Proposition A.25(1). The subcomplex P≤x is
isomorphic to a cube by part (2) of the same proposition. And condition (a)
is exactly what is needed to guarantee that a nonempty intersection of closed
cells is a closed cell.

A.31. Note that (b) implies that P≤x is finite for each x ∈ P . In view of this,
the implication (a′) =⇒ a is almost immediate. [x and y have finitely many
common lower bounds, and their supremum, which exists by (a′), is the largest
of them.] The opposite implication is similar but slightly trickier, because there
might be infinitely many upper bounds. To get around this, consider a finite
collection of upper bounds whose infimum is of minimal dimension.

A.32. The flag complex ∆(K<e) triangulates an (n − 1)-sphere; hence it is
an (n − 1)-dimensional thin chamber complex by Example A.9. The result
follows easily.
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Appendix B

B.3. Recall that the angle between αi and −αj is π/mij (see Theorem 1.88
or its proof). Hence

aij = −‖α∨
i ‖‖αj‖ cos

π

mij
.

Now note that ‖α∨‖ = 2/‖α‖ for any root α.

Appendix C

C.5. G is isomorphic to a closed subgroup of GL4 over k. To see this, identify
G with SU2 and note that SU2(R[i]) acts on R[i]2 = R4. Alternatively, the
group of unit quaternions acts on the (4-dimensional) quaternion algebra by
multiplication.
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[184] , Super-rigidité géométrique et applications harmoniques, Non-posi-
tively curved geometry, discrete groups and rigidity (L. Bessières, A. Parreau,
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vol. 93, Birkhäuser Verlag, Basel, 1998. MR1725957 (2000k:51004) ↑180, 389

[265] H. Van Maldeghem and K. Van Steen, Moufang affine buildings have Moufang
spherical buildings at infinity, Glasgow Math. J. 39 (1997), no. 3, 237–241.
MR1484566 (99b:51009) ↑596

[266] A. Vdovina, Combinatorial structure of some hyperbolic buildings, Math. Z.
241 (2002), no. 3, 471–478. MR1938699 (2003m:20040) ↑616

[267] , Polyhedra with specified links, Séminaire de Théorie Spectrale et
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Jordan–Hölder permutation 184
J-reduced 83
J-residue 226, 292, 668

K

k-interior 393

L

lattice 353, 522, 682
length

maximal 40
of a chain 601
of a group element 39

Lie type 505
linear algebraic group 689
linear part 512
link 669, 672
local homology 667
locally symmetric space 635
longest element 40

M

maximal length 40
metric realization 599

Davis 616, 629
metric space

geodesic 549
proper 610

midpoint 553
midpoint convex 554
minimal gallery 31, 34, 221, 665
mixed 499
monomial matrix 14
Moufang building 386
Moufang plane 393
Moufang twin building 455

N

negative root 55
nested 169
nondegenerate 666
norm-1 group 366
numerical codistance 267

O

octagonal set 506
open cell 19
open interval 407, 462
opposite 28, 33, 133, 185, 195, 197, 205,

254, 255, 261, 267
opposite folding 129, 133
opposite root 133
opposite vertices 164
opposition involution 61, 196, 257, 276



Subject Index 745

order complex 663
orientation 538
oriented hyperplane 538
oriflamme geometry 347
origin 580
orthogonal group 345

P

p-adic group 561, 640
p-adic integers 354
p-adic numbers 354
p-adic valuation 351
panel 5, 21, 110, 219, 224, 515, 664, 667

boundary 450
interior 450

parabolic 53
standard 53, 80, 307

parabolic subgroup 316
parallel 538, 580
parallelogram law 551
permutahedron 620, 623
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